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Embedded / Real-Time systems and the real world 
• An embedded system is useless if it can not communicate with 

the external world!
• Some characteristics

– Hardware
• Bus systems (VME, PCI, etc)
• Serial links, from RS-232 to RapidIO and others
• Networks for loosely and tigthly coupled distributed systems
• Topologies

– Protocols
• Encoding, error detection and recovery
• Packet structure 

– Software 
• Standard (serial) I/O
• Block I/O, DMA
• Asynchronous (non-blocking I/O)
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HARDWARE AND INSTRUMENTATION
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Instrumentation 

• These includes both the measuring components and the 
interface to those
– Basics measuring components which connect to external 

instrumentation are:
• Analog input => digital conversion
• Analog output <= digital conversion
• Digital IO
• Counter/Timer

– A large number of commercial products (COTS = commercial off- the-
shelf) are available, and if it does not exist one has to make it 
(Custom design, much more fun) !

• Bus systems: we have previously presented the main 
characteristics of VMEbus, PCI and other interconnects.
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Communication between devices

• There are three basic device classes – Controllers, 
Sensors and Actuators. 

• We need to transfer a information from the sensors 
to the controller and from the controller to the 
actuators. 

• For that, we use some transfer medium (wires, fiber, 
air..) 

• And in order to interpret the information, we need a 
set of protocols

5FYS 4220 / 2011 / Lecture #10

Ref. Svein Johannesen, KODE
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Why use protocols at all?

• Even a “perfect” hardware solution may need some 
help since: 
– Almost all communication solutions have frame size limitations
– Flow control may be necessary 
– Communication errors may occur
– Source and destination may be on different hardware standards

• There are two basic flavors of communications: 
Peer-to-peer and Master/slave
– Peer-to-peer is the democratic “everybody has a right to speak” 

model 
– Master/slave is the dictatorial “only speak when spoken to” model
– Both models have their uses.. 
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Some A/D and D/A circuits, DSPs 

• National Instruments
– http://www.national.com/en/adc

• For an overview of High Speed Sampling ADCs, see lecture 
note 2011-10_Sampling_ADCs.pdf 

• The ALTRO ASIC developed for the CERN ALICE experiment 
is an example of a sampling ADC with programmable 
preprocessing and buffer storage. The 10-bit ADC has a 
maximum sampling rate of 20 MHz. Each ALTRO chip contains 
16 ADCs.  See following pages.

• Digital Signal Processor (DSP)
– The architecture of a digital signal processor is optimized specifically for 

digital signal processing. See for instance 
– http://www.analog.com/en/processors-dsp/processors/index.html
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Architecture and Main Components
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Pre-Amplifier Shaping Amplifier (PASA)

 Gain: 12mV / fC
 FWHM: 190ns
 Noise: < 1000
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 Power:  < 20mW / ch
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out+
out-

IMPULSE RESPONSE FUNCTION
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ALTRO Block Diagram
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Baseline Correction 1

Systematic perturbationBaseline drift

Fixed pedestal Slow drifts Systematic perturbation Combination

fpd = 0
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Characteristics:
• Corrects non-systematic perturbations during the processing time
• Moving Average Filter (MAF)
• Double threshold scheme (acceptance window)

After Tail Cancellation Filter After Baseline Correction II

BC II

Double threshold

A fixed threshold can 
now be applied 

safely

din - bsl + offset , 0  dout  1023
0 , dout < 0
din - bsl + offset - 1024 , dout > 1023

Unsigned 11-bit FIR system 

1. Slow variations of the signal  Baseline updated

2. Fast variations of the signal  Baseline value frozen

Operation

bsl frozen


8

ndin
8
1bsl

bsl calculation

Baseline Correction 2
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Zero Suppression Operation

above-threshold samples

pre-samples

post-samples

fill-in samples

rejected glitches

dismissed samples

discarded glitches

adjoined pre and post samples merged clusters
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NETWORKS / INTERCONNECTS
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The Ethernet connection

• Ethernet is used more and more as interconnect in Real-Time systems
– High speed and low latency with Gigabit and 10 Gigabit Ethernet

• Very cheap, very simple to install
• However, a WARNING. The IP (Internet Protocol) does not provide a 100% reliable communication

facility as such. There are no acknowledgments either end-to-end or hop-by-hop. There is no error
control for data, only a header checksum. No retransmissions. No flowcontrol (RFC 791).

