FYS4220/9220

Summary of

Lecture #6

Jan Kenneth Bekkeng, University of Oslo - Department of Physics

16.11.2011

Curriculum (VHDL & FPGA

Curriculum (Syllabus) defined by:

B Lectures

Forelesninger vhdl

Lecture1- Introduction to programmable logic.pdf
Sistendret 3 jul 2011 21-44

Lecture2 - VHDL introduction v2.pdf
Sislendrel 3. sep. 2011 19.58

Lecture3 - VHDL Combinational Sequential Synchron Logic v2.pdf
Sistendret 3. sep. 2011 19:59

Lecture4 - FSMs and Large Designs.pdf
Sistendret 17. jul. 2011 1753

Lecture5 - Digital Technigues and Embedded Systems.pdf
Sistendret 17. jul. 2011 17:53

Radiation & electronics.pdf
Siist PRI 17 jul 2011 1753

SOPC_EmbeddedSystems_article.pdf
Sislendrel 3. jul. 2011 22.28

Lecture6: Summary

B Laboratory exercises + documentation

Plasma and Space Physics

% UNIVERSITY
OF OSLO

Laboppgaver VHDL

FYS9220_Lab4_FPGA.zip
Sistendret 3. jul. 2011 21:50

Lab1_FPGA.zip
Sistendret 3. jul. 2011 21:45

Lab2_FPGA.zip
Sistendret 3. jul. 2011 21:46

Lab3_FPGA.zip
Sistendret 3. jul. 2011 21:46

Teknolog uavhengige
biblicteker

Spesifikasjon

Functional simulation —»

biblicteker

Design Entry
WHOL. Werilog, ABEL

4

|\

Simulering

Tekngflogi avihengige

<>

Ja

Mei

=

Syniese

“£4% UNIVERSITY

¥, oFosLo

Design flow

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Testbench

Simulering

<

Ja

Mei

Place & Roue (FPGA)

Fitiing (CPLD)

Timing Simularing

Mei

Ja

Dievice Programming

Logic Blocks

>

> Boolean equations/Netlist

[Inputhutput Blocks

utBlocs
ﬁﬁﬁﬁhﬁﬂﬁ

5 Nl

Programmable
g
—H—=1r Interconnect

INF3430-Kretsteknologier

”101001110001"

E B B e B E E

entity counter lsh2 is
generic(size: integer
port

i

1= 30

clk ! in std_logie:;

enable i in std logic:

reset : in std logic:

c_out : out std logic wvector (size-1 downto 0]

1

end counter lahi:

architecture counter ARCH of counter lsh2 is

sSighal count ! 3td logie wector (Size-1 downto 0] 1= (ot
begin

process (clk)

hegin
if rising edge(clk] then
if(reset = '1'] then
count <= [others => '0'):;

glsif{enable= '1')] then
count <=count + 1;

else
count

<=count;
end if:
o _out <= count:

end if:

end process:

end counter ARCH:

IDI:l.:

BT,
2

"

UNIVERSITY
OF OSLO

ARV,

R i

Improved code

LIERARY ieee;

USE ieee.std logic 11l64.all;

use ieee.std logic arith.all:
uze ieee.std logic unsigned.all;

—-— counter lahi

ENTITY counter labZz IS

FORT |
Clock in =td_logic:

Enable in std_ logie:

Rezet in std_logic;

C_out buffer std_logic_vector (2 downto 0)

)
END counter_ lahi;

ARCHITECTURE labz partl OF counter lshZ I3
BEGIN

process (Clock)
hegin

if rising edge (Clock] then
if (Reset = '1'] then
C_out <= (others =» '0');
elze
if (Enable = '1') then
C_out <= C_out + 1;
end if;
—-— elze not needed
end if:
end if;

end process;
END labZ partl;

;

iwplicit memory

S #9% UNIVERSITY
0% orF osLo

Coding for Synthesis

B Omit the wait for XX ns statement
B Omit the ... after XX ns statement

E Omit initial values

— Do not assign signals and variables initial values because initial
values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the
synthesized design. For example, do not use initialization
statements like the following: variable SUM:INTEGER}@(

