
Introduction to VHDL

FYS4220/9220

Reading: 3.1 – 3.4, 3.6, 3.7, 5.6, 4.1, 4.2.1 and 4.7 in Zwolinski J. K. Bekkeng, 3.08.2011

Lecture #2

Plasma and Space Physics

Design flow

Boolean equations/Netlist

Testbench

”101001110001”

Functional simulation

Plasma and Space Physics

Plasma and Space Physics

VHDL

 VHDL = Very high-speed integrated circuit
Hardware Description Language
VHDL is an industry standard for description,
modeling and synthesis of digital circuits and
systems
Introduced in 1981 for the Department of
Defence (DoD)
Became an IEEE standard in 1987

We will look at VHDL for synthesis of logic

VHDL standards: VHDL 93, 2000, 2002, 2007,
200x

Plasma and Space Physics

Recommended free VHDL editors

Notepad ++
– http://notepad-plus.sourceforge.net/uk/site.htm

EmacsW32
– http://ourcomments.org/Emacs/EmacsW32.html

Plasma and Space Physics

First VHDL example
D-flip-flop

library ieee;
use ieee.std_logic_1164.all;

entity dff_logic is port (
 d, clk : in std_logic;
 q : out std_logic);
end dff_logic;

architecture example of dff_logic is
begin
 process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
 end process;
end example;

entity

architecture

File name: dff_logic.vhd

Note: the file
name must be the
same as the name
of the entity!

Plasma and Space Physics

Entities and architectures

Entity declaration and
architecture body

Compared with an IC:
– The entity describes the

interface (the connection pins
of the package)

– The architecture describes
the functionality of the entity
(the functionality of the circuit)

Plasma and Space Physics

entity model_name is
port
(
 list of inputs and outputs
);
end model_name;

Template - Entity/Architecture

architecture architecture_name of model_name is
begin
 ...
 VHDL concurrent statements

end architecture_name ;

Same name as the file, e.g. test.vhd

concurrent = samtidig

Plasma and Space Physics

Comparator

 -- eqcomp4 is a four bit equality comparator
 entity eqcomp4 is
 port (a, b : in std_logic_vector(3 downto 0);
 equals: out std_logic);
 end eqcomp4;

 architecture dataflow of eqcomp4 is
 begin
 equals <= '1' when (a = b) else '0';
 end dataflow;

<= ”settes lik”

MSB

[a(3) a(2) a(1) a(0)]
[b(3) b(2) b(1) b(0)]

Plasma and Space Physics

Ports

Each port must have a name, direction (mode) and
data type

name

mode data type

Plasma and Space Physics

Name

Names can be constructed using:
– a b c….z (letters)
– 0 1..9 (numbers)
– _ (underscore)

With the following reservations:
– Always start with a letter
– Can not use VHDL reserved words
– Last character must be a letter or a number
– Two following underscores are not allowed
– Not case sensitive

– TcK = tck

Plasma and Space Physics

Direction (mode)

In – flow into the entity
Out – flow out of the
entity, no feedback

Buffer - flow out of the
entity, feedback allowed
Inout - for bi-directional
signals

Plasma and Space Physics

Important Data types

bit, bit_vector (’1’ or ’0’)
ieee.std_logic_1164:
– std_logic (’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’,’-’)
– std_logic_vector (e.g. ”010101”)

The IEEE library must be made visible by
library and use

for synthesis of logic

Plasma and Space Physics

The data type std_logic 1164

Three-state

9 different values!

Plasma and Space Physics

Std_logic 1164 resolution function

The sub type std_logic is ”resolved” std_ulogic. When two or more
drivers are connected together the value is determined by a
”resolution table”

Plasma and Space Physics

Bus

The resolution function is used
to simulate a data bus
Useful that the simulator can
indicate an unknown value if two
or more entities write to the
same bus line at the same time
with opposite logic values.
Two entities can not write to a
bus line at the same time!
If an entity write to the bus the
other entities must be in
three-state (high impedance)
on their outputs
The unknown value (‘X’) has
no meaning for synthesis!

y <= ’X’

Plasma and Space Physics

Arithmetic and logical
operators

Arithmetic operators:
+ Addition
 - Subtraction
 * Multiplication
 / Division

Logical operators:

and, nand, or, nor, not, xor, xnor

Example of Hex-number:

X”FA” = ”11111010”

Use with care, creates much
logic

Plasma and Space Physics

Logical operators
and, or, not, nand, nor, xor og xnor are predefined for bit and boolean
IEEE 1164 uses these operators in std_logic
Logical operators do not have precedence in VHDL, therefore parenthesis is
demanded in multi level logic:

A + B • C is ok in Boolean algebra due to precedence
X <= A or B and C gives an error in VHDL
A or (B and C)
(A or B) and C

Precedence in Boolean
algebra:

()
not
and ·
or +

Correct for VHDL

Plasma and Space Physics

Relational operators

equality =
inequality /=
Size operators < , <= , > , >=

The operands must both be of the same type, and the result
is a Boolean value (true/false)

signal a : std_logic_vector(7 downto 0);

 ……….

if a = 3 then

Example:

Gives an error, becasue a is
std_logic, while 3 is an integer

Plasma and Space Physics

Behavioral Dataflow

Dataflow Structural description

Coding style (Architecture)

Plasma and Space Physics

”Process”
The process is executed
when one of the signals in
the sensitivity list has a
change (an event)
Then, the sequential signal
assignments are executed
The process continue to the
last signal assignment, and
terminates
The signals are updated
just before the process
terminates!
The process is not executed
again before one of the
signals in the sensitivity list
has a new event (change)

process (<sens list>)
< declaration>
begin
 <signal assignment1>
 .
 .
 <signal assignment n>
end process;

 clk: process is -- without sensitivity list
begin
clock <= ’0’;
wait for 50 ns;
clock <= ’1’;
wait for 50 ns; -- wait needed!
end process;

Plasma and Space Physics

Three-state buffers

The output buffer can be put into a high impedance
(’Z’) state, such that only one entity writes to the bus
– Three possible signal levels: ’0’, ’1’, ’Z’

FPGAs and CPLDs have three-state buffers on the
outputs (the signals defined as port in the entity)

However, many programmable logic devices can not
have three-state buffers internally on the circuit (on
internal signals)

Plasma and Space Physics

Or:

Three-state buffer

oes: process (oe, cnt)
 begin
 if oe = '0' then
 cnt_out <= (others => 'Z');
 else
 cnt_out <= cnt;
 end if;
 end process oes;

end archcnt8;

Plasma and Space Physics

8-bits register

library ieee;
use ieee.std_logic_1164.all;
entity reg_logic is port (
 d : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 q : out std_logic_vector(7 downto 0)
);
end reg_logic;
architecture r_example of reg_logic is
begin
 process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
 end process;
end r_example;

A new value is
transferred to the q output
on the rising clock edge

Plasma and Space Physics

Component

A component is an entity that is used in another
entity

Plasma and Space Physics

Use of components
entity test_dff is port (
 async, clock: in std_logic;
 filt : out std_logic);
end test_dff;

architecture arch_test_dff of test_dff is
-- Component declaration
component dflop
port(
 d, clk : in std_logic
 q :out std_logic);
end component;

-- Declaration of internal signals
signal temp : std_logic;

begin
-- Component instantiation
u1: dflop port map (async, clock, temp);
u2: dflop port map (temp, clock, filt);
end arch_test_dff ;

Fil: dflop.vhd

library ieee;
use ieee.std_logic_1164.all;

entity dflop i s port (
 d, clk : in std_logic;
 q : out std_logic);
end dflop;

architecture arch_dflop of dflop is
begin
 process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
 end process;
end arch_dflop;

Plasma and Space Physics

”Port map”

-- Position based
u2: dflop port map (temp, clock, filt);

-- Name based (component name to the left of the arrow)
u2: dflop port map (d => temp, clk => clock, q => filt);

All inputs to a component
must be connected! If an
output is not needed, the
reserved word open can
be used

input output

U3: navn
port map (a, b, c, open, d); Can not directly connect together the

input/output of a component to another
component’s output/input! Must use an
internal signal (such as temp in this
example), unless a connection to a port is
made

Plasma and Space Physics

Direct Instantiation
An alternative coding style
Used in Zwolinski, see e.g. page 42-43, and page 49
 WORK = Current working directory
No explicit component declaration before they are used (port
map).

