
T.B. Skaali, Department of Physics, University of Oslo)

FYS 4220 – 2011 / #10

Real Time and Embedded Data Systems and Computing

Instrumentation, interconnects and I/O

T.B. Skaali, Department of Physics, University of Oslo 2FYS 4220 / 2011 / Lecture #10

Embedded / Real-Time systems and the real world
• An embedded system is useless if it can not communicate with

the external world!
• Some characteristics

– Hardware
• Bus systems (VME, PCI, etc)
• Serial links, from RS-232 to RapidIO and others
• Networks for loosely and tigthly coupled distributed systems
• Topologies

– Protocols
• Encoding, error detection and recovery
• Packet structure

– Software
• Standard (serial) I/O
• Block I/O, DMA
• Asynchronous (non-blocking I/O)

T.B. Skaali, Department of Physics, University of Oslo

HARDWARE AND INSTRUMENTATION

3FYS 4220 / 2011 / Lecture #10

T.B. Skaali, Department of Physics, University of Oslo 4FYS 4220 / 2011 / Lecture #10

Instrumentation

• These includes both the measuring components and the
interface to those
– Basics measuring components which connect to external

instrumentation are:
• Analog input => digital conversion
• Analog output <= digital conversion
• Digital IO
• Counter/Timer

– A large number of commercial products (COTS = commercial off- the-
shelf) are available, and if it does not exist one has to make it
(Custom design, much more fun) !

• Bus systems: we have previously presented the main
characteristics of VMEbus, PCI and other interconnects.

T.B. Skaali, Department of Physics, University of Oslo

Communication between devices

• There are three basic device classes – Controllers,
Sensors and Actuators.

• We need to transfer a information from the sensors
to the controller and from the controller to the
actuators.

• For that, we use some transfer medium (wires, fiber,
air..)

• And in order to interpret the information, we need a
set of protocols

5FYS 4220 / 2011 / Lecture #10

Ref. Svein Johannesen, KODE

T.B. Skaali, Department of Physics, University of Oslo

Why use protocols at all?

• Even a “perfect” hardware solution may need some
help since:
– Almost all communication solutions have frame size limitations
– Flow control may be necessary
– Communication errors may occur
– Source and destination may be on different hardware standards

• There are two basic flavors of communications:
Peer-to-peer and Master/slave
– Peer-to-peer is the democratic “everybody has a right to speak”

model
– Master/slave is the dictatorial “only speak when spoken to” model
– Both models have their uses..

6FYS 4220 / 2011 / Lecture #10

Ref. Svein Johannesen, KODE

T.B. Skaali, Department of Physics, University of Oslo 7FYS 4220 / 2011 / Lecture #10

Some A/D and D/A circuits, DSPs

• National Instruments
– http://www.national.com/en/adc

• For an overview of High Speed Sampling ADCs, see lecture
note 2011-10_Sampling_ADCs.pdf

• The ALTRO ASIC developed for the CERN ALICE experiment
is an example of a sampling ADC with programmable
preprocessing and buffer storage. The 10-bit ADC has a
maximum sampling rate of 20 MHz. Each ALTRO chip contains
16 ADCs. See following pages.

• Digital Signal Processor (DSP)
– The architecture of a digital signal processor is optimized specifically for

digital signal processing. See for instance
– http://www.analog.com/en/processors-dsp/processors/index.html

T.B. Skaali, Department of Physics, University of Oslo

Architecture and Main Components

anode
wire

pad
plane

drift region
88s

L1: 6.5s
1 KHz

PASA ADC
Digital
Circuit RAM

8 CHIPS
x

16 CH / CHIP

8 CHIPS
x

16 CH / CHIP

CUSTOM IC
(CMOS 0.35m) CUSTOM IC (CMOS 0.25m)

DETECTOR FEC (Front End Card) - 128 CHANNELS
(CLOSE TO THE READOUT PLANE)

FEC (Front End Card) - 128 CHANNELS
(CLOSE TO THE READOUT PLANE)

570132 PADS

1 MIP = 4.8 fC
S/N = 30 : 1
DYNAMIC = 30 MIP

CSA
SEMI-GAUSS. SHAPER

GAIN = 12 mV / fC
FWHM = 190 ns

10 BIT
< 12 MHz

• GAIN EQUALIZ.
• LINEARIZATION
• BASELINE CORR.
• TAIL CANCELL.
• ZERO SUPPR.