B Make sure that all outputs are defined in all branches

of an If statement. If not it can creates latches
— A good way to prevent this is to have default values for all outputs

before the if statements. .
similarl: process (addr)

begin
step <= '0';
if addr > x"OF" then
step <= "1';
end if;

end process;

£9° UNIVERSITY

CommOﬂ VHDL Codlng ”errOrSﬁl/ OF OSLO

ssssss {Clock)
hegin
if rising edge{Clock) then
if {Feset = '1'} then

B Missing indent (low readability of the code)
E Wrong sensitivity list cow = Cowe i
— Too many/too few signals listed | e at,

— Can create wrong behavior, e.g. in state machines, resulting in
needless calls of the process or wrong VHDL description of the
implemented circuit o

E A mix of 1 process and 2 process FSM]
B Declaration of unnecessary internal signals

B ASM chart different (e.g. simplified) compared to the
VHDL code

— The ASM chart is the documentation of your VHDL code, and must
show all the states, the correct state transitions and the decisions
(based on inputs).

— QOutputs can be given in the ASM chart and/or in a state-output
table (e.g. give the most important outputs in the ASM chart to
ensure correct coding)

Avoid latches

Latches are created by "if"
statements which are not
completely specified.

A Latch is created when an
"else" statement is omitted, when
values are not assigned a value,
or when the "event" statement is
missing.

To avoid a Latch being
developed assign an output for
all possible input conditions.

— Use an "else" statement instead
of an "elsif" statement in the final

branch of an "if" statement to
avoid a latch.

— Be sure to assign default values
for all outputs at the beginning of
a process.

S #9% UNIVERSITY
: 0 OF osLO

i

-- VHDL Latch example
process (enable, data_in)

begin
If enable ='1' then
g <= data_in;
end if;

end process;

-- VHDL D flip-flop example
process (clk) begin
if (clk'event and clk ='1") then
q<=d;
end if;
end process;
end example;

S #9% UNIVERSITY
0¥ oF osLo

Init

count <= "00000";

Example of a good ASM T om0

<&
%
4
<
ff

.
>

chart:
Yes/No (1/0) labels B *Q -

together with decision

boxes count <= count + 1;

Arrows to show the " eorimon
program flow —
State names in top right >

corner of the state boxes

Selected outputs listed Iin
conditional output boxes
and inside the state boxes — @=) == CGmey)

2 k1) 7 UNIVERSITY
-}/ oF osLO

State flow diagram and
output tabell

Output tabell
ready
Tilstandsdiagram Citpots
0 0
0 o
0 1
1 0
4)
ready ="‘1
ready ="‘0
- _/

Figure 5-1 Simple state machine

Plasma and Space Physics

S #9% UNIVERSITY
0% orF osLo

State machines in VHDL

B An ASM chart (or a state diagram) can easily
be translated to a VHDL description!

B In VHDL the state machine can be described
In two different ways: =

= 1-process FSM «— Recommended!
= 2-process FSM

= One process describes the
combinational logic, and another |'
describes synchronization of state \
transitions to the clock

Example: 2 process FSM 4 sy

5 OF OSLO
s

library ieee;
use ieee.std_logic_1164.all;
entity memory_controller is port (

reset, read_write, ready, burst, clk :in std_logic;

bus id . in std_logic_vector(7 downto 0);
oe, we : out std_logic;

addr . out std_logic_vector(1 downto 0));

end memory_controller;

architecture state_machine of memory_controller is
type StateType is (idle, decision, readl, read2, read3, read4, write);
signal present_state, next_state : StateType;

begin —
state_comb:process(reset, bus_id, , burst, read_write, ready) begin
if (reset ='1") then
oe <="'-'; we <="-"; addr <="--";
next_state <= idle; _ Combinational
else .
case present_state is |Og|C
end case;
end if; -

end process state_comb;

state_clocked:process(clk) begin

if rising_edge(clk) then SynChI‘OﬂOUS

present_state <= next_state;]

end if; |Og|C

end process state_clocked;
end; —

S £9% UNIVERSITY
(% © OF 0SLO

p Claxs=g

Asynchronous reset in 2-process FSM

state_clocked:process(clk,reset) begin
if reset= 'l' then
present_state <= idle;
elsif rising_edge(clk) then
present_state <= next_state;
end if;:
end process state_clocked;

