
Summary of FPGA & VHDL

Jan Kenneth Bekkeng, University of Oslo - Department of Physics

FYS4220/9220

16.11.2011

Lecture #6

Plasma and Space Physics

Curriculum (VHDL & FPGA part)
 Curriculum (Syllabus) defined by:

Lectures

Laboratory exercises + documentation

Lecture6: Summary ….

Plasma and Space Physics

Design flow

Boolean equations/Netlist

Testbench

”101001110001”

Functional simulation

Plasma and Space Physics

Improved code

Plasma and Space Physics

Coding for Synthesis
Omit the wait for XX ns statement
Omit the ... after XX ns statement
Omit initial values
– Do not assign signals and variables initial values because initial

values are ignored by most synthesis tools. The functionality of the
simulated design may not match the functionality of the
synthesized design. For example, do not use initialization
statements like the following: variable SUM:INTEGER:=0;

Make sure that all outputs are defined in all branches
of an if statement. If not it can creates latches
– A good way to prevent this is to have default values for all outputs

before the if statements.

Plasma and Space Physics

Common VHDL coding ”errors”
Missing indent (low readability of the code)
Wrong sensitivity list
– Too many/too few signals listed
– Can create wrong behavior, e.g. in state machines, resulting in

needless calls of the process or wrong VHDL description of the
implemented circuit

A mix of 1 process and 2 process FSM
Declaration of unnecessary internal signals
ASM chart different (e.g. simplified) compared to the
VHDL code
– The ASM chart is the documentation of your VHDL code, and must

show all the states, the correct state transitions and the decisions
(based on inputs).

– Outputs can be given in the ASM chart and/or in a state-output
table (e.g. give the most important outputs in the ASM chart to
ensure correct coding)

Plasma and Space Physics

Avoid latches
Latches are created by "if"
statements which are not
completely specified.
A Latch is created when an
"else" statement is omitted, when
values are not assigned a value,
or when the "event" statement is
missing.
To avoid a Latch being
developed assign an output for
all possible input conditions.

– Use an "else" statement instead
of an "elsif" statement in the final
branch of an "if" statement to
avoid a latch.

– Be sure to assign default values
for all outputs at the beginning of
a process.

-- VHDL Latch example
process (enable, data_in)
begin
 if enable = '1' then
 q <= data_in;
 end if;
end process;

 -- VHDL D flip-flop example

process (clk) begin
 if (clk'event and clk = '1') then
 q <= d;
 end if;
end process;
end example;

Plasma and Space Physics

 Example of a good ASM
chart:

• Yes/No (1/0) labels
together with decision
boxes

• Arrows to show the
program flow

• State names in top right
corner of the state boxes

• Selected outputs listed in
conditional output boxes
and inside the state boxes

Plasma and Space Physics

State flow diagram and
output tabell

 ready = ‘1’

 𝑟𝑟𝑟𝑟𝑟 = ‘0’

Tilstandsdiagram

Output tabell

Plasma and Space Physics

State machines in VHDL

An ASM chart (or a state diagram) can easily
be translated to a VHDL description!

In VHDL the state machine can be described
in two different ways:
 1-process FSM
 2-process FSM

 One process describes the
combinational logic, and another
describes synchronization of state
transitions to the clock

Recommended!

Plasma and Space Physics

library ieee;
use ieee.std_logic_1164.all;
entity memory_controller is port (
 reset, read_write, ready, burst, clk : in std_logic;
 bus_id : in std_logic_vector(7 downto 0);
 oe, we : out std_logic;
 addr : out std_logic_vector(1 downto 0));
end memory_controller;

architecture state_machine of memory_controller is
 type StateType is (idle, decision, read1, read2, read3, read4, write);
 signal present_state, next_state : StateType;
begin
state_comb:process(reset, bus_id, present_state, burst, read_write, ready) begin
 if (reset = '1') then
 oe <= '-'; we <= '-'; addr <= "--";
 next_state <= idle;
 else
 case present_state is
 …
 end case;
 end if;
end process state_comb;

state_clocked:process(clk) begin
 if rising_edge(clk) then
 present_state <= next_state;
 end if;
end process state_clocked;
end;

Combinational
logic

Synchronous
logic

Example: 2 process FSM

Plasma and Space Physics

Asynchronous reset in 2-process FSM

Plasma and Space Physics

1-process FSM
Functionally identical to the 2-process FSM, and the same logic is
produced

Plasma and Space Physics

FSM with 3 undefined states

Plasma and Space Physics

Output from a state machine

FSM: process (reset, clk)
begin
 if (reset = ’1’) then
 state <= idle;

 elsif rising_edge (clk) then
 case state is
 when idle =>
 oe <= ’1’;
 if (input1 = ’1’) then
 state <= s1;
 else
 state <= idle;
 end if;
 when s1 =>
 oe <= ’0’;

FSM: process (reset, clk)
begin
 if (reset = ’1’) then
 state <= idle;

 elsif rising_edge (clk) then
 oe <= ’1’; -- Default value
 case state is
 when idle =>
 if (input1 = ’1’) then
 state <= s1;
 else
 state <= idle;
 end if;
 when s1 =>
 oe <= ’0’;

FSM: process (reset, clk)
begin
 if (reset = ’1’) then
 state <= idle;

 elsif rising_edge (clk) then
 case state is
 when idle =>
 if (input1 = ’1’) then
 state <= s1;
 else
 state <= idle;
 end if;
 when s1 =>

 end process;
with state select
 oe <= ’1’ when idle,
 ’0’ when S1;
end state_machine;

1) 2) 3) Recommended!

