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Real-Time / Embedded facilities

* The lecture will discuss the following software and
hardware facilities for building Real-time and
embedded systems:

— Clocks and time
e timer
« watchdog
o VxWorks timex
— Instrumentation/bus/interconnect systems

— 1/0
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Interfacing to the passage of time of "the real world”
IS through "Clocks”

— Absolute and relative time

— Global time UTC

— Delays

— Timeouts

« Timing requirements:

— Periodic execution of processes

— Deadlines

« Timers and watchdogs
e Synchronization
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Clocks, POSIX, time.h 1/3)

e The <time.h> header shall declare the structure tm,

which shall include at least the following members:
— inttm_sec Seconds [0,60].
— int tm_min Minutes [0,59].
— int tm_hour Hour [0,23].
— inttm_mday Day of month [1,31].
— int tm_mon Month of year [0,11].
— inttm_year Years since 1900.
— inttm_wday Day of week [0,6] (Sunday =0).
— inttm_yday Day of year [0,365].
— int tm_isdst Daylight Savings flag.
The value of tm_isdst shall be positive if Daylight Savings Time is

in effect, 0 if Daylight Savings Time is not in effect, and negative if
the information is not available.
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Clocks, POSIX, time.h ©2/3)

 The <time.h> header shall define the following symbolic names:
« NULL

— Null pointer constant.

« CLOCKS PER SEC

— A number used to convert the value returned by the clock() function into
seconds.

e CLOCK_PROCESS_CPUTIME_ID

— [TMR|CPT]
The identifier of the CPU-time clock associated with the process making a
clock() or timer*() function call.

e CLOCK_THREAD_CPUTIME_ID

— [TMR|TCT]
The identifier of the CPU-time clock associated with the thread making a
clock() or timer*() function cal
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Clocks, POSIX, time.h 3/3)

 The <time.h> header shall declare the structure timespec,
which has at least the following members:
— time_ttv_sec Seconds.
— long tv_nsec Nanoseconds.

 The <time.h> header shall also declare the itimerspec
structure, which has at least the following members:
— struct timespec it_interval Timer period.
— struct timespec it_value Timer expiration.

« The following manifest constants shall be defined:

— CLOCK REALTIME
» The identifier of the system-wide real-time clock.
— TIMER_ABSTIME

» Flag indicating time is absolute. For functions taking timer objects, this refers to
the clock associated with the timer. If one wants to work in relative time specify
TIMER_RELTIME.

— CLOCK_MONOTONIC

— The identifier for the system-wide monotonic clock, which is defined as a
clock whose value cannot be set via clock_settime() and which cannot
have backward clock jumps. The maximum possible clock jump shall be

iImplementation-defined

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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/* time.h - POSIX time header */

/*
* Copyright (c) 1992-2005 Wind River Systems, Inc.
*/

typedef int clockid_t;

#define CLOCKS_PER_SEC sysClkRateGet()

#define CLOCK_REALTIME 0x0 /* system wide realtime clock */
#define TIMER_ABSTIME 0x1 /* absolute time */

#define TIMER_RELTIME (~TIMER_ABSTIME) /* relative time */

struct timespec

{ /* interval = tv_sec*10**9 + tv_nsec */
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds (0 - 1,000,000,000) */
¥
struct itimerspec
struct timespec it_interval; /* timer period (reload value) */
struct timespec it_value; [/* timer expiration */
¥
struct tm
{
int tm_sec; /* seconds after the minute - [0, 59] */
int tm_min; /* minutes after the hour - [0, 59] */
int tm_hour; /* hours after midnight - [0, 23] */
int tm_mday; /* day of the month -[1,31]*/
int tm_mon; /* months since January - [0, 11] */
int tm_year; /* years since 1900  */
int tm_wday; /* days since Sunday - [0, 6] */
int tm_yday; /* days since January 1 - [0, 365] */
int tm_isdst; /* Daylight Saving Time flag */
¥
/* function declarations */
extern uint_t _clocks_per_sec(void);
extern char * asctime (const struct tm *_tptr);
extern clock_t clock (void);
extern char * ctime (const time_t *_cal);
extern double difftime (time_t _t1, time_t _t0);
extern struct tm * gmtime (const time_t *_tod);
extern struct tm * localtime (const time_t *_tod);
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VxWorks POSIX clockLib

clockLib - clock library (POSIX)

ROUTINES

clock_getres() - get the clock resolution (POSIX)
clock_setres( ) - set the clock resolution

clock_gettime( ) - get the current time of the clock (POSIX)
clock_settime( ) - set the clock to a specified time (POSIX)

DESCRIPTION

This library provides a clock interface, as defined in the IEEE standard, POSIX 1003.1b. A
clock is a software construct that keeps time in seconds and nanoseconds. The clock has a
simple interface with three routines: clock settime( ), clock gettime( ), and clock getres().
The non-POSIX routine clock_setres( ) is provided (temporarily) so that clockL.ib is
informed if there are changes in the system clock rate (e.g., after a call to sysClkRateSet( )).

