F

Real Time and Emb

Instrumentat

L A T R VT
L A I A T N A T i
L L A A P Y
L A YL P
FLLPEE FL20ET FL080T 100007 11807
FLLPEE LRI LN 1NiiE i
L L R Y A Y P A Y i)
L L A P T A
LEEE 2REEE HEEE R HNN
1 17 s 1ir it
i 11 11 e £
1y 1 1 i1 111
i 1 11 117 1
1147 1777 1247 s 117
177 177 117 "7 "
17l 177 14 17/ "

1 i 1" s "

/7 1 1" /" /"

/7 G " /1 I’
1" 7" 1" 1" 1"

Copyright 1995-1999 Wind River Systems, Inc.

T 0ORMNWGADO

Development System

Host Based Shell

Version 2.0.2

T.B. Skaali, Department of Physics, University of Oslo)

UNIVERSITY
OF OSLO

£ 4#7% UNIVERSITY
“0p/ orosro

Embedded / Real-Time systems and the real ;/vorld

 An embedded system is useless if it can not communicate with
the external world!

« Some characteristics

— Hardware
« Bus systems (VME, PCI, etc)
» Serial links, from RS-232 to RapidlO and others
» Networks for loosely and tigthly coupled distributed systems
* Topologies

— Protocols
* Encoding, error detection and recovery
» Packet structure

— Software
« Standard (serial) I/0O
» Block I/O, DMA
» Asynchronous (non-blocking I/O)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

5 2 UNIVERSITY
% & OF OSLO

HARDWARE AND INSTRUMENTATION

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

§£9% UNIVERSITY
0P orosLo

Instrumentation

« These includes both the measuring components and the
interface to those

— Basics measuring components which connect to external
instrumentation are:

« Analog input => digital conversion
* Analog output <= digital conversion
 Digital 10

 Counter/Timer

— A large number of commercial products (COTS = commercial off- the-
shelf) are available, and if it does not exist one has to make it
(Custom design, much more fun) !

« Bus systems: we have previously presented the main
characteristics of VMEbus, PCI and other interconnects.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

£ £9% UNIVERSITY
t Ul oF osLo

Communication between devices

 There are three basic device classes — Controllers,
Sensors and Actuators.

« We need to transfer a information from the sensors
to the controller and from the controller to the
actuators.

* For that, we use some transfer medium (wires, fiber,
air..)

* And in order to interpret the information, we need a
set of protocols

Ref. Svein Johannesen, KODE

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

£ £9% UNIVERSITY
t Ul oF osLo

Why use protocols at all?

« Even a “perfect” hardware solution may need some

help since:
— Almost all communication solutions have frame size limitations
— Flow control may be necessary
— Communication errors may occur
— Source and destination may be on different hardware standards

« There are two basic flavors of communications:

Peer-to-peer and Master/slave

— Peer-to-peer is the democratic “everybody has a right to speak”
model

— Master/slave is the dictatorial “only speak when spoken to” model
— Both models have their uses..

Ref. Svein Johannesen, KODE

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

£ £9% UNIVERSITY
t Ul oF osLo

Some A/D and D/A circuits, DSPs

 National Instruments

« For an overview of High Speed Sampling ADCs, see lecture
note 2011-10_Sampling_ ADCs.pdf

« The ALTRO ASIC developed for the CERN ALICE experiment
is an example of a sampling ADC with programmable
preprocessing and buffer storage. The 10-bit ADC has a
maximum sampling rate of 20 MHz. Each ALTRO chip contains
16 ADCs. See following pages.

 Digital Signal Processor (DSP)

— The architecture of a digital signal processor is optimized specifically for
digital signal processing. See for instance

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

UNIVERSITY

OF OSLO
FEC (Front End Card) - 128 CHANNELS
DETECTOR N
(CLOSE TO THE READOUT PLANE)
Power
consumption:
. <40 mW / channel
L1: ?.f(usz 8 CHIPS 8 CHIPS
drift region 16 CHX/ CHIP 16 CHX/ CHIP
88us
,———— » | I L2: <100 pus
° / ~ ‘ 200 Hz
‘ -
- @
= . : o)
o ,;3_.;-_;: Digital i
.§ [} . i PASA Circuit >
L4 anode H
[] wire DDL
° m (3200/CH / DDL)
CUSTOM IC
570132 PADS pplzg . (CMOS 0.35um) CUSTOM IC (CMOS 0.25um) .