MULTI-EVENT
MEMORY

L2: < 100 s
200 Hz

DDL
(3200 CH / DDL)

Power
consumption:

< 40 mW / channel

Power
consumption:

< 40 mW / channel

ga
tin

g
gr

id

 analog memory in front of the ADC  readout time independent of the occupancy
 no zero suppression in the FEE  high data throughput on the detector data links

ALTRO

FEE FOR THE NA49 AND STAR TPCs

T.B. Skaali, Department of Physics, University of Oslo

Pre-Amplifier Shaping Amplifier (PASA)

 Gain: 12mV / fC
 FWHM: 190ns
 Noise: < 1000

REQUIREMENTS

 INL: < 0.3%
 Crosstalk: < 0.1%
 Power: < 20mW / ch

Q

MIP = 3x104 e 30mV

Noise < 103 e < 1mV

Q/Cf

CSA SA OA

OPA OPA

Cf

4 integrators
(RC)4

OPA

T0

Cd

Tp

T0

PZ
differentiator

integrator with
continuos reset

diff output
amplifier

charge sensitive amplifier 4th order semi-gaussian shaper

T.B. Skaali, Department of Physics, University of Oslo

out+
out-

IMPULSE RESPONSE FUNCTION

FWHM = 190 ns

Q = 149 fC

A(t / )4e-4(t/)

Pre-Amplifier Shaping Amplifier (PASA)

T.B. Skaali, Department of Physics, University of Oslo

ALTRO Block Diagram

Input Signal

0

Readout bus

40-bit wide bus
Bandwidth: 300 Mbyte/s

Trigger signals

L1: acquisition

L2: event freeze

Data Processor

Correction of:
• Slow drifts and systematic effects
• Non-systematic effects

Tail filtering
Data compression

40-bit back
linked format

•Channel address
•Time stamp 5 kbyte

4 or 8 buffers

Memory

10-bit
25 MSPS
40 MSPS

TSA1001

T.B. Skaali, Department of Physics, University of Oslo

Baseline Correction 1

Systematic perturbationBaseline drift

Fixed pedestal Slow drifts Systematic perturbation Combination

fpd = 0

T.B. Skaali, Department of Physics, University of Oslo

11 bits

2’sC

18 bits

2’sC

18 bits

2’sC

11 bits

2’sC

Tail Cancellation Filter

input output

11 bit 11 bit

18-bit fixed point arithmetic

Z
-1

L1

K1

Z
-1

L2

K2

Z
-1

L3

K3

word
extension

3rd order
IIR filter

word
rounding

Narrows the pulse

Filtro

compensates undershoot

 Functions
 signal (ion) tail suppression
 pulse narrowing  improves cluster separation
 gain equalization

Filtro

 Architecture
 3rd order IIR filter
 18-bit fixed point 2’sC arithmetic
 single channel configuration  6 coefficients / channel

T.B. Skaali, Department of Physics, University of Oslo

Characteristics:
• Corrects non-systematic perturbations during the processing time
• Moving Average Filter (MAF)
• Double threshold scheme (acceptance window)

After Tail Cancellation Filter After Baseline Correction II

BC II

Double threshold

A fixed threshold can
now be applied

safely

din - bsl + offset , 0  dout  1023
0 , dout < 0
din - bsl + offset - 1024 , dout > 1023

Unsigned 11-bit FIR system

1. Slow variations of the signal  Baseline updated

2. Fast variations of the signal  Baseline value frozen

Operation

bsl frozen


8

ndin
8
1bsl

bsl calculation

Baseline Correction 2

T.B. Skaali, Department of Physics, University of Oslo

Zero Suppression Operation

above-threshold samples

pre-samples

post-samples

fill-in samples

rejected glitches

dismissed samples

discarded glitches

adjoined pre and post samples merged clusters

T.B. Skaali, Department of Physics, University of Oslo

NETWORKS / INTERCONNECTS

16FYS 4220 / 2011 / Lecture #10

T.B. Skaali, Department of Physics, University of Oslo 17FYS 4220 / 2011 / Lecture #10

The Ethernet connection

• Ethernet is used more and more as interconnect in Real-Time systems
– High speed and low latency with Gigabit and 10 Gigabit Ethernet

• Very cheap, very simple to install
• However, a WARNING. The IP (Internet Protocol) does not provide a 100% reliable communication

facility as such. There are no acknowledgments either end-to-end or hop-by-hop. There is no error
control for data, only a header checksum. No retransmissions. No flowcontrol (RFC 791).

– Standard software, protocols TCP/IP and UDP.
• The Media Access Control address (MAC address) is a unique identifier assigned to most

network adapters.
• In VxWorks the basis for intertask communication across a network is a socket. When a socket is

created the protocol is specified.
• TCP provides reliable, guaranteed, two-way transmission of data with stream sockets. TCP is often

referred to as a virtual circuit protocol.
• UDP provides a simpler but less robust form of communication. In UDP communications, data is

sent between sockets in separate, unconnected, individually addressed packets called datagrams.