549 UNIVERSITY
:f; oF osLO

1-process FSM

Functionally identical to the 2-process FSM, and the same logic is
produced

architecture state_machine of memory_controller is
type StateType is (idle, decision, readl, read2, read3, read4, write);
signal state : StateType;

begin
state_tr:process(reset, clk) begin -- one process fsm
if reset = '1' then -- asynchronous reset
state <= idle;
elsif rising_edge(clik) then -- synchronization to clk
case state is -- state transitions defined

when idle =>
if (bus_id = "11110011") then
state <= decision;
else -- not req'd; for clarity
state <= idle;
end if;
when decision=>
if (read_write = '1') then
state <= readl;
else --read_write='0"'
state <= write;
end if;

S £9% UNIVERSITY
-}/ oF osLO

FSM with 3 undefined states

type states 1s (s0, sl, s2, s3, s4, ul, u2, ui);
signal next_state, present_state: states;

case present_state 1is

when others => next_state <= 50;
end case;

Plasma and Space Physics

Output from a state machine 4

1)

FSM: process (reset, clk)
begin
If (reset =’1’) then
state <= idle;

elsif rising_edge (clk) then
case state is
when idle =>
oe <=’1";
if (inputl =’1’) then
state <=s1;
else
state <= idle;
end if;
when sl =>
oe <="07;

Recommended!
2)

FSM: process (reset, clk)
begin
if (reset =’1") then
state <= idle;

elsif rising_edge (clk) then
oe <="’1"; -- Default value
case state is
when idle =>
If (inputl =’1") then
state <=s1;
else
state <= idle;
end if;
when s1 =>
oe <="0’;

UNIVERSITY
OF OSLO

3)

FSM: process (reset, clk)
begin
if (reset =’1’) then
state <= idle;

elsif rising_edge (clk) then
case state is
when idle =>
iIf (inputl =’1’) then
state <=s1;
else
state <= idle;
end if;
when sl =>
end process;
with state select
oe <=1’ when idle,
0’ when S1;
end state_machine;

£ 49% UNIVERSITY
W - oF osLo
e

Example: Use of default values In
FSMs

FSM CONF READ:
process{clk)
bhegin
if falling edge{clk) then

- set default wvalues
= <= '0':
Sr_enable <= 'U';
DataBReady == '0!';
Din == o'

case sState 1i=s
~ when PowerlUp =>

Plasma and Space Physics

Generics

ﬁ}\ UNIVERSITY

: 5 OF OSLO
i

B The width of a signal can be specified using a parameter

B Useful for registers and counters with different number of bits; only

necessary to make one component

Entity using a generic

entity SE_Serln redge is
generic |

width : integer := ¥
port
{
clk ! in std logic:
Dataln ! in std logic:
shift en : in std_logic;
Datacout : out =std logic wector{width-

¥:

end 3R SerIn redge;

dowmnto 0O}

How to use this component with a generic

component SBE ZerIn redge

generic {(width : intedger):;
port
{
clk ! in std logic;
Dataln ! in std logic:
ghift en : in =std logic:
Datatut : out std logic vector{width-

¥:

end component;

SR_DATA: 3B _SerlIn redge
generic map
width = ¥

port map {(sclk, Dout, sr enable, FPdata };

dovnto

)

S49% UNIVERSITY
. UF; oFosLO
4.2

The data type std _logic 1164

type std_ulogic is ('U', -- Uninitialized
'X', -- Forcing Unknown
'9', -- Forcing ©
'1', -- Forcing 1
'Z', -- High Impedance
W', -- Weak Unknown

L', -- Weak 0
'H', -- Weak 1
.y -- Don't care

);

9 different values!