- * GAIN EQUALIZ.
1MIP=48fC SEMI-GAUSS. SHAPER * LINEARIZATION
SIN =30:1 * BASELINE CORR.
DYNAMIC = 30 MIP ® TAIL CANCELL.

GAIN =12mV/fC * ZERO SUPPR.

FWHM = 190 ns

FEE FOR THE NA49 AND STAR TPCs

’ analog memory in front of the ADC = readout time independent of the occupancy
’ no zero suppression in the FEE = high data throughput on the detector data links

T.B. Skaali, Department of Physics, University of Oslo I

LIy

"% UNIVERSITY
WP/ or osLo

\
0O ¢\ : TSR \.|
= : : f /
4 & [\ /-]
N\ H H
‘ | v . \

» . o
OPA OPA OPA
» . »
" Gain: 12mV/fC " INL: <0.3%
u FWHM: 190ns " Crosstalk: <0.1%
n

" Noise: <1000 Power: <20mW /ch

T.B. Skaali, Department of Physics, University of Oslo

S UNIVERSITY

Sl nvil

z w
J 2
O

950.0-
DATA,

FIT

800.0-

600.0-

Q =149 fC

ADC counts

4000_ FWHM =190 ns

200.0-

O'D—l | I | ! | I | ne i |
0 50 100 150 200 250 300 350 400 450 500 550
Time[nanosecs)

T.B. Skaali, Department of Physics, University of Oslo

UNIVERSITY

OF OSLO
Data Processor
Correction of: 40-bit back
TSAL001 ® Slow drifts and systematic effects linked format Memory
® Non-systematic effects 'C_hannel address
10-bit Tail filtering © Time stamp 5 kbyte
25 MSPS | Data compression | 4or8buffers
40 MSPS
Input Signal { } % } DATAQ ;sson 4 } { } 4 \7
+ i Tail i
: o 1 ol I IS N Bl I N N PR
T~ I 2sc | Filter [2sC Il P
Baseline
0 ——M8™ Memo
- :

COMMON Config
CONTROL) ’ Trigger
LOGIC s _Slalus Manager
Registers

L1: acquisition

4 L2: event freeze
L1 L2 Q—

Trigger signals

[Runs with Sampling Clock
I Runs with Readout Clock

40-bit wide bus
Bandwidth: 300 Mbyte/s

Readout bus

T.B. Skaali, Department of Physics, University of Oslo

LIy

“£7% UNIVERSITY
W oF osLo

acquisition window
evi

Baseline drift AN

acquisition window
ev2

Systematic perturbation

0
evl ev2
_ evi
'(ﬂW_/W
evi EK‘E
din - vpd - (t)
update hold update _ hold update
vpd I 0
time
W Baseline
ADC ! AD Memory DQ
data | ‘ (1K x 10)
fpd =0

T.B. Skaali, Department of Physics, University of Oslo

® Cunctions

® signal (ion) tail suppression

® pulse narrowing = improves cluster separation
® gain equalization

® Architecture

. 3rd order IR filter

® 18-bit fixed point 2’sC arithmetic
|

single channel configuration = 6 coefficients / channel

“ UNIVERSITY
' OF OSLO

Filtro ‘l

compensates undershoot

Filtro "

Narrows the pulse

11 bits 18 bits 18 bits 11 bits
word 3" order v word o
z extension 7o~ IR filter o~ rounding 7o~ "
input output
11 bit 11 bit
-1 -1 -1
+ z L1 + z L2 z L3
K1 I K2 I K3 I
18-bit fixed point arithmetic

T.B. Skaali, Department of Physics, University of Oslo

Characteristics:

® Corrects non-systematic perturbations during the processing time
® Moving Average Filter (MAF)

® Double threshold scheme (acceptance window)

1. Slow variations of the signal =

Operation ‘

After Tail Cancellation Filter

UNIVERSITY
OF OSLO

ouble threshold

After Baseline Correction Il

- BCII —

A fixed threshold can
now be applied
safely

seline updated

2. Fast variations of the nal = Baseline value frozen

din - bsl + offset
0
din - bsl + offset - 1024

,0<dout £1023
,dout <0
, dout > 1023

10
offset
1 | .
din s S !
10 B din < bsl+thrhi
thry; +>G—N 2
4
10 ' o;::;i?l
thr.o -I- L (r)
- din > bsl-thr,,
config