Times used in these routines are stored in the timespec structure:
struct timespec

{

time_ttv_sec; [* seconds */

long tv_nsec; /* nanoseconds (0 -1,000,000,000) */
o

IMPLEMENTATION
Only one clock _id is supported, the required CLOCK_REALTIME.
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clockLib - example

¥oid ClockResolution ()
int status;
clockid t clock id = CLOCK REALTIME;

struct timespec res;
char * array[2] = {"OK","ERROR"};

res.tv_sec = 0;
res.tv _nsec = 0;

status = clock getres (clock id, &res);

if (status == ERROR) status = 1;
printf ("clock getres status = %$s\n", arrayl[statusl]);
printf ("clock resolution = %d nsec = %f msec\n",

(int)res.tv _nsec, (float) (float)res.tv nsec/1000000) ;
printCR;

}

Run the code:

-> ClockResolution
clock getres status = OK
clock resolution = 16666666 nsec = 16.666666 msec

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #8
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Delays (vxWorks)

taskDelay( ) - delay a task from executing

SYNOPSIS
STATUS taskDelay ( int ticks /* number of ticks to delay task */)

DESCRIPTION

This routine causes the calling task to relinquish the CPU for the duration
specified (in ticks). This is commonly referred to as manual rescheduling,
but it is also useful when waiting for some external condition that does
not have an interrupt associated with it.

Note! If the calling task receives a signal that is not being blocked or
ignored, taskDelay( ) immediately returns ERROR and sets errno to
EINTR after the signal handler is run.

RETURNS
OK, or ERROR if called from interrupt level or if the calling task receives
a signal that is not blocked or ignored.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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Time reference and time jitter

. Granularity:

\ difference

 between RT

' clock rate and

\ delay. With

' 50Hz RT-

. clock this
Start-up time specified | granularity is
by program ' 20ms!

process

Ah, at last,
. executing

 Interrupts:  Process runnable

' disabled here but not

P executable due to
i CPU busy
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Time drift

e Cumulative time drift must be avoided when a
process is executed periodically

« Using VxWorks taskDelay() instead of a timer will
result in a cumulative drift!

wanted starts of execution

__! _____ ! _____ ! _____ t————ftime
Process - - - -
timer mtervalF > > »
Process - P - -
» > >
time jitter
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POSIX timers (vxWorks)

« The POSIX standard provides for identifying multiple virtual
clocks, but only one clock is required--the system-wide real-
time clock, identified in the clock and timer routines as
CLOCK_REALTIME. VxWorks provides routines to access the
system-wide real-time clock; see the reference entry for
clockLib. (No virtual clocks are supported in VxWorks.)

« The POSIX timer facility provides routines for tasks to signal
themselves at some time in the future. Routines are provided to
create, set, connect and delete a timer; see the reference entry
for timerLib. When a timer goes off, the default signal
(SIGALRM) is sent to the task. S|gact|on() can be used to
install a signal handler that executes when the timer expires.
Alternatively, timer_connect() can be used.

« An additional POSIX function, nanosleep( ), allows
specification of sleep or delay time in units of seconds and
nanoseconds

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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timerLib - timer library (POSIX)

ROUTINES

timer_cancel () - cancel a timer

timer_connect () - connect a user routine to the timer signal

timer_create () - allocate a timer using the specified clock for a timing base (POSIX)
timer_delete () - remove a previously created timer (POSIX)

timer_gettime () - get the remaining time before expiration and the reload value (POSIX)
timer_getoverrun () -  return the timer expiration overrun (POSIX)

timer_settime () - set the time until the next expiration and arm timer (POSIX)
nanosleep () - suspend the current task until the time interval elapses (POSIX)
DESCRIPTION

This library provides a timer interface, as defined in the IEEE standard, POSIX 1003.1b.

Timers are mechanisms by which tasks signal themselves after a designated interval.

Timers are built on top of the clock and signal facilities. The clock facility provides an absolute time-base.
Standard timer functions simply consist of creation, deletion and setting of a timer.

When a timer expires, sigaction () (see sigLib) must be in place in order for the user to handle the event.
The "high resolution sleep” facility, nanosleep (), allows sub-second sleeping to the resolution of the clock.
The clockL.ib library should be installed and clock_settime () set before the use of any timer routines.

Timer code: see demo program next page

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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Using a timer to run timerhandle() periodically

/* POSIX timers */

#include "vxWorks.h"
#include "time.h"
#include "timexLib.h"
#include "taskLib.h"
#include "sysLib.h"
#include "stdio.h"

#define
#define

TIMER_START 10
TIMER_INTERVAL 5

[* timer is connected to timerhandle() */
void timerhandle(timer_t timerID, int targ)
{ - -
inti;
printf("timerhandle invoked with targ = %d\n", targ);
/* some CPU eating stuff */
for (i =0; i <200000; i++) {};
}

/* run the demo from here */
int execTimer (void)
{
timer_t timerID;
struct itimerspec value, ovalue, gvalue;
intt_arg = 12321;
inti;

if (timer_create (CLOCK_REALTIME, NULL, &timerID) == ERROR)
{
printf (“create FAILED\n");
return (ERROR);
}
if (timer_connect (timerID, (VOIDFUNCPTR)timerhandle, t_arg) == ERROR)

{
printf ("connect FAILED\n");

return (ERROR);
}

T.B. Skaali, Department of Physics, University of Oslo

UNIVERSITY
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value.it_value.tv_nsec = 0;
value.it_value.tv_sec = TIMER_START;
value.it_interval.tv_nsec = 0;
value.it_interval.tv_sec = TIMER_INTERVAL;
printf("timer set up for start after %ld sec and interval %ld sec\n",

value.it_value.tv_sec, value.it_interval.tv_sec);

if (timer_settime (timerID, TIMER_RELTIME, &value, &ovalue) == ERROR)

{
printf ("timer_settime FAILED\n");
return (errno);

[* some diagnostics during 25 sec */
for (i=0;i<25;i++) {
if (timer_gettime (timerID, &gvalue) == ERROR)
{
printf (“gettime FAILED\n");
return (errno);