Plasma and Space Physics

"Process”

The process is executed
when one of the signals In
the sensitivity list has a
change (an event)

Then, the sequential signal
assignments are executed

The process continue to the
last signal assignment, and
terminates

The signals are updated
just before the process
terminates!

The process is not executed
again before one of the
signhals in the sensitivity list
has a new event (change)

S #9% UNIVERSITY
0% orF osLo

procl: process (a, b, c)

begin
X <= a and b and c;
end process;

process (<sens list>)
< declaration>
begin
<signal assignmentl1>

<signal assignment n>
end process;

Sequential vs concurrent statements ~ f svems™

Sequential statements Concurrent statements

process.....) aegb <="'1'when (a = b) else '0";

if (condition) then

e]sgo something; CeC|d <="1' When (C — d) 6|Se 'Ol;
do something different;

end if; '

processy.....) ’concurrent statements” are used

i i i h : 77 73

e outside "process

1se = 1;

R comething different: Executed concurrently (samtidig)

end if; The order of “concurrent statements™

IS arbitrary

The order of the sequential
statements (in the process) is
Important!

If there are multiple processes they
are all executed in parallel and
concurrent with other ”concurrent
statements” in the architecture!

Signals and variables

£ 9% UNIVERSITY
“{0F . oF osLO

Signals:

Signal assignment <=

Defined in architecture (before begin)

Signals are updated just before the process terminates!
Use signals instead of variables when possible!

Variable:

Variable assignment : =
Variable assignment is instantaneous

In synthesis they are used as index variables and temporal
storage of data

Can be used to simplify algorithms
Can be used inside a process
Must be defined inside a process

Important - signal assignment G s

architecture careful of dangerous is
signal x: bit;

begin
pl: process begin
wait until clk = '1';
X <= '0';
. X
A=B D Q D Q y
D

end if;
end process pl; \ X IS not assigned the new value here!

end careful; : : :
The comparison is with the value x

got the last time the process was
executed!

Listing 4-37 A signal in an assignment and as an operand within the same process

Building blocks 0 svme

B Library

e library IEEE } To make the library

e use IEEE.std_logic_1164.all; visible

B Packages

e use work.my package.all; -- your own package

e work is the directory where the design files are located
E Components

e An entity used in another entity

e Needs a component declaration to make the component visible

e Needs a component instantiation to connect the component to the top
entity — using port map()

S #9% UNIVERSITY
0¥ oF osLo

Operator overloading &
iImportant functions

B Understand the need and use of the following packages:

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_arith.all;

;f UNIVERSITY
¥/ oF osLo

FPGA advantages

High reliability
High determinism
High performance
True parallelism
Reconfigurability

Scalability

System integration (System On a Programmable
Chip)

Plasma and Space Physics

S #9% UNIVERSITY
0¥ . oF osLo
e

Levels of Design Abstractions

Design Design Descriptions Primitive Theoretical Technigues
Levels Components
Algorithmic | Specifications Functional blocks | Signal processing theory
High-level lang. 'black boxes’ Control theory
Math. equations Sorting algorithm
Functional (ﬁg Verilog Registers Automata theory
FSM language Counters Timing analysis
C/Pascal ALU
Logic Boolean equations Logic gates Boolean algebra
Truth tables Flip-flops K-map
Timing diagrams Boolean minimization
Circuit Circuit equations Transistors Linear/non-linear eq.
Transistor netlist Passive comp. Fourier analysis

PYKC 3-Jan-08 E3.05 Digital System Design Topic 1 Slide 14

S #9% UNIVERSITY
0¥ oF osLo

The difference between a

processor and programmable
logic

B A processor is programmed with instructions

B A programmable logic circuit is programmed with a
circuit description

B A programmable logic circuit contains configurable

blocks with logics and configurable connection lines

between these blocks —

—
| lﬁﬁﬂ%ﬁﬂﬂﬁ

S #9% UNIVERSITY
0¥ oF osLo

CPLD - Complex
Programmable Logic Device

B Programming technology: non-volatile memory, such
as EEPROM or FLASH.