T.B. Skaali, Department of Physics, University of Oslo

Unsigned 11-bit FIR system

UNIVERSITY
s OF OSLO

. rejected glitches

Q dismissed samples
discarded glitches

/\ !

adjoined pre and post samples merged clusters

T.B. Skaali, Department of Physics, University of Oslo

2 UNIVERSITY
s OF OSLO

NETWORKS / INTERCONNECTS

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

§#9% UNIVERSITY
2V ; oF osLo

The Ethernet connection

Ethernet is used more and more as interconnect in Real-Time systems

— High speed and low latency with Gigabit and 10 Gigabit Ethernet
* Very cheap, very simple to install

* However, a WARNING. The IP (Internet Protocol) does not provide a 100% reliable communication
facility as such. There are no acknowledgments either end-to-end or hop-by-hop. There is no error
control for data, only a header checksum. No retransmissions. No flowcontrol (RFC 791).

— Standard software, protocols TCP/IP and UDP.

« The Media Access Control address (MAC address) is a unique identifier assigned to most
network adapters.

* In VxWorks the basis for intertask communication across a network is a socket. When a socket is
created the protocol is specified.

» TCP provides reliable, guaranteed, two-way transmission of data with stream sockets. TCP is often
referred to as a virtual circuit protocol.

» UDP provides a simpler but less robust form of communication. In UDP communications, data is
sent between sockets in separate, unconnected, individually addressed packets called datagrams.

Preamble SLERALD e LA LLAE Ethertype/Lengde ol [Interframe gap
‘ Delimiter destination = source 4 9 {(nyttelast) (CRC32) (7%
7 oktetter pd |1 oktett pa 46-1500 960 ns Fast
k k k 4 ok
10101010 10101011 DEICAET | |IC BN POty oktetter oktetter Ethemet(100M))
64-1518 oktetter 24 sykler (100M)

72-1526 oktetter

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10 17

\ UNIVERSITY

e 2
\ii"’ -P"

Protocols — error detection - encoding

« Transmission on external media is subject to interference with
possible corruption of data.

— Eack packet therefore contains a error detection element, like the
CyclicRedundancyCheck in an Ethernet packet. An n-bit CRC, applied to a data
block of arbitrary length, will detect any single error burst not longer than n bitsy(in
other words, any single alteration that spans no more than n bits of the data), and
will detect a fraction 1 — 2 =" of all longer error bursts. Errors in both data
transmission channels and magnetic storage media tend to be distributed non-
randomly (i.e. are "bursty"), making CRCs' properties more useful than alternative
schemes such as multiple parity checks.

— Encoding:
» In order to transport digital bits of data across carrier waves, encoding

techniques have been developed each with their own pros and cons.

— In the well known 8/10 encoding each byte of data is examined and assigned a 10
bit code group. The 10 bit code groups must either contain five ones and five zeros,
or four ones and six zeros, or six ones and four zeros. This ensures that not too
many consecutive ones and zeros occurs between code groups thereby
maintaining clock synchronisation.

— In order to maintain a DC balance, a calculation called the Running Disparity
calculation is used to try to keep the number of '0's transmitted the same as the
number of '1's transmitted.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10 18

£f9% UNIVERSITY

(2 Ak

2 vjﬁwt 2
2 | 5/
O

T|ght|y C0up|ed SyStemS (a computer architecture issue)

* |n a tightly coupled system the interconnected processors can
access a distributed, shared memory

— Can be implemented over a common bus, but a bus represents a serious
bottleneck

— An example of a high-speed interconnect standard for shared memory
multiprocessing and message passing is IEEE 1596 Scalable Coherent
Interface (1995).

* The goal was to create an interconnect that would scale well, provide system-
wide coherency and a simple interface; i.e. a standard to replace buses in
multiprocessor systems without the inherent scalability and performance
limitations of buses. The working group soon realized that any form of buses
would not suffice and came up with the idea of using point-to-point
communication in the form of insertion rings as the right way to go. This
approach avoids the lumped capacitance, limited physical length/speed of light
problems and stub reflections in addition to allowing parallel transactions

+ SCI shared memory access, nothing could be simpler

/* map memory segment on remote node to local memory window and access remote memory

as local memory. «ping-pong» latency less than 2 microsec */
remoteBuffer = (volatile unsigned int *)remoteSegmentAddr;
for (j=0; j<nostores; j++) {remoteBuffer[j] = localBuffer[j]; }

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

19

2 UNIVERSITY
s OF OSLO

/0 SOFTWARE INTERFACES

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

5 #8% UNIVERSITY
wJf; OF osLO

Headlines

* Non-blocking (Asynchrounous) I/O
* Non-blocking POSIX message queues
* Direct Memory Access (DMA) transfer

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

£ £9% UNIVERSITY
t Ul oF osLo

Asynchronous (non blocking) I/O

« Asynchronous I/O (or non-blocking I/O), is a form of
input/output transaction that permits other activities
to continue while the transmission is in progress.