}
printf("gvalue.it_value.tv_sec = %ld\n", gvalue.it_value.tv_sec);
printf("gvalue.it_interval.tv_sec = %ld\n", gvalue.it_interval.tv_sec);
taskDelay (CLOCKS_PER_SEC);

}
if (timer_cancel (timerID) == ERROR)
{

printf (“cancel FAILED\n");
return (errno);

if (timer_delete (timerID) == ERROR)

printf (“delete FAILED\n");
return (errno);

return (OK);
}

FYS 4220 /9220 - 2011 - Lecture #8
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Watchdogs (oftvoff

« “Watchdog” stands for a periodic activation of a process which
gives a signal, for instance by lighting up a lamp, to show that
a system is alive and operates correctly

« VxWorks includes a watchdog-timer mechanism that allows any
C function to be connected to a specified time delay.

— Watchdog timers are maintained as part of the system clock ISR.
Normally, functions invoked by watchdog timers execute as
interrupt service code at the interrupt level of the system clock.
However, if the kernel is unable to execute the function
immediately for any reason (such as a previous interrupt or kernel
state), the function is placed on the tExcTask work queue.
Functions on the tExcTask work queue execute at the priority
level of the tExcTask (usually 0). Restrictions on ISRs apply to
routines connected to watchdog timers

— Demo: see code next page

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8 18
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Watchdog example

/* This example\creates a watchdog timer and sets it to jo off in 3 seconds. */ A

ftinclude "“vxWorks.h"
#tinclude "sysLib.h"
#include "logLib.h"
t#tinclude "wdLib.h"

#tinclude "‘taskLib.h"
#tinclude "tickLib.h"

#idefine SECONDS (3)
WDOG_ID myWatchDogld;

int task (void)

{
/* Create watchdog =/

if ((myWatchDogld = wdCreate{ )) == NULL)
return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout x/

if (wdStart (myWatchDogld,
sysClkRateGet( ) » SECONDS,
(FUNCPTR)1oglsg,
“Watchdog timer just expired\n™) == ERROR)
return (ERROR);

taskDelay (sysClkRateGet{ ) = 10);
return (0K);

Output on console terminal: —> interrupt: Watchdog timer just expired

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #38



timexLib — execution timer facilities routines

timexInit() -
timexClear() -
timexFunc() -
timexHelp() -
timex() -
timexN() -
timexPost() -
timexPre() -
timexShow() -

EXAMPLES

5,
Ef
k‘d

o

\ UNIVERSITY
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include the execution timer library

clear the list of function calls to be timed

specify functions to be timed

display synopsis of execution timer facilities

time a single execution of a function or functions

time repeated executions of a function or group of functions
specify functions to be called after timing

specify functions to be called prior to timing

display the list of function calls to be timed

The routine timex( ) can be used to obtain the execution time of a single routine:
— > timex myFunc, myArgl, myArg2, ...
The routine timexN( ) calls a function repeatedly until a 2% or better tolerance is obtained:
— > timexN myFunc, myArgl, myArg2, ...
The routines timexPre( ), timexPost( ), and timexFunc( ) are used to specify a list of functions to be

executed as a group:

— > timexPre 0, myPreFuncl, preArgl, preArg2, ...
— > timexPre 1, myPreFunc2, preArgl, preArg2, ...
— > timexFunc 0, myFuncl, myArgl, myArg2, ...
— > timexFunc 1, myFunc2, myArgl, myArg2, ...
— > timexFunc 2, myFunc3, myArgl, myArg2, ...
— > timexPost 0, myPostFunc, postArgl, postArg2, ...
The list is executed by calling timex( ) or timexN( ) without arguments:

— > timex or
— > timexN

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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timexLib example

[* timexLib: routines for timing the execution of tasks */

#include "vxWorks.h"
#include "time.h"
#include "timexLib.h"
#include "taskLib.h"
#include "stdio.h"

/* a function to be timed */
void myFunc (int argl)
{ . .

int i;

for (I=0;i<argl;i++) {};
}

int execTimex (void)

{
timexN ((FUNCPTR) myFunc, 99999999,0,0,0,0,0,0,0);
printf("Happy with this result?\n");
return (OK);

}

— > execTimex
Timex: 1 reps. Time per rep = 616 +/- 16 (26) millisec
Happy with this result?

Estimating Worst Case Execution Time (WCET) is very important , ref. lecture on Scheduling

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8

21



\ UNIVERSITY

g E]u‘
.”';J(.C(-+"

Timing failures

e Detection of timing failures?
— Overrun of deadline

— Overrun of worst-case execution time
— Timeouts

And what could be the consequences?
— Hard Real-Time: potentially disastrous

Soft Real-Time: can be accepted from time to another, provided that the overrun is not
too large and does not occur too often (whatever that means)

« POSIX (not VxWorks)

Two clocks are defined: CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID
These can be used in the same way as CLOCK_REALTIME

Each process/thread has an associated execution-time clock; calls to:

clock settime(CLOCK _PROCESS CPUTIME_ID, &some_ timespec value);
clock gettime(CLOCK _PROCESS CPUTIME_ID, &some_ timespec value);
clock getres(CLOCK PROCESS CPUTIME ID, &some_ timespec_ value)

will set/get the execution-time or get the resolution of the execution time clock
associated with the calling process (similarly for threads)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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* In wide area or global data acquisiton system one needs access to a
global clock if the registration of data must be time synchronized. The
GPS system gives a very high accuracy in the nsec domain

— To obtain this accuracy, the GPS signals are corrected for relativistic effects
— However, not all regions on Earth are well covered by GPS

 |EEE 1588 Precision Time Protocol (PTP) [2002, 2008] is a protocol used
to synchronize clocks throughout a computer network. On a local area
network it achieves clock accuracy in the sub-microsecond range, making
it suitable for measurement and control systems.