T.B. Skaali, Department of Physics, University of Oslo 18FYS 4220 / 2011 / Lecture #10

Protocols – error detection - encoding
• Transmission on external media is subject to interference with

possible corruption of data.
– Eack packet therefore contains a error detection element, like the

CyclicRedundancyCheck in an Ethernet packet. An n-bit CRC, applied to a data
block of arbitrary length, will detect any single error burst not longer than n bits (in
other words, any single alteration that spans no more than n bits of the data), and
will detect a fraction 1 − 2 −n of all longer error bursts. Errors in both data
transmission channels and magnetic storage media tend to be distributed non-
randomly (i.e. are "bursty"), making CRCs' properties more useful than alternative
schemes such as multiple parity checks.

– Encoding:
• In order to transport digital bits of data across carrier waves, encoding

techniques have been developed each with their own pros and cons.
– In the well known 8/10 encoding each byte of data is examined and assigned a 10

bit code group. The 10 bit code groups must either contain five ones and five zeros,
or four ones and six zeros, or six ones and four zeros. This ensures that not too
many consecutive ones and zeros occurs between code groups thereby
maintaining clock synchronisation.

– In order to maintain a DC balance, a calculation called the Running Disparity
calculation is used to try to keep the number of '0's transmitted the same as the
number of '1's transmitted.

T.B. Skaali, Department of Physics, University of Oslo

Tightly coupled systems (a computer architecture issue)

• In a tightly coupled system the interconnected processors can
access a distributed, shared memory

– Can be implemented over a common bus, but a bus represents a serious
bottleneck

– An example of a high-speed interconnect standard for shared memory
multiprocessing and message passing is IEEE 1596 Scalable Coherent
Interface (1995).

• The goal was to create an interconnect that would scale well, provide system-
wide coherency and a simple interface; i.e. a standard to replace buses in
multiprocessor systems without the inherent scalability and performance
limitations of buses. The working group soon realized that any form of buses
would not suffice and came up with the idea of using point-to-point
communication in the form of insertion rings as the right way to go. This
approach avoids the lumped capacitance, limited physical length/speed of light
problems and stub reflections in addition to allowing parallel transactions

• SCI shared memory access, nothing could be simpler

19FYS 4220 / 2011 / Lecture #10

/* map memory segment on remote node to local memory window and access remote memory
as local memory. «ping-pong» latency less than 2 microsec */

remoteBuffer = (volatile unsigned int *)remoteSegmentAddr;
for (j=0; j<nostores; j++) {remoteBuffer[j] = localBuffer[j]; }

T.B. Skaali, Department of Physics, University of Oslo

I/O SOFTWARE INTERFACES

20FYS 4220 / 2011 / Lecture #10

T.B. Skaali, Department of Physics, University of Oslo

Headlines

• Non-blocking (Asynchrounous) I/O
• Non-blocking POSIX message queues
• Direct Memory Access (DMA) transfer

21FYS 4220 / 2011 / Lecture #10

T.B. Skaali, Department of Physics, University of Oslo 22FYS 4220 / 2011 / Lecture #10

Asynchronous (non blocking) I/O

• Asynchronous I/O (or non-blocking I/O), is a form of
input/output transaction that permits other activities
to continue while the transmission is in progress.
– The alternative: synchronous I/O (or blocking I/O) would leave the

process/task in a waiting state until the I/O terminates. As such it
will leave system resources idle. When a process makes many I/O
operations, this means that the processor can spend almost all of
its time idle waiting for I/O operations to complete.

– The benefit of AIO is greater processing efficiency: it permits I/O
operations to take place whenever resources are available, rather
than making them await arbitrary events such as the completion of
independent operations. AIO eliminates some of the unnecessary
blocking of tasks that is caused by ordinary synchronous I/O; this
decreases contention for resources between input/output and
internal processing, and expedites throughput.

T.B. Skaali, Department of Physics, University of Oslo 23FYS 4220 / 2011 / Lecture #10

Asynchronous I/O – OS support

• Operating systems implement asynchronous I/O at many levels
– Implementations may support (from Wikipedia, no attempt to explain them

further!) Polling, Select loops, Signals, Callback functions, Completions
queues, Event flags

• Spooling was one of the first forms of multitasking designed to exploit the
concept of asynchronous I/O

• Oracle note 12 Oct 2007:
– The performance of asynchronous I/O is heavily dependent on the

operating system's implementation of the aio_read() and aio_write()
system calls. Kernelized asynchronous I/O is greatly preferable to
threaded asynchronous I/O but it is only available for raw devices and
Quick I/O files.

• Kernelized asynchronous I/O (KAIO): the kernel includes specific support for
asynchronous I/O, whereas the Threaded implementation of asynchronous I/O
just uses the kernel's light-weight process functionality to simulate asynchronous
I/O by performing multiple synchronous I/O requests in distinct threads

• KAIO: Solaris, HP-UX, AIX, Linux expected with 2.5 (?)
• Threaded: Solaris, AIX, Linux, but not HP-UX

T.B. Skaali, Department of Physics, University of Oslo 24FYS 4220 / 2011 / Lecture #10

Asynchronous I/O - VxWorks
• The VxWorks AIO implementation meets the

specification in the POSIX 1003.1b standard.