— The alternative: synchronous I/O (or blocking 1/O) would leave the
process/task in a waiting state until the I/O terminates. As such it
will leave system resources idle. When a process makes many 1/O
operations, this means that the processor can spend almost all of
its time idle waiting for I/O operations to complete.

— The benefit of AlO is greater processing efficiency: it permits 1/0
operations to take place whenever resources are available, rather
than making them await arbitrary events such as the completion of
independent operations. AlO eliminates some of the unnecessary
blocking of tasks that is caused by ordinary synchronous I/O; this
decreases contention for resources between input/output and
internal processing, and expedites throughput.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

22

£E9% UNIVERSITY
\i»r %‘Eﬂl \E

Asynchronous I/O — OS support

« Operating systems implement asynchronous I/O at many levels

— Implementations may support (from Wikipedia, no attempt to explain them
further!) Polling, Select loops, Signals, Callback functions, Completions
gueues, Event flags

» Spooling was one of the first forms of multitasking designed to exploit the
concept of asynchronous 1/0

 QOracle note 12 Oct 2007:

— The performance of asynchronous I/O is heavily dependent on the
operating system's implementation of the aio_read() and aio_write()
system calls. Kernelized asynchronous I/O is greatly preferable to
threaded asynchronous 1/O but it is only available for raw devices and
Quick 1/O files.

+ Kernelized asynchronous I/0O (KAIO): the kernel includes specific support for
asynchronous I/O, whereas the Threaded implementation of asynchronous 1/0

just uses the kernel's light-weight process functionality to simulate asynchronous
I/O by performing multiple synchronous 1/O requests in distinct threads

« KAIO: Solaris, HP-UX, AlX, Linux expected with 2.5 (?)
* Threaded: Solaris, AlX, Linux, but not HP-UX

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

23

£ 7% UNIVERSITY
2V ; oF osLo

Asynchronous I/O - VxWorks

 The VxWorks AlO implementation meets the
specification in the POSIX 1003.1b standard.

The POSIX AIO Routines
The VxWorks library aioPxLib provides the POSIX AIO routines. To access a file asynchronously,
open it with the open() routine, like any other file. Thereafter, use the file descriptor returned by
open() m calls to the ATO routmes. The POSIX ATO routmes (and two associated non-POSIX routes)
are histed m Table 3-4.

Table 34: Asynchronous Input/Output Routines

Function Description
aioPxLibInit() Itialize the ATO lhibrary (non-POSIX).
aioShow() Display the outstanding ATO requests (non-POSIX).!
aio_read() Iutiate an asynchronous read operation.
aio_write() Istiate an asynchronous wiite operation.
aio_listio() Iutiate a hist of up to LIO _MAX asynchronous I'O requests.
aio_error() Retrieve the error status of an ATO operation.
aio_retirn() Retrieve the return status of a completed AIO operation.
aio_cancel() Cancel a previously subnutted AIO operation.
aio_suspend() Wait until an ATO operation 1s done, mterrupted, or tuned out.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

24

5 #8% UNIVERSITY
wJf; OF osLO

Asynchronous I/O - VxWorks

* Run the VxWorks demo programs, ref. VxWorks
Programmers Guide. The source is also on the
FYS4220 lab web

— aioExSig.aio.c
— aioEx.c

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

aloExSig.c

= Tornado - [FYSPC-ELG045.mshome. net]
ES File Edit View Project Build Debug Tools Window Help

] & |cc|dp| | | [wemervsecelais | @i~ @|E| Al

| Zlz|mf: -l w¥| 7| Bl & %] 9 5]