— Configuration stored in the circuit (even without power)
— High voltage (EEPROM) or logic voltage (FLASH)

B Used in "small and medium size” designs

FPGA - Field Programmable # #4s™
Gate Array

Typically contains more logic then a CPLD
Have many flip-flops (memory elements)
Usually have on-chip memory (RAM)
Supports processor cores, IPs etc

B Programming technology: usually static memory
(SRAM)

— Needs an external configuration circuit with a non-volatile memory
(based on EEPROM/FLASH) which loads the configuration into
the FPGA at power on.

— SRAM memory inside the FPGA stores the circuit configuration
(when the power is on).

SRAM Alj

S #9% UNIVERSITY
(% oF osLO

Combinational vs. Sequential
logic, and synchronous logic

B In combinational logic the output is only dependent
on the present input.

B In sequential logic the output is dependent on both
the present input and the state (memory, based on
earlier inputs).

B Synchronous logic use a clock such that the memory
elements are updated only at specific times (at the
rising/falling clock edge)

Block diagrams

out

out

inout

Process
process (Clk) E—
if |clk’Event and —Component
clk="1" then D —
Count <= Count + 1;
end 1f;
end process; —_—
——{Component
|
Signal
X <= (Y = '1’) and (X = "110")

Dataflow Expression

ﬁ\ UNIVERSITY

s OF OSLO
e

//entity declaration N
declarations
' , ™
(architecture declaration \
port declarations
f/bomponent ‘\
N _/; port
/- -\ ﬂ
[component] ////
il
ort
P A E;] J
/ port

S
£ 9% UNIVERSITY
W - oF osLo

Why focus on Verification

Consider a) FPGA development and
b) Further work related to FPGA quality

m FPGA Design
¥ FPGA Simulation
In-System Verification

Average Design & Functional

Verification tasks

- as seen in some reasonably
structured projects.

@
Gualifed Efflclancy

Plasma and Space Physics

S #9% UNIVERSITY
0¥ oF osLo

Test benches

B Add a stimuli (input) to the circuit under test, using VHDL, and
observe the outputs to verify correct behavior/functionality

B Can have a table with test vectors integrated into the test bench
or in a separate file

B Test benches are not to be synthesized, and can therefore use
the entire VHDL language (e.g. after)
B FEile /O Package defined in IEEE 1076: t€XTIO
— Read test patterns from file
— Write results to file and compare manually with an answer
file
— The test bench can also read the answer file such that the
test bench can compare the results and the correct answers

B Can build in models for external circuits on the PCB
— demands correct modeling of the external circuits

£ UNIVERSITY
f OF OSLO

Testbench example

signal clk :std_logic :=’0’;
begin

clk <= not(clk) after 50 ns; -- gives a clock period of 100 ns

process is

begin
Cim <= 10"z
A <= "0000";
B <= "0000";
wait for 5 NS;
A <= "1111";
wait for 5 NS;
e <= il
wait for 5 NS;
A <= "0111";
wait for 5 NS;
B <= "1111"%
wait for 5 NS;
Cin' <= 0
wait;

end process;

Plasma and Space Physics

	Summary of FPGA & VHDL
	Curriculum (VHDL & FPGA part)
	Slide Number 3
	Slide Number 4
	Coding for Synthesis
	Common VHDL coding ”errors”
	Avoid latches
	��
	State flow diagram and�output tabell
	State machines in VHDL
	Example: 2 process FSM
	Asynchronous reset in 2-process FSM
	1-process FSM
	FSM with 3 undefined states
	Output from a state machine
	Example: Use of default values in FSMs
	Slide Number 17
	The data type std_logic 1164
	”Process”
	Slide Number 20
	Signals and variables
	Slide Number 22
	Slide Number 23
	Operator overloading & �important functions
	FPGA advantages
	Slide Number 26
	The difference between a processor and programmable logic�
	CPLD - Complex�Programmable Logic Device�
	FPGA - Field Programmable�Gate Array�
	Combinational vs. Sequential logic, and synchronous logic
	Slide Number 31
	Slide Number 32
	Test benches
	Testbench example