— |EEE 1588 is designed to fill a niche not well served by either of the two
dominant protocols, NTP and GPS. IEEE 1588 is designed for local systems
requiring accuracies beyond those attainable using NTP. It is also designed for
applications that cannot bear the cost of a GPS receiver at each node, or for
which GPS signals are inaccessible.

— The Network Time Protocol (NTP) [1985] is a protocol for synchronizing the
clocks of computer systems over packet-switched, variable-latency data
networks

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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Interconnects for the RT- and Embeddéd World

 There are many types of interconnect technologies for Real-
Time and embedded systems,

The Interconnect market is in constant development, driven by:
« Chip and bus technology

* Need for higher and higher bandwidths
— USB 1.0:upto 12 Mb/s, USB 2.0 : 480 Mb/s and higher, USB 3.0 : 5 Gb/s

» Electronic packing density — System-on-Chip
Larger and Complex systems, aeronautics is one example

* One of the reasons for the delayed delivery of the Airbus A380 was the very
complex (500 km!) cabling for everything from computer controls to in-flight
entertainment!

Economy, time-to-market, etc

Interconnect paradigms: from busses to network based systems. "Switched
fabrics”

Compared to a bussed system a point-to-point link topology has many
advantages with respect to: physical distance, scalability, no load
dependency, network topology, cost, and more

* Obviously, this is a domain where system software, computer
architecture and distributed systems meet and overlap!

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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Front-end / Back-end topology

» A typical topology for Real-time systems is a front-end part which handles
time critical tasks, such as reading sensor data with first order signal
processing, interconnected with a «<Back-end» computer, for instance a
Linux system. Examples:

» A development board of the type used for the VHDL exercises contains a
lot of facilities for Real-Time / Embedded projects:
— On-board FPGA that can run both a soft-core processor and signal processing tasks

— Memory of different types, Ethernet, clocks (programmable high resolution timers),
connectors for clock inputs or outputs, small LCD screen, high-speed differential 1/0
connectors, Digital-to-Analog Converter, Analog-to-Digital Converter, switches, and you
name it!

— And the price is very low!

* A high-end Single Board Computer (SBC) like the MIDAS M5000 used in
the VxWorks Workbench lab

— This is professional stuff, and only for customes where money does not matter very much

— It does not contain on-board AD or DA converters, if needed one can mount PMC
mezzanine card onto the PCI slots (also expensive)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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Two bus studies: VME and PCI bu:

 The original VMEDbus is a rather old design, but the VME
technology is still going strong in the high-end (and high cost)
market due to:
— Steadily improved performance
— Mechanical robustness

 PCl bus is the standard PC peripheral bus
— A design for "plug-and-play”
« Whereas VME is a genuine multi-processor bus with possibility
for sofisticated bus arbitration, PCI is what the name says: a
Peripheral Component Interconnect

 Together, these two systems represent two interesting case

studies

— Ref. paper "A case for the VMEbus Architecture in Embedded Systems Education”,
IEEE Transactions on Education, Vol. 49, No. 3, August 2006

o After an summary of the VME and PCI bus, some other
interconnects will be listed
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VMEDbus basics vs. RT / Embedded systems

e Architecture:

— the VMEDbus is a computing system architecture consisting of the electrical
specifications for a data bus and the mechanical specifications describing the
backplane, bus connector, board sizes and enclosures

» developed around 25 years ago by the companies Motorola, Mostek, Signetics and
Thomson CSF as a non-proprietary bus

e many extensions and improvements over the years, so despite its age, it is still a widely
used platform for architecture for real-time systems

— VMEDbus is a shared system-bus architecture. The system bus resides on a
backplane. The backplane has slots, 21 for a full 19-inch VME crate, where
processor modules, memory modules or I/O modules connect to the bus

* Many vendors provide a wide spectrum of VMEbus modules and components
* Applications:

— for the professional market, primarily in industrial, military, aerospace,
communication and control applications, in particular where robustness is required

— however, rather expensive, and power hungry

« VITA

— a non-profit organization for real-time and embedded computing systems

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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VME backplane, modules, functionalities
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A VME processor module can usually be configured to incorporate all
three functions: Controller, Master, Slave

Controller

Conitrols access
o the hus

Handles Inierrupts

Master

Takes control of the
Databus.

Reads or Wiies data
from/io Slaves

T.B. Skaali, Department of Physics, University of Oslo

00 == [
il

”E§ TITTTIT

Processor

Memory

I][I]:['i —
S Memory — |:| —
»lave
o | ® |:|
Allows Masters to _ m | E = B
Read/Write access 1/0 : = i

Generaies Inierrupis

Custom Logic
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VMEDbus crates

21 slot 9U crate — _—

SIS |

TR RO .

&'i}%i-av.inaiirii - (Wlth 61 Section) 8§ iLL: ﬁ
% for 19” racks LT

21 slot 6U crate
for 19” racks

There are different types of power supplies (5V, +/- 12V, 3.3V, 48V)
mounted locally or remote

The fan-tray unit allows to monitor parameters like voltages, currents, fan
speed, temperature

(Some) crates can be controlled by a field bus (CAN)

ATTENTION: The EMC gasket to the left of slot 1 may damage your
VMEDbus cards
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Summary VMEbus general
characteristics |

Item Specification I Notes
Architecture Master/slave I
Asvnchronous. with both Tr—
Transfer Mechanism multiplexed and non- hronization clock
multiplexed bus cycles. 2= )

Addressing Range 16, 24. 32, 40 or 64-bit \ dds es.scal*;‘h width selected
Data Path Width 8. 16, 24. 32 or 64-bit ata path width selected
amically.