% UNIVERSITY
¢ OF OSLO

200 210 220 230 240

INT2

INT1
tExcTask
tLogTask
tShell
tWdbTask
tAioloTaskl
tAioloTaskD
tAioWait
tWvRBuffMgr
slud

idle

<
siud : 295 : sigwrapper (tid=0x4adcaS8, signo=0x19)
Wind River Systems

250 260 270 280 290 300

NUM

COMPLETE

Ln91, Col 4

T.B. Skaali, Department of Physics, University of Oslo

1
AIlO complete signal

FYS 4220/ 2011 / Lecture #10

26

£ £9% UNIVERSITY
t Ul oF osLo

POSIX message queues

« Can be set up for non-blocking operation

* mq_receive()

— If the message queue is empty and O_NONBLOCK is not set in
the message queue's description, mqg_receive() will block until a
message is added to the message queue, or until it is interrupted
by a signal. If more than one task is waiting to receive a message
when a message arrives at an empty queue, the task of highest
priority that has been waiting the longest will be selected to receive
the message. If the specified message queue is empty and
O_NONBLOCK is set in the message queue's description, no
message is removed from the queue, and mqg_receive() returns
an error.

 However, this is not really AlO!

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10 27

POSIX message queues - notify

)
%\.:5-9
pod %

&

(2 Ak

2 vjﬁwt 2
2 | 5/
O

* Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for it
arrives at an empty queue. The advantage of this is that a task can avoid blocking or
polling to wait for a message.

The mq_notify()call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying extension
to signaling, which allows you, for example, to carry a queue identifier with the signal
(see POSIX Queued Signals).

The mq_notify()mechanism is designed to alert the task only for new messages that
are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is blocked
on the queue with mq_receive(), that other task unblocks, and no notification is sent
to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify()can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and the
queue has no further special relationship with that particular task; that is, the queue
sends a notification signal only once per mq_notify()request. To arrange for one
particular task to continue receiving notification signals, the best approach is to call
mq_notify()from the same signal handler that receives the notification signals. This
reinstalls the notification request as soon as possible.

« Example program: ex-2-10.c (also on FYS4220 web)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

% UNIVERSITY

28

£ £9% UNIVERSITY
t Ul oF osLo

Asynchronous I/O - DMA

* A block device is a device that is organized as a
sequence of individually accessible blocks of data.
The most common type of block device is a disk. In
VxWorks, the term block refers to the smallest
addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector,
although terminology varies.

— Block devices in VxWorks have a slightly different interface than
other I/O devices. Rather than interacting directly with the I/O
system, block device support consists of low-level drivers that
interact with a file system. The file system, in turn, interacts with
the 1/0O system

« Date transfer is execute as Direct Memory Access
(DMA), using a DMA engine (controller) which

competes with the CPU on accessing bus/memory.
(“Cycle stealing”)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

£ £9% UNIVERSITY
t Ul oF osLo

MIDAS M5000 DMA transfers

« The Universe PCI-VME bridge includes a built-in
DMA controller that enables high-speed block
transfers between MIDAS PCI and VME, without the
involvement of the CPU

* Both direct DMA transfers and chained DMA
transfers are supported

— Direct mode transfers a single block of data between the PCI bus
and the VME bus (or more correctly, PCl and VME memories)

— Linked list (chained) mode transfers one or multiple blocks of data
between the PCI bus and the VME bus. The DMA engine uses

DMA command packets to describe how to transfers each block of
data.

— Next pages from the MIDAS M5000 manual, more about M5000
/O in a lab exercise

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

30

5 #8% UNIVERSITY
v/ oF osLO

Direct DMA

uniDmaDirect

STATUS uniDmaDirect

(

UINT3Z wvmeldrs,

UINT32 pcihdrs,

UINT32 byteCocunt,

UINT3Z wvmeAmCode,

BOOL pciéd,

int direction
Synopsis)

This function commands the Universe DMA engine to transfer a single DMA block.
<wvmeAdrs> 1s the VME bus address of the DMA block.

<peciidrs> is the PCI bus address of the DMA block.

<byteCount> 1s the number of bytes in the DMA block.

<vmeAmCode> 1s the VME Address Modifier code to be used when transferring the
DMA block.

If <pcié4>1s TRUE, then PCI dual address cycles are enabled.

<direction>1s either UNI_DMA V2L (0) meaning VME to PCI, or
Description UNI_DMA_L2V (1) meaning PCI to VME.