Where the model
 is located

The name of
the model’s
entity

The name of the
architecture; not need if only
one architecture is related to
this entity

Plasma and Space Physics

Design flow

Plasma and Space Physics

Test vectors

Plasma and Space Physics

Test bench

Plasma and Space Physics

Test benches
Add a stimuli (input) to the circuit under test, and
observe the outputs to verify correct
behavior/functionality
When a test bench has been made, a functional test
can be repeated quickly after a design change
 The same test bench can be used to verify the VHDL-
code functionality (RTL level), and to verify the
functionality and timing after synthesis and fitting
(simulation on post-fit VHDL-model generated by the
design tool)
Test benches are not to be synthesized, and can
therefore use the entire VHDL language (e.g. after)
 x <= ’1’ after 4 ns;

Plasma and Space Physics

Testbench ”template”
library ieee;
use ieee.std_logic_1164.all;

entity test_UUT is -- empty entity
end test_UUT

architecture testbenk_arch of test_UUT is
component UUT:
port
(
 …………………
);
end component;
signal ……….
signal ………. :=’0’; -- start value for inputs
begin
U1: UUT
port map (………..);

STIMULI:
process
begin
…….
wait;
end process;

(UUT = Unit Under Test)

Component declaration

Defines a signal for each port in
the UUT

Component instantiation

Add stimuli

Plasma and Space Physics

Generating a Test Bench
Template from Quartus II
1. If you have not already done so, open an existing

project
2. If you have not already done so, perform a full

compilation
3. Specify Modelsim-Altera as the simulation tool

under Assignments – EDA tool settings -
Simulation

4. In the Processing menu, point to Start, then click
Start Test Bench Template Writer. The test bench
file is written to the location specified as the output
directory for the tool you selected. The default is
/<project directory>/simulation/<EDA simulation
tool>.

Plasma and Space Physics

Testbench clock generation

Plasma and Space Physics

Testbench example

signal clk : std_logic :=’0’;

begin

clk <= not(clk) after 50 ns; -- gives a clock period of 100 ns

STIMULI:
process
begin
………........
reset <= ’0’, ’1’ after 100 ns;
cnt <= ”0000”, ”1010” after 600 ns;
…………….
wait;
end process;

A process without a sensitivity list
must have a wait at the end

Plasma and Space Physics

A better way to write the
testbench stimuli

Plasma and Space Physics

Test benches

Add a stimuli (input) to the circuit under test, using VHDL, and
observe the outputs to verify correct behavior/functionality
Can have a table with test vectors integrated into the test bench
or in a separate file
Test benches are not to be synthesized, and can therefore use
the entire VHDL language (e.g. after)
File I/O
– Read test patterns from file
– Write results to file and compare manually with an answer

file
– The test bench can also read the answer file such that the

test bench can compare the results and the correct answers

Can build in models for external circuits on the PCB
– demands correct modeling of the external circuits

Package defined in IEEE 1076: textio

Plasma and Space Physics

Self-testing test benches

In a self-testing test bench all outputs are checked
against an answer, and the result of the simulation is
reported as ”Ok” or ”Not Ok”.
The advantage is that search in timing diagrams are
not needed (saves time)
Other people can more easily maintain the code
However, it is a demanding task to make a self-
testing test bench!

	Introduction to VHDL
	Slide Number 2
	Slide Number 3
	VHDL
	Recommended free VHDL editors
	First VHDL example �D-flip-flop
	Entities and architectures
	Template - Entity/Architecture
	�Comparator
	Ports
	Name
	Direction (mode)
	Important Data types
	The data type std_logic 1164
	Std_logic 1164 resolution function
	Bus
	Arithmetic and logical�operators
	Slide Number 18
	Relational operators�
	Coding style (Architecture)
	”Process”
	Three-state buffers
	Slide Number 23
	Slide Number 24
	Component
	Use of components
	”Port map”
	Direct Instantiation
	Design flow
	Test vectors
	Test bench
	Test benches
	Testbench ”template”
	Generating a Test Bench Template from Quartus II
	Testbench clock generation
	Testbench example
	A better way to write the testbench stimuli
	Test benches
	�Self-testing test benches