Unaligned Data Transfers Yes E:mp anbl_e witkimost
pular microprocessors.
Error Detection Yes [[Using BERR* signal.
ere are no panty signals on
) . e backplane, but panty
Parity Protection No roteched boards:are quite
ommon.
Data Transfer Rate 0 - 500+ Mbyte/sec Il See Table
1011ty interrupt system with
Interrupts 7 levels . 16 or 32-b1it STATUS/ID
I mterrupt vector).
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Summary VMEbus general
characteristics |l

1011ty interrupt system with
Interrupts 7 levels . 16 or 32-bit STATUS/ID
interrupt vector).
lexible bus arbitration with
Multiprocessing Capability 1 - 21 processors peer-to-peer
ultiprocessing.
— -
System Dingnostic sing SYSFAIL s!gnal and
Yes 64x test & maintenance
Capability

[ Geographical Addressing || ||ﬁnder VME64x |
| Live Insertion Cagablhi || ||Q ing optional standards. |

Control & Status Regxstefs ‘ EE

(Plu & Play Support) nder VMEG64 & VMEG64x
U single-height Eurocard ||160 x 100 mm Eurocard
Mechamcal Standard U double-height Eurocard |[160 x 233 mm Eurocard
tional standard 67 x 400 mm Eurocard

ough the Front Panel
Maeg ehmed 10 ‘ Ed P2/12 User Defined Pins
‘ ConducngcIl i?:rl;;l Version " I;;n der IEEE 1101.2

e number of cards 1s

Maximum Number of ited by hov:' many boards,
Card Slots in Backplane 21 ocated on_0.8 centers, can
placed into a 19" rack
anel.
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VMEDbus basics

* Electrical properties

All lines use TTL levels

Low=0..06V

High=24..5V

Address, address modifier and data lines are active high
Protocol lines are active low

*  Protocol

Asynchronous with 4-edge handshaking.

The duration of a VMEDbus cycle depends on the speed of the master and
the slave

* Byte ordering

VMEDbus is big endian. It stores the most significant byte of a word at the
lowest byte address (0x0)

PCI and Intel CPUs are little endian. They store the most significant byte
of a word at the highest byte address (0x3)

Most VMEbus masters (e.g. VP110) have automatic byte swapping logic



VMEDbus basics(2)

Types of common modules (physical and logical)

— Master
* A module that can initiate data transfers
— Slave
* A module that responds to a master
— Interrupter
* A module that can send an interrupt (usually a slave)
— Interrupt handler

» A module that can receive (and handle) interrupts (usually a Single
Board Computer)

— Arbiter

» A piece of electronics (usually included in the SBC) that arbitrates
bus access and monitors the status of the bus. It should always be
installed in slot 1 of the VMEbus crate



VMEDbus basics(3)

* Main types of data transfers
— Single cycles

Transfer 8, 16 or 32 bits of data (typically) under the control of the CPU on the master
Typical duration: 1 us

— Block transfer (DMA)

Transfer any amount of data (usually 32 or 64 bit at a time) under the control of a DMA
controller (CPU independent)

Data is transferred in bursts of up to 256 (ID32) or 2048 (ID64) bytes
Typical duration: 150 ns per data word

— Interrupts

Used typically by slaves to signal a condition (¢.g. data available, internal error, ¢tc.)
Can (in principle) have 7 priorities

The interrupter provides an 8-bit vector on request of the interrupt handler to identify
itself

ROAK (Release on Acknowledge) or RORA (Release On Register Access)

10



Arbitration

Before a master can transfer data it has to request the bus. It does this by
asserting one of the four bus request lines
— The lines (BRO, RR1, BR2 and BR3) can be used to prioritize requests in multi-
master systems
The arbiter (usually 1n slot 1) knows (by looking at the BBSY line) if the bus is
busy or idle. Once it is idle it asserts one of the four Bus Grant out lines
(BGOUT 0..3)

If a master detects a 1 on the BGIN line corresponding to its BR it claims the
bus by asserting BBSY (otherwise it passes BGIN on to BGOUT to close the
daisy chain)

Slot N Slot N+1
BR*
BaIN — T O _/_—O
BG* — ] BGOUT O— O+
BBSY* —

Color code: Arbiter - Master

13
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VMEDbus bus arbitration

ARBITER MASTER A MASTER B
 Two cases:
— arbitrating for the bus 3 g B
then it is not in use . e
— arbitrating when another ) s o |ocoure _samer | |
MASTER is using it o
* In both cases:
BR3"
o the new MASTER mUSt ) BGINY'| = |BGOUT3"  BGING® MASTER B grabs the
request the bus by ol (i haltacl ot @00
asserting one of the four ° )
bus request lines BRO* - o
BR3*, and waiting for é 2
the system controller in BGING® L BcouTs:

slot 1 to reply

//_-
%
| saNe BGOUTS"

Figure 2.9 VMEbus DT8 arbitration slot priority
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VMEDbus mechanics

VMEDbus cards exist in 3 standard heights; 3U, 6U and 9U
Definition: 1U = 1.75 inch

