
VHDL – combinational and
synchronous logic

FYS4220/9220

Reading: 2.5, chapter 4, 5.1 and chapter 6 in Zwolinski J. K. Bekkeng, 2.07.2011

Lecture #3

Plasma and Space Physics

Combinational vs Sequential
logic

In combinational logic the output is only dependent
on the present input.

In sequential logic the output is dependent on both
the present input and the state (memory, based on
earlier inputs).

Therefore, sequential logic has memory, while
combinational logic does not.

Plasma and Space Physics

 1 library ieee;
 2 use ieee.std_logic_1164.all;
 3 entity eqcomp4 is port(
 4 a, b: in std_logic_vector(3 downto 0);
 5 equals: out std_logic);
 6 end eqcomp4;
 7
 8 architecture behavioral of eqcomp4 is
 9 begin
10 comp: process (a, b)
11 begin
12 if a = b then
13 equals <= '1';
14 else
15 equals <= '0';
16 end if;
17 end process comp;
18 end behavioral;

Comparator - Behavioral (I) Style

Sequential statements

Sensitivity list

Plasma and Space Physics

Comparator - Behavioral (II)

 1 architecture behavioral of eqcomp4 is
 2 begin
 3 comp: process (a, b)
 4 begin
 5 equals <= '0';
 6 if a = b then
 7 equals <= '1';
 8 end if;
 9 end process comp;
10 end behavioral;

-- Default value

Note: Signals are set when the process terminates

• The order of the statements is important!

• Only the last assignment of a signal has any effect!

Plasma and Space Physics

”Process”
The process is executed
when one of the signals in
the sensitivity list has a
change (an event)
Then, the sequential signal
assignments are executed
The process continue to the
last signal assignment, and
terminates
The signals are updated
just before the process
terminates!
The process is not executed
again before one of the
signals in the sensitivity list
has a new event (change)

process (<sens list>)
< declaration>
begin
 <signal assignment1>
 .
 .
 <signal assignment n>
end process;

 clk: process is -- without sensitivity list
begin
clock <= ’0’;
wait for 50 ns;
clock <= ’1’;
wait for 50 ns; -- wait needed!
end process;

Plasma and Space Physics

Combinational logic and
”process”

Remember to include all inputs in the
sensitivity list!

Plasma and Space Physics

Comparator - Dataflow (I)
Does not use process!

 1 -- eqcomp4 is a four bit equality comparator
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 entity eqcomp4 is port(
 5 a, b: in std_logic_vector(3 downto 0);
 6 equals: out std_logic);
 7 end eqcomp4;
 8
 9 architecture dataflow of eqcomp4 is
 8 begin
 9 equals <= '1' when (a = b) else '0';
10 end dataflow

when - else

Plasma and Space Physics

Combinational logic
Does not have memory (only dependent on present
input)
To avoid unwanted memory:
– Include else in if then else
– Include when others in case
– and/or use ”default” values

Gives a combinational circuit: Gives a circuit with memory:

Plasma and Space Physics

More about unwanted memory

Gives memory, because
”when others” or
”default” values are
missing

Equivalent
descriptions, which
gives combinational
logic

Default value

Plasma and Space Physics

Data objects

Constants: increase readability
– constant width: integer := 8;

Signals – a signal line or a memory element
– signal count: std_logic_vector (3 downto 0);

Variables – synthesis of variables is not well defined
– variable result: std_logic := ’0’;

Aliases – not a new object

Plasma and Space Physics

Signals and variables
Signals:

Signal assignment <=
Defined in architecture (before begin)
Signals are updated just before the process terminates!
Use signals instead of variables when possible!

Variable:

Variable assignment : =
Variable assignment is instantaneous
In synthesis they are used as index variables and temporal
storage of data
Can be used to simplify algorithms
Can be used inside a process
Must be defined inside a process

Plasma and Space Physics

Signals
signal count: std_logic_vector(3 downto 0);

Plasma and Space Physics

Sequential and synchronous logic

Most digital systems have memory elements (e.g. flip-flops) in
addition to combinational logic, and is then called sequential
logic
The output in a sequential circuit is dependent on both present
input and present state (of a memory element)

Synchronous logic use a clock such that the memory elements
are updated only at specific times (at the rising/falling clock
edge)

Plasma and Space Physics

rising_edge og falling_edge

Defined by the package std_logic_1164
The signal must be of the type std_logic in order to
use these two functions
Detects rising/falling edge on the signal