– Standard software, protocols TCP/IP and UDP. 
• The Media Access Control address (MAC address) is a unique identifier assigned to most 

network adapters.
• In VxWorks the basis for intertask communication across a network is a socket. When a socket is 

created the protocol is specified.
• TCP provides reliable, guaranteed, two-way transmission of data with stream sockets. TCP is often 

referred to as a virtual circuit protocol.
• UDP provides a simpler but less robust form of communication. In UDP communications, data is 

sent between sockets in separate, unconnected, individually addressed packets called datagrams.
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Protocols – error detection - encoding
• Transmission on external media is subject to interference with 

possible corruption of data. 
– Eack packet therefore contains a error detection element, like the 

CyclicRedundancyCheck in an Ethernet packet. An n-bit CRC, applied to a data 
block of arbitrary length, will detect any single error burst not longer than n bits (in 
other words, any single alteration that spans no more than n bits of the data), and 
will detect a fraction 1 − 2 −n of all longer error bursts. Errors in both data 
transmission channels and magnetic storage media tend to be distributed non-
randomly (i.e. are "bursty"), making CRCs' properties more useful than alternative 
schemes such as multiple parity checks.

– Encoding: 
• In order to transport digital bits of data across carrier waves, encoding 

techniques have been developed each with their own pros and cons.
– In the well known 8/10 encoding each byte of data is examined and assigned a 10 

bit code group. The 10 bit code groups must either contain five ones and five zeros, 
or four ones and six zeros, or six ones and four zeros. This ensures that not too 
many consecutive ones and zeros occurs between code groups thereby 
maintaining clock synchronisation. 

– In order to maintain a DC balance, a calculation called the Running Disparity
calculation is used to try to keep the number of '0's transmitted the same as the 
number of '1's transmitted.
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Tightly coupled systems (a computer architecture issue)

• In a tightly coupled system the interconnected processors can
access a distributed, shared memory

– Can be implemented over a common bus, but a bus represents a serious
bottleneck

– An example of a high-speed interconnect standard for shared memory 
multiprocessing and message passing is IEEE 1596 Scalable Coherent 
Interface (1995). 

• The goal was to create an interconnect that would scale well, provide system-
wide coherency and a simple interface; i.e. a standard to replace buses in 
multiprocessor systems without the inherent scalability and performance 
limitations of buses. The working group soon realized that any form of buses 
would not suffice and came up with the idea of using point-to-point 
communication in the form of insertion rings as the right way to go. This 
approach avoids the lumped capacitance, limited physical length/speed of light 
problems and stub reflections in addition to allowing parallel transactions

• SCI shared memory access, nothing could be simpler

19FYS 4220 / 2011 / Lecture #10

/* map memory segment on remote node to local memory window and access remote memory 
as local memory. «ping-pong» latency less than 2 microsec                                                     */

remoteBuffer = (volatile unsigned int *)remoteSegmentAddr;
for (j=0; j<nostores; j++) {remoteBuffer[j] = localBuffer[j]; }
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I/O SOFTWARE INTERFACES
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Headlines

• Non-blocking (Asynchrounous) I/O
• Non-blocking POSIX message queues
• Direct Memory Access (DMA) transfer

21FYS 4220 / 2011 / Lecture #10
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Asynchronous (non blocking) I/O 

• Asynchronous I/O (or non-blocking I/O), is a form of 
input/output transaction that permits other activities 
to continue while the transmission is in progress. 
– The alternative: synchronous I/O (or blocking I/O) would leave the 

process/task in a waiting state until the I/O terminates. As such it 
will leave system resources idle. When a process makes many I/O 
operations, this means that the processor can spend almost all of 
its time idle waiting for I/O operations to complete. 

– The benefit of AIO is greater processing efficiency: it permits I/O 
operations to take place whenever resources are available, rather 
than making them await arbitrary events such as the completion of 
independent operations. AIO eliminates some of the unnecessary 
blocking of tasks that is caused by ordinary synchronous I/O; this 
decreases contention for resources between input/output and 
internal processing, and expedites throughput.
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Asynchronous I/O – OS support 

• Operating systems implement asynchronous I/O at many levels
– Implementations may support (from Wikipedia, no attempt to explain them 

further!) Polling, Select loops, Signals, Callback functions, Completions 
queues, Event flags

• Spooling was one of the first forms of multitasking designed to exploit the 
concept of asynchronous I/O  

• Oracle note 12 Oct 2007:
– The performance of asynchronous I/O is heavily dependent on the 

operating system's implementation of the aio_read() and aio_write() 
system calls. Kernelized asynchronous I/O is greatly preferable to 
threaded asynchronous I/O but it is only available for raw devices and 
Quick I/O files.