In 6U and 9U systems there can be transition modules installed on the rear side of
the backplane. Transition modules do not connect to VMEDbus but just to the
VMEbus module on the opposite side of the backplane via the user defined pins of
the JO, J2 and J3 connectors



VMEDbus mechanics (3)

Example: 6U VMEG64x module

Alignment pin
& Incompatible with certain old crates

5 row P1 connector
160 pins used for VMEDbus

/

< - PO connector
Used for PMC 1/0

Incompatible with
certain crates

; \ (Taux, VME64xP)

5 row P2 connector

32 pins used for VMEbus
Other pins user defined (e.g.
for transition modules)

Insertion force =%
(415 pins * 1 N)

—

Injector / extractor handles
Push red button

—t

Discharge strip
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Lab target: MIDAS M5000 VME version
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MIDAS M5000 VME version
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1.1 Main features:

A PowerPC processor subsystem (440GX from IBM) with up to 256MiB local DDR-SDRAM
memory, 32MiB of FLASH memory, four Ethernet ports (two 10/100/1000Mbps and two 10/
100Mbps) and two serial ports.

Two standard PPMC sites located on separate PCI segments (64-bit, 33/66MHz PCI, 66/100/
133MHz PCI-X). In addition, PMC#1 can be MONARCH

Dual 2Gib Fibre Channel 1/0 Controller (ISP2312 from QLOGIC) (Optical)
Single 10/100 Ethernet port (front panel connector)

Dual serial ports configurable as two RS-232 ports or one RS-232 and one RS-422
PCI-to-VME bridge (Universe IID from Tundra)

Three PCI(X)-to-PCI(X) bridges which connects the different PCI(-X) segments together
(PCI6540 from PLX)

Optional PCI-to-RACEway bridge (PXB++ from Mercury)

Optional I/0 Spacer extension via a built-in connector, thus adding up to 3 Ethernet ports (One
Fast Ethernet 10/100 SMII and two Gigabit Ethernet 10/100/1000 RGMII) and an 12C bus.
Note: Adding more than one Gigabit Ethernet port will reduce the number of Fibre Channel
ports

Optional mezzanine extension via a built-in connector, thus adding 3 PMC sites to the
Quaternary PCI segment. These PMC sites are 64-bit, 33MHz PCI, 5V signaling.

One PIM I/0 board slot, in accordance to VITA36.
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| DOWNLOAD SPECIFICAT
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HGME PSPECIFICATIONS EVENTS DEVELOPERS MEMBERSHIP NEWSROOM

Specifications Home Home = Specifications > PCI Conventional
VO Virtualization

PCI Convertional PCI ¢ Conventional PCI| 3.0 & 2.3:
Conventional PCI3.0 - An Evolution of the Conventional
Conventiona PCI2.3 ’s’G PCI Local Bus SPECification

Mini PCI

OTHER CONVENTIONAL PCl SPECS
PClFimware

Members-only download: Download the Specifications
PClPower Managemert 1.2
= Conventional PCI 3.0 (3.3MB PDF) = Mini PCI
s Conventional PCI 3.0 with Change Bar = PClto PCI Bridge Architecture
(4.4MB PDF) * PClHat Plug Specifications
PCHo-PCl Bridge Architecture e Change Summary - PCI2.3t03.0 (9k PDF) « PC|Bus Power Management Ove r to
PCEX66-533 e Conventional PCI 2.3 (4.3MB PDF) Interface 1.2

G xS = Summary of changes rom PC12.2tc PCI = PCI| Mobile Design Guide 1.1 P C I b
2.3 (16k PDF) * PC Firmware 3.0 u S

PClHot-Plug 1.1

PClI Mobile Design Guide 1.1

ECR/ECN Process

Order Information Members and non-members
download:

e PCI3.0 Compliance Checklist

e PC| 2.3 Compliance Checklist

e Interrupt Line Register Usage ECN (64k PDF)

e Generic Capability Structure for SATA Host Bus Adapters Draft ECN (174k PDF)
e PCI/PCEX Connector Contact Finish Changes ECN (165k PDF)
e Errata against PCI Conventional 2.3 (6k PDF)
e SATA Class Code ECN (117k PDF)
e MS|-X ECN Against PCI Conventional 2.3 (340k PDF)
e Conventional PCI 3.0 FAQs (90k PDF)
e Conventional PC| Advanced Caps ECN (76.9k PDF)

http://www.pcisig.com

Conventional PCI Revision 3.0

Revision 3.0 completes the evolutionary migration plan for the PCI Local Bus
Specification, migrating the PCl bus from the original 5.0V signaling to a 3.3V signaling
bus. Revision 2.3 began that evolution by removing support for the 5V keyed add-in card,
while providing support for both the 5V and 3.3V keyed system board connectors.
Revision 3.0 takes the next step of removing support for the 5V keyed system board
connector. Revision 3.0 continues support for the 3.3V keyed system board connector,
which supports the 3.3V and Universal keyed add-in cards. PCI 66, PCI-X, Mini PCI, and
Low Profile PCl also support only 3.3 volt signaling on 3.3V keyed system board
connectors and 3.3V and Universal keyed add-in cards.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #38



£ £9% UNIVERSITY
t Ul oF osLo

PCI bus basics

« The PCI bus was orginally developed by Intel. PCI stands for
Peripheral Component Interconnect

« PCI exists in many flavours: PCI Conventional (i.e. the standard
PC card version) 32 bit 33 MHz (max 132 MB/s), 64 bit 33 MHz
(max 264 MB/s), 64 bit 66 MHz (max 528 MB/s), PCI Express
(PCle) and Compact PCI

« PClisasynchronous bus where Address and Data are time
multiplexed on the same lines

 PCI has been through several technical revisions, current PCI
Convential is 3.0

« Complete PCI specifications are available from
. the homepage for the PCI Special

Interest Group (if you are a member!)
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Reflected wave switching

* In high-frequency environments such as PCI, convential incident-wawe
switching on a terminated bus using drivers with large driving
capability would create a number of problems. As such frequencies
each trace (bus line) will act as a transmission line, and the electrical
characteristics of the trace must also be taken into account when
selecting the output driver.