Plasma and Space Physics

Only one single test on
rising/falling clock edge for each
process!
FSM : process(clk) IS
begin

if (rising_edge(clk1MHz)) then
 Datain <= Dout;
 ncs <= nCS_control;
end if;

if(falling_edge(clk1MHz)) then

 Case present_state is

clk

Plasma and Space Physics

D-flip-flop

library ieee;
use ieee.std_logic_1164.all;
entity dff_logic is port (
 d, clk : in std_logic;
 q : out std_logic);
end dff_logic;

architecture example of dff_logic is
begin
 process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
 end process;
end example;
 if (clk'event and clk = '1') then -- rising edge

if rising_edge(clk) then

if (clk'event and clk = ’0') then -- falling edge
if falling_edge(clk) then

no else; gives implicit
memory

Plasma and Space Physics

Example: 3-bit counter
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all; -- for + operator
use ieee.std_logic_unsigned.all
.

signal bit_cnt : std_logic_vector(2 downto 0);

.

BITCOUNTER:
process (sclk, reset_sync)
begin
 if (reset_sync = '1') then
 bit_cnt <= (others => '0');
 elsif falling_edge(sclk) then
 bit_cnt <= bit_cnt + 1;
 end if;
end process;

Plasma and Space Physics

Operator overloading &
important functions I

To add a constant to a signal of type std_logic, an overloaded
operator is required (in addition to the native VHDL operators)
– Solution: Add the package std_logic_arith

The expression if a = “ 1--1” is always evaluated to false in
native VHDL, except for “ 1--1”
– Solution: include the package std_logic_arith, and use the

function std_match: if std_match(a, “ 1--1”)

Overloading of the = operator
– The expression a = “00001” only true if array sizes are

equal in native VHDL
– Solution: Include a package that overloads the = operator,

e.g. the numeric_std package

Plasma and Space Physics

Operator overloading &
important functions II

The following packages solve most of these problems:
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_std.all;
 use IEEE.std_logic_arith.all;
 use IEEE.std_logic_unsigned.all;

Some other packages:

 math_real
 math_complex
 std_logic_textio

Plasma and Space Physics

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity clock12div is
 port
 (
 clk_in : in std_logic;
 reset : in std_logic;
 clk_out : out std_logic
);
end clock12div;

architecture clock_div_arch of clock12div is

constant DivFactor : integer := 12;
constant DivFactor_half : integer := 6;

begin

CLK_DIV: process (clk_in, reset)

variable div_cnt : integer range 0 to DivFactor - 1;

begin
 if reset = '1' then -- asynchronous reset
 div_cnt := 0;
 clk_out<= '0';
 elsif rising_edge(clk_in) then
 if (div_cnt = DivFactor - 1) then
 div_cnt := 0; -- reset the counter
 else
 div_cnt := div_cnt + 1; -- increment the counter
 end if;
 if (div_cnt >= DivFactor_half) then
 clk_out <= '0';
 else
 clk_out <= '1';
 end if;
 end if;
end process CLK_DIV;
end clock_div_arch;

Clock divider (using variable)
• Clock division different from 2n

• Wants ~ 50 % clock duty-cycle

Plasma and Space Physics

Some Data types

– Enumeration – important for state machines
• type state is (idle, preamble, data, error);

– integer
• variable a: integer range 0 to 255

– Physical - time is only predefined type, not used in sythesis
• ns, us, ms

– Floating - usually not supported directly in programmable logic

• Integers : 0112 represents 310
• Fixed-point numbers : 110.012 represents 6.2510
 (22 + 21. 2-2)
 store 110012 = 2510 and divide by 22
•Floating-point numbers : (-1)sign * mantissa * 2exponent

Plasma and Space Physics

Sequential statements
(if-then-else)

Functional
identical
processes

Note: The order of the signal
assignments affects the logic which
is produced!

Used in process, functions
and procedures

Plasma and Space Physics

The order of the sequential
statements (in the process) is
important!
If there are multiple processes they
are all executed in parallel and
concurrent with other ”concurrent
statements” in the architecture!

Sequential vs concurrent statements

aeqb <= '1' when (a = b) else '0';

ceqd <= '1' when (c = d) else '0';

process(.....)

process(.....)

Sequential statements Concurrent statements

 ”concurrent statements” are used
outside ”process”

 Executed concurrently (samtidig)
 The order of ”concurrent statements”

is arbitrary

Plasma and Space Physics

x is not assigned the new value here!
The comparison is with the value x
got the last time the process was
executed!

Important about seq. statem.