T.B. Skaali, Department of Physics, University of Oslo 25FYS 4220 / 2011 / Lecture #10

Asynchronous I/O - VxWorks

• Run the VxWorks demo programs, ref. VxWorks
Programmers Guide. The source is also on the
FYS4220 lab web
– aioExSig.aio.c
– aioEx.c

T.B. Skaali, Department of Physics, University of Oslo 26FYS 4220 / 2011 / Lecture #10

aioExSig.c

AIO complete signal

T.B. Skaali, Department of Physics, University of Oslo 27FYS 4220 / 2011 / Lecture #10

POSIX message queues

• Can be set up for non-blocking operation
• mq_receive()

– If the message queue is empty and O_NONBLOCK is not set in
the message queue's description, mq_receive() will block until a
message is added to the message queue, or until it is interrupted
by a signal. If more than one task is waiting to receive a message
when a message arrives at an empty queue, the task of highest
priority that has been waiting the longest will be selected to receive
the message. If the specified message queue is empty and
O_NONBLOCK is set in the message queue's description, no
message is removed from the queue, and mq_receive() returns
an error.

• However, this is not really AIO!

T.B. Skaali, Department of Physics, University of Oslo 28FYS 4220 / 2011 / Lecture #10

POSIX message queues - notify
• Notifying a Task that a Message is Waiting

– A task can use the mq_notify() routine to request notification when a message for it
arrives at an empty queue. The advantage of this is that a task can avoid blocking or
polling to wait for a message.

– The mq_notify()call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying extension
to signaling, which allows you, for example, to carry a queue identifier with the signal
(see POSIX Queued Signals).

– The mq_notify()mechanism is designed to alert the task only for new messages that
are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is blocked
on the queue with mq_receive(), that other task unblocks, and no notification is sent
to the task registered with mq_notify().

– Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify()can succeed until the notification request is satisfied or cancelled.

– Once a queue sends notification to a task, the notification request is satisfied, and the
queue has no further special relationship with that particular task; that is, the queue
sends a notification signal only once per mq_notify()request. To arrange for one
particular task to continue receiving notification signals, the best approach is to call
mq_notify()from the same signal handler that receives the notification signals. This
reinstalls the notification request as soon as possible.

• Example program: ex-2-10.c (also on FYS4220 web)

T.B. Skaali, Department of Physics, University of Oslo 29FYS 4220 / 2011 / Lecture #10

Asynchronous I/O - DMA
• A block device is a device that is organized as a

sequence of individually accessible blocks of data.
The most common type of block device is a disk. In
VxWorks, the term block refers to the smallest
addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector,
although terminology varies.
– Block devices in VxWorks have a slightly different interface than

other I/O devices. Rather than interacting directly with the I/O
system, block device support consists of low-level drivers that
interact with a file system. The file system, in turn, interacts with
the I/O system

• Date transfer is execute as Direct Memory Access
(DMA), using a DMA engine (controller) which
competes with the CPU on accessing bus/memory.
(“Cycle stealing”)

T.B. Skaali, Department of Physics, University of Oslo 30FYS 4220 / 2011 / Lecture #10

MIDAS M5000 DMA transfers

• The Universe PCI-VME bridge includes a built-in
DMA controller that enables high-speed block
transfers between MIDAS PCI and VME, without the
involvement of the CPU

• Both direct DMA transfers and chained DMA
transfers are supported
– Direct mode transfers a single block of data between the PCI bus

and the VME bus (or more correctly, PCI and VME memories)
– Linked list (chained) mode transfers one or multiple blocks of data

between the PCI bus and the VME bus. The DMA engine uses
DMA command packets to describe how to transfers each block of
data.

– Next pages from the MIDAS M5000 manual, more about M5000
I/O in a lab exercise

T.B. Skaali, Department of Physics, University of Oslo 31FYS 4220 / 2011 / Lecture #10

Direct DMA

T.B. Skaali, Department of Physics, University of Oslo 32FYS 4220 / 2011 / Lecture #10

Linked list DMA

T.B. Skaali, Department of Physics, University of Oslo 33FYS 4220 / 2011 / Lecture #10

Linked list DMA – Universe PCI-VME bridge

DCTL = DMA transfer control register
DTBC = DMA transfer byte count register
DVA = DMA VMEbus address register
DLA = DMA PCI address register

T.B. Skaali, Department of Physics, University of Oslo 34FYS 4220 / 2011 / Lecture #10

Linked list DMA – Universe PCI-VME bridge