— Using strong drivers to switch (by brute force) a bus system at high frequency will
present a number of problems, such as: i) very difficult to decouple, ii) spikes,
increase EMI (electromagnetic interference) and iv) crosstalk.

« The PCl bus is a low power “green” bus, exploiting the reflection of a
signal on an unterminated line. The PCI bus is unterminated and uses
wavefront reflection to an advantage. A relatively weak output driver
drives the signal halfway to the desired logic state, say 1.5V. When the
wavefront arrives at the unterminated end of the bus, it is reflected
back and doubled (3V)!

— The drawback of this method is that the maximum length of a PCI bus can not exceed
around 15cm, i.e. for 4 cards. If a longer bus is needed then it must be built from
segments interconnected by PCI bridges.
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v June 8, 1995 PCI Intro CERN
. UNIVERSITY
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CMOS reflected wave technolo

PCI was inintially intended as CMOS interchip bus without extension

Weak Voltage drivers & unterminated lines !
less spike/decoupling problems

I ~60-100 OHM drive (6 mA) Motherboard

v U Y
N - The reflected wave

Extension .
A:Output drive/ 1.5V e Concept reqU"eS a
Orstpasswave| o7 N : fixed and short
| | - .
B: Reflected WT . i length of a signal
It ¢ trace. Maximum
Wave at input § | | number of cards on
A+B 3Iv |

:/—/\ ' a PClbus is 4.
Clock I

Consequences of critical timing reflected wave technology:
No DC current since no termination resistors

Input clamp diodes in devices needed
limited total signal trace length: few inch

high imped. PCB ( thin traces far from GND)
low capacitance packages (plastic)
Hans Mutler CERN ECP
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PCI signals

Address/Data

and Command
C/BE#[3:0]

Interface
Control

Arbitration

System

Error
Reporting

{
i

Required
Signals

’_
AD[31:0] \:
) Y/

PAR
FRAME#
TRDY#
IRDY#
STOP#
DEVSEL#

REQ#
GNT#
CLK
RST#
PERR#
SERR#

PCI
Compliant
Master
Device

tional

ignals

AD[63:32] )
) )
C/BE#[7:4] Y
Extension
PAR64
REQo64#
ACK64#
LOCK# | Atomic
Accesses
CLKRUN# ,Clock Control
TDI
TDO
JTAG
TCK (IEEE
™S 1149.1)
TRST#
INTA#
INTB# Interrupt
Requeslt?
INTC#
INTD#

Figure 5-1. PCI-Compliant Master Device Signals
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Control
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64-Bit BN

PAR
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TRDY#
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STOP#
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IDSEL
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PCI
Compliant
Target
Device

64-Bit
Fxtensi
PARGA tension
REQ64#
ACK64# .
LOCK# Atomic
Accesses

CLKRUN#_, Clock Control

SBO#

SDONE

TDI

TDO

TCK

T™S

TRSTH#

INTA#

INTB#

INTC#

INTD#

Figure 5-2. PCI-Compliant Target Device Signals
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PCIl Burst transfers

* A burst transfer is one consisting of a single address
phase followed by two or more data phases. The bus
master only has to arbitrate for bus ownership one
time. The start address and transaction type are
Issued during the address phase. The target device
latches the start address into an address counter
and is responsible for incrementing the address from
data phase to data phase.
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Configuration registers

 PCI bus is a "plug and play” system!

A PCI device is described by the content of its
Configuration space

« Each functional PCI device possesses a block of 64
configuration doublewords (32-bit) reserved for its
configuration registers.

T.B. Skaali, Department of Physics, University of Oslo FYS 4220 /9220 - 2011 - Lecture #8
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+ To make PNP possible in
- PCI, each PCl device
maintains a 256-byte
configuration space
—  The first 64 bytes (shown
here) are predefined in the
PCI spec and contain
standard information
— The upper 192 bytes may
be used to store device-
specific information

PCl Basics - Slide 46

The Plug-and-Play Concept

0
Device ID Vendor ID 00h
Status Command 04h
Class Code Revision ID 08h
BIST Header Type ||| Latency Timer ||[Cache Line Sizel] (0Ch
Base Address Register #0 10h
Base Address Register #1 14h
Base Address Register #2 18h
Base Address Register #3 1Ch
Base Address Register #4 20h
Base Address Register #5 24h
CardBus CIS Pointer 28h
Subsystem 1D Subsystem Vendor ID 2Ch
L Expansion ROM Base Address 30h
Reserved Cap List Pointerl] 34h
Reserved 38h
Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch

© 2000 Xilinx, Inc.

2 XILINX

All Rights Reserved

T.B. Skaali, Department of Physics, University of Oslo
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PCl| Commands

+ PCl allows the use of up to 16 different 4-bit commands
— Configuration commands
— Memory commands
— 1/O commands
—  Special-purpose commands

+ A command is presented on the C/BE# bus by the initiator

during an address phase (a transaction’s first assertion of
FRAME#)

PCl Basics - Slide 42 . —— }: XI”NX .