Plasma and Space Physics

with-select-when : Multiplexer (I)

Example – 4 to 1 multiplexer

All values of selection_signal must be listed using when, and they must be
”mutually exclusive”. This demands use of when others

s is of the type std_logic
which has 9 possible values.
This gives 81 possibilities for
simulation (for synthesis ”11”
is the only additional value)

Plasma and Space Physics

when-else : Multiplexer (II)

Example – 4 to 1 multiplexer

signal_name is assigned to the first condition which is true (inherent
priority)

Plasma and Space Physics

architecture mux_arch of mux is
begin

process(a, b ,c, d, s)
begin
 case s is
 when "00“ => x<=a;
 when "01“ => x<=b;
 when “10“ => x<=c;
 when others=> x<=d;
 end case;
end process;
end mux_arch;

case-when : Multiplexer (III)

Combinational logic demands that all input
signals must be included in the sensitivity list
of the process!

Plasma and Space Physics

Example : 4-1 multiplexer

if-else : Multiplexer (IV)

Combinational logic demands that all input
signals must be included in the sensitivity list
of the process!

Plasma and Space Physics

Loops
for loop
for i in 7 downto 0 loop
 fifo(i) <= (others => '0');
end loop;

while loop
reg_array: process (rst, clk)
 variable i: integer :=0;
 begin
 if rst = '1' then
 while i < 7 loop
 fifo(i) <= (others => '0');
 i := i + 1;
 end loop;

Loop variable i automatically
declared in a for loop

Declaration and initializing of
the loop variable i

Increments the loop variable i

Plasma and Space Physics

Synchronous reset
architecture sync_rexample of dff_logic is
begin
 process (clk) begin
 if rising_edge(clk) then
 if (reset = '1’) then
 q <= '0';
 else
 q <= d;
 end if;
 end if;
 end process;
end sync_rexample;

reset located
inside the part of
the process which
is synchronous to
the clock

Synchronous
logic

Plasma and Space Physics

Reset in synchronous logic;
asynchronous reset

library ieee;
use ieee.std_logic_1164.all;
entity dff_logic is port (
 d, clk, reset: in std_logic;
 q : out std_logic);
end dff_logic;

architecture rexample of dff_logic is
begin
 process (clk, reset) begin
 if reset = '1' then
 q <= '0';
 elsif rising_edge(clk) then
 q <= d;
 end if;
 end process;
end rexample;

For preset function:

if preset = '1' then
 q <= ’1'

reset and preset are used to
set the logic in a known
state

Plasma and Space Physics

Asynchronous Reset and Preset,
synchronous Load

cnt <= (others => ’0’)

cnt <= ”00000000”;

for i in 0 to 7 loop
 cnt(i) <= ‘0’;
end loop;

Example : 8 bit counter

Plasma and Space Physics

Avoid latches
Latches are created by "if"
statements which are not
completely specified.
A Latch is created when an
"else" statement is omitted, when
values are not assigned a value,
or when the "event" statement is
missing.
To avoid a Latch being
developed assign an output for
all possible input conditions.

– Use an "else" statement instead
of an "elsif" statement in the final
branch of an "if" statement to
avoid a latch.

– Be sure to assign default values
for all outputs at the beginning of
a process.

-- VHDL Latch example
process (enable, data_in)
begin
 if enable = '1' then
 q <= data_in;
 end if;
end process;

 -- VHDL D flip-flop example

process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
end process;
end example;

Plasma and Space Physics

Coding for Synthesis
Omit the wait for XX ns statement
Omit the ... after XX ns statement
Omit initial values
– Do not assign signals and variables initial values because initial

values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the
synthesized design. For example, do not use initialization
statements like the following: variable SUM:INTEGER:=0;

Make sure that all outputs are defined in all branches
of an if statement. If not it can creates latches
– A good way to prevent this is to have default values for all outputs

before the if statements.

	VHDL – combinational and synchronous logic
	Combinational vs Sequential logic
	Comparator - Behavioral (I) Style
	Comparator - Behavioral (II)
	”Process”
	Combinational logic and ”process”
	Comparator - Dataflow (I)
	Combinational logic
	More about unwanted memory
	Data objects
	Signals and variables
	Signals
	Sequential and synchronous logic
	rising_edge og falling_edge
	Only one single test on rising/falling clock edge for each process!
	Slide Number 16
	Example: 3-bit counter
	Operator overloading & �important functions I
	Operator overloading & �important functions II
	Slide Number 20
	Some Data types
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	case-when : Multiplexer (III)�
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Avoid latches
	Coding for Synthesis