• Kernelized asynchronous I/O (KAIO): the kernel includes specific support for 
asynchronous I/O, whereas the Threaded implementation of asynchronous I/O 
just uses the kernel's light-weight process functionality to simulate asynchronous 
I/O by performing multiple synchronous I/O requests in distinct threads

• KAIO: Solaris, HP-UX, AIX, Linux expected with 2.5 (?)
• Threaded: Solaris, AIX, Linux, but not HP-UX
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Asynchronous I/O - VxWorks
• The VxWorks AIO implementation meets the 

specification in the POSIX 1003.1b standard. 
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Asynchronous I/O - VxWorks

• Run the VxWorks demo programs, ref. VxWorks 
Programmers Guide. The source is also on the 
FYS4220 lab web
– aioExSig.aio.c
– aioEx.c
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aioExSig.c

AIO complete signal
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POSIX  message queues

• Can be set up for non-blocking operation
• mq_receive()

– If the message queue is empty and O_NONBLOCK is not set in 
the message queue's description, mq_receive( ) will block until a 
message is added to the message queue, or until it is interrupted 
by a signal. If more than one task is waiting to receive a message 
when a message arrives at an empty queue, the task of highest 
priority that has been waiting the longest will be selected to receive 
the message. If the specified message queue is empty and 
O_NONBLOCK is set in the message queue's description, no 
message is removed from the queue, and mq_receive( ) returns 
an error. 

• However, this is not really AIO!
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POSIX  message queues - notify
• Notifying a Task that a Message is Waiting

– A task can use the mq_notify( ) routine to request notification when a message for it 
arrives at an empty queue. The advantage of this is that a task can avoid blocking or 
polling to wait for a message.

– The mq_notify( )call specifies a signal to be sent to the task when a message is 
placed on an empty queue. This mechanism uses the POSIX data-carrying extension 
to signaling, which allows you, for example, to carry a queue identifier with the signal 
(see POSIX Queued Signals).

– The mq_notify( )mechanism is designed to alert the task only for new messages that 
are actually available. If the message queue already contains messages, no 
notification is sent when more messages arrive. If there is another task that is blocked 
on the queue with mq_receive( ), that other task unblocks, and no notification is sent 
to the task registered with mq_notify( ). 

– Notification is exclusive to a single task: each queue can register only one task for 
notification at a time. Once a queue has a task to notify, no attempts to register with 
mq_notify( )can succeed until the notification request is satisfied or cancelled.

– Once a queue sends notification to a task, the notification request is satisfied, and the 
queue has no further special relationship with that particular task; that is, the queue 
sends a notification signal only once per mq_notify( )request. To arrange for one 
particular task to continue receiving notification signals, the best approach is to call 
mq_notify( )from the same signal handler that receives the notification signals. This 
reinstalls the notification request as soon as possible.

• Example program: ex-2-10.c (also on FYS4220 web)
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Asynchronous I/O - DMA
• A block device is a device that is organized as a 

sequence of individually accessible blocks of data. 
The most common type of block device is a disk. In 
VxWorks, the term block refers to the smallest 
addressable unit on the device. For most disk 
devices, a VxWorks block corresponds to a sector, 
although terminology varies.
– Block devices in VxWorks have a slightly different interface than 

other I/O devices. Rather than interacting directly with the I/O 
system, block device support consists of low-level drivers that 
interact with a file system. The file system, in turn, interacts with 
the I/O system

• Date transfer is execute as Direct Memory Access 
(DMA), using a DMA engine (controller) which 
competes with the CPU on accessing bus/memory. 
(“Cycle stealing”) 
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MIDAS M5000 DMA transfers

• The Universe PCI-VME bridge includes a built-in 
DMA controller that enables high-speed block 
transfers between MIDAS PCI and VME, without the 
involvement of the CPU

• Both direct DMA transfers and chained DMA
transfers are supported
– Direct mode transfers a single block of data between the PCI bus 

and the VME bus (or more correctly, PCI and VME memories)
– Linked list (chained) mode transfers one or multiple blocks of data 

between the PCI bus and the VME bus. The DMA engine uses 
DMA command packets to describe how to transfers each block of 
data.

– Next pages from the MIDAS M5000 manual, more about M5000 
I/O in a lab exercise
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Direct DMA



T.B. Skaali, Department of Physics, University of Oslo 32FYS 4220 / 2011 / Lecture #10

Linked list DMA



T.B. Skaali, Department of Physics, University of Oslo 33FYS 4220 / 2011 / Lecture #10

Linked list DMA – Universe PCI-VME bridge

DCTL = DMA transfer control register
DTBC = DMA transfer byte count register
DVA   = DMA VMEbus address register
DLA   = DMA PCI address register
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Linked list DMA – Universe PCI-VME bridge