OK or ERROR
Returns

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

UNIVERSITY
s OF OSLO

Linked list DMA

uniDmaChainCmdPktCreate

UNI_DMA CHAIN_CMDPXT_NODE * uniDmaChainCmdPktCreate

(

UINT32 vmeAdrs,

UINT32 pciAdrs,

UINT32 byteCount,

UINT32 vmeiAmCode,

BOOL pcicd,

int direction,

UNI_DMA CHARIN_CMDPKI_NODE *prev,

UNI_DMA CHAIN_CMDPXT_NODE *next
Synopsis)

<unilPmaChainCmdPktCreate> allocates a new DMA chain command packet and
mutializes it according to the arguments given.

<vmeAdrs> is the VME bus address of the DMA block.

<pciAhdrs> is the PCI bus address of the DMA block.

<byteCount?> 1s the number of bytes in the DMA block.

<vmeAmCode> is the VME Address Modifier code to be used when transferring the
DMA block.

If <pci64> 15 TRUE then PCI Dual Address Cycles are enabled.

<direction> is either UNI_DMA_V2L (0) meaning VME to PCI, or
UNI_DMA_L2V (1) meaning PCI to VME.

If the newly created command packet is to be part of an already existing chamn of DMA
command packets, <prev= should point to the <UNI_DMA CHAIN_CMDPT_NODE>
structure representing the packet m front of the new one, and <next> should pomt to the

<UNI_DMA_CHAIN_ CMDPKI_NODE> structure representing the next packet in the
Description chain. Both <prev:> and <next> may point to NULL.

Pointer to newly created <UNI_DMA_CHAIN_CMDPKT_NODE> structure on success or
Returns NULL on failure

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

% UNIVERSITY
% OF OSLO

Linked list DMA — Universe PCI-VME bcr'ldae

6.4

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 2011 / Lecture #10

Linked-list Mode

Unlike direct mode, in which the DMA performs a single block of data at a time, linked-list mode
allows the DMA to transfer a series of non-contiguous blocks of data without software intervention.
Each entry in the linked-list 1s described by a command packet which parallels the DMA register
layout. The data structure for each command packet 1s the same (see Figure 16 below), and contains all
the necessary information to program the DMA address and control registers. It could be described 1n
software as a record of eight 32-bit data elements. Four of the elements represent the four core registers
required to define a DMA transfer: DCTL, DTBC, DVA, and DLA. A fifth element represents the
DCPP register which points to the next command packet in the list. The least two significant bits of the
DCPP element (the PROCESSED and NULL bits) provide status and control information for linked
list processing.

The PROCESSED bit indicates whether a command packet has been processed or not. When the DMA
processes the command packet and has successfully completed all transfers described by this packet, 1t
sets the PROCESSED bait to 1 before reading 1n the next command packet in the list. The PROCESSED
bit must be mitially set for 0. This bit, when set to 1, indicates that this command packet has been
disposed of by the DMA and 1ts memory can be de-allocated or reused for another transfer description.

DCTL = DMA transfer control register J]
DTBC = DMA transfer byte count register
DVA =DMA VMEbus address register
DLA =DMAPCI address register

S5,

UNIVERSITY
OF OSLO

Linked list DMA — Universe PCI-VME bridge

Figure 16: Command Packet Structure and Linked List Operation

LILY
é %»2’
{53

First Command Packet

in Linked-List
DCT. Register - —— Linked-List Start
DTBC Reqgister Address in
Register information DLA Register Command Packet
copied to DMA Control — reserved Pointer Register
and Address Registers DVA Register
reserved
| DCPP Register | r[PIN \ r = reserved
reserved P = processed bit
DCPP points (after command packet is processed
to next command the bitis setto 1)
packet Second Command Packet N = null bit
in Linked-List in Linked-List
DCTL Register
DTBC Reglster
DLA Register
regerved
DVA Register
reserved
DCop Register [r|PN
regerved

N = 0 for another command packet

in Linked-List

DCTL Register
DTEC Reqgister
DLA Register
reserved
DVA Register
reserved
Dcop Register |fJP[N
reserved

\[; Last Command Packet

N =1 for last command packet

The NULL bit indicates the termination of the entire linked list. If the NULL bit1s set to 0, the DMA

processes the next command packet pointed to by the command packet pointer. If the NULL bit 1s set

to 1 then the address in the command packet pointer is considered invalid and the DMA stops at the
T.B. Skaali, [completion of the transfer described by the current command packet.