© 2000 Xilinx, Inc.
All Rights Reserved
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PCl| Commands

C/BE# Command

0000 Interrupt Acknowledge
0001 Special Cycle Memory
0010 /10 Read
0011 | I/O Write o
0100 |} Reserved Configuration
0101 Reserved
0110 Memory Read Special-Purpose
0111 Memory Write
1000 | Reserved Reserved
1001 Reserved

With IDSEL 1010 Configuration Read

With IDSEL 1011 Configuration Write
1100 Memory Read Multiple
1101 Dual Address Cycle
1110 Memory Read Line
1111 Memory Write and Invalidate

PCI Basics - Slide 43 —_— }: XILINX®

T.B. Skaali, Department of Physics, University of Oslo

© 2000 Xilinx, Inc.
All Rights Reserved
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More from the PCI zoo

« Common Mezzanine Cards (CMC) and PCI
Mezzanine (PMC) standard, used on VME cards

« Compact PCI
 PCle (PCI express)

T.B. Skaali, Department of Physics, University of Oslo FYS 4220/9220 - 2011 - Lecture #8
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Common Mezzanine Card Environment

for VMEbus, Futurebus,...
(PMC = physical PCI Mezzanine Card)

Receptacle Series

52763-0649 or 52795-0648
Robust “Leaf” UL 94V-0
Contact System Glass Filled
Resists Damage LCP Housings

‘ Hard Metric
I \ 10mm Pitch
| DAUGHTER BOARD | | [BackpLaNE Design

Contacts:

P12 Gold Qver Nickel
Underplate, Close Parallel
Phosphor Bronze Stacking
Base Material

Mezzanine
side 1

Mezzanine
side 2

Amplimite 050 §CI Link Connector (80 pin)

\
j
%‘ Plug Series
| 53483-0649 or 53508-0648
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Examples of PMCs
PMC-FPGRO3
DPIOZ High Performance
FPDP / FPDP If PMC Module

Rnalog to Digital Converter

PowerMIDAS C5000 used in a System Slot B 1
System slot functionality is designed into the PowerMIDAS C5000 PMC the PC' Mezzaﬂlﬂe Card

board with small systems in mind. The tupical target application is a PMCs replace entire VME boards
{4d1 TeknldEr SHSTA RS St el e ion mRne) PowarMIbHS .CSOOO Due to the high level of integration offered by PCl ASICs typically
board(s) and one (or more) CompactPCl A/D converter boards, with the 5 :

8 s S found on PMC modules, a single PMC module may in many cases
backplane bus being used for initialization, setup and sunchronization. . o -
Such canfigurations do not fequire a separate system slot board replace an entire VME or.CompactPCI bpard. Traditionally, functions

’ like 1/0, memory and special processors like DSPs have occupied a full
board, but now these functions may take only a neat PMC module to
implement.
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compactPC/

Introduction

The newest standard for PCI-based industrial computers is called CompactPCI. It is electrically a superset of desktop PCI with a different physical form factor. CompactPCI utilizes the |
form factor popularized by the VME bus.

Defined for both 3U (100mm by 160 mm) and 6U (160mm by 233 mm) card sizes, CompactPCI has the following features:

Standard Eurocard Dimensions (complies with IEEE 1101.1 mechanical standards)
High Density 2mm Pin-and-Socket Commectors IEC approved and Bellcore qualified)
Vertical Card Orientation for good cooling

Positive Card Retention

Excellent Shock and Vibration Characteristics

Metal Front Panel

User I/O Connections on Front or Rear of module

Standard Chassis available from many Suppliers

Uses Standard PCI Silicon Manufactured in Large Volumes

Staged Power Pins for Hot Swap Capability (Future)

Eight Slots in Basic Configuration. Easily expanded with Bridge Chips

The CompactPCI Connector
T.B. Skaali, Department of Physics, University of Oslo FYS 4220/ 9220 - 2011 - Lecture #8
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PCl EXPRESS
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PCIl vs. PCl Expres

» Unlike PCI, PCI Express is point-to-point

= This requires each native PCI Express device to include a
dedicated port for every other device it must communicate
with in the system

‘ Dedicated ports
PC' /)"_ / \

B = P» s
B P » P

And if peer-to-peer....




PCIl Express Performance (Gen 1)

Bandwidth in Gbits/s
(raw, aggregate)

Bandwidth in GB/s

.625 1.250 2.500 5.000 7.500
(raw, aggregate)

Throughput in GB/s
(aggregate)

Throughput in GB/s
(per direction)

PCIl 32/66
PCl or PCI-X 64/66
PCI-X 64/133
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RapidlO

The Embedded Fabric Choice
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Make the

Critical Embedded Systems RapidlO

REQUIRE -System-Level Fault Tolerance
* There are six key elements to system-level fault
tolerance:
— No single point of failure
— No single point of repair
— Fault recovery
— 100% fault detection
— 100% fault isolation
— Fault containment

» RapidlO supports all of these critical System-Level
Fault Tolerance elements!

RTA Bus & Board —Jan 2007 © Copyright 2006 RapidIO® Trade Association Slide 9
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INTERCONNECT MATRIX
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Inside the Box
RapidlO - - - Ethernet

FEuiEe PCI Express

USB/1394

PCI/PCI-X
I AT

Intel FSB PCI Express .

PCI Express Cable

InfiniBand

PCI Express

PCI Express (MIPs only) iISCSI

Processor Local /O Box to
BuS Chipset Backplane