Plasma and Space Physics

Example: Use of default values in
FSMs

Plasma and Space Physics

Generics

The width of a signal can be specified using a parameter
Useful for registers and counters with different number of bits; only
 necessary to make one component

Entity using a generic How to use this component with a generic

Plasma and Space Physics

The data type std_logic 1164

9 different values!

Plasma and Space Physics

”Process”
The process is executed
when one of the signals in
the sensitivity list has a
change (an event)
Then, the sequential signal
assignments are executed
The process continue to the
last signal assignment, and
terminates
The signals are updated
just before the process
terminates!
The process is not executed
again before one of the
signals in the sensitivity list
has a new event (change)

process (<sens list>)
< declaration>
begin
 <signal assignment1>
 .
 .
 <signal assignment n>
end process;

Plasma and Space Physics

The order of the sequential
statements (in the process) is
important!
If there are multiple processes they
are all executed in parallel and
concurrent with other ”concurrent
statements” in the architecture!

Sequential vs concurrent statements

aeqb <= '1' when (a = b) else '0';

ceqd <= '1' when (c = d) else '0';

process(.....)

process(.....)

Sequential statements Concurrent statements

 ”concurrent statements” are used
outside ”process”

 Executed concurrently (samtidig)
 The order of ”concurrent statements”

is arbitrary

Plasma and Space Physics

Signals and variables
Signals:

Signal assignment <=
Defined in architecture (before begin)
Signals are updated just before the process terminates!
Use signals instead of variables when possible!

Variable:

Variable assignment : =
Variable assignment is instantaneous
In synthesis they are used as index variables and temporal
storage of data
Can be used to simplify algorithms
Can be used inside a process
Must be defined inside a process

Plasma and Space Physics

x is not assigned the new value here!
The comparison is with the value x
got the last time the process was
executed!

Important - signal assignment

Plasma and Space Physics

Building blocks

Library
library IEEE
use IEEE.std_logic_1164.all;

Packages
use work.my_package.all; -- your own package
work is the directory where the design files are located

Components
An entity used in another entity
Needs a component declaration to make the component visible
Needs a component instantiation to connect the component to the top
entity – using port map()

To make the library
visible

Plasma and Space Physics

Operator overloading &
important functions

Understand the need and use of the following packages:

 use IEEE.std_logic_1164.all;
 use IEEE.numeric_std.all;
 use IEEE.std_logic_arith.all;

Plasma and Space Physics

FPGA advantages

High reliability
High determinism
High performance
True parallelism
Reconfigurability

Scalability
System integration (System On a Programmable
Chip)

Plasma and Space Physics

Plasma and Space Physics

The difference between a
processor and programmable
logic
 A processor is programmed with instructions

A programmable logic circuit is programmed with a
circuit description
A programmable logic circuit contains configurable
blocks with logics and configurable connection lines
between these blocks

Plasma and Space Physics

CPLD - Complex
Programmable Logic Device

Programming technology: non-volatile memory, such
as EEPROM or FLASH.
– Configuration stored in the circuit (even without power)
– High voltage (EEPROM) or logic voltage (FLASH)

Used in ”small and medium size” designs

Plasma and Space Physics

FPGA - Field Programmable
Gate Array
 Typically contains more logic then a CPLD

Have many flip-flops (memory elements)
Usually have on-chip memory (RAM)
Supports processor cores, IPs etc

Programming technology: usually static memory
(SRAM)
– Needs an external configuration circuit with a non-volatile memory

(based on EEPROM/FLASH) which loads the configuration into
the FPGA at power on.

– SRAM memory inside the FPGA stores the circuit configuration
(when the power is on).

FPGA

Flash

Plasma and Space Physics

Combinational vs. Sequential
logic, and synchronous logic

In combinational logic the output is only dependent
on the present input.

In sequential logic the output is dependent on both
the present input and the state (memory, based on
earlier inputs).

Synchronous logic use a clock such that the memory
elements are updated only at specific times (at the
rising/falling clock edge)

Plasma and Space Physics

Block diagrams

Plasma and Space Physics

Plasma and Space Physics

Test benches

Add a stimuli (input) to the circuit under test, using VHDL, and
observe the outputs to verify correct behavior/functionality
Can have a table with test vectors integrated into the test bench
or in a separate file
Test benches are not to be synthesized, and can therefore use
the entire VHDL language (e.g. after)
File I/O
– Read test patterns from file
– Write results to file and compare manually with an answer

file
– The test bench can also read the answer file such that the

test bench can compare the results and the correct answers

Can build in models for external circuits on the PCB
– demands correct modeling of the external circuits

Package defined in IEEE 1076: textio

Plasma and Space Physics

Testbench example
signal clk : std_logic :=’0’;

begin

clk <= not(clk) after 50 ns; -- gives a clock period of 100 ns

	Summary of FPGA & VHDL
	Curriculum (VHDL & FPGA part)
	Slide Number 3
	Slide Number 4
	Coding for Synthesis
	Common VHDL coding ”errors”
	Avoid latches
	��
	State flow diagram and�output tabell
	State machines in VHDL
	Example: 2 process FSM
	Asynchronous reset in 2-process FSM
	1-process FSM
	FSM with 3 undefined states
	Output from a state machine
	Example: Use of default values in FSMs
	Slide Number 17
	The data type std_logic 1164
	”Process”
	Slide Number 20
	Signals and variables
	Slide Number 22
	Slide Number 23
	Operator overloading & �important functions
	FPGA advantages
	Slide Number 26
	The difference between a processor and programmable logic�
	CPLD - Complex�Programmable Logic Device�
	FPGA - Field Programmable�Gate Array�
	Combinational vs. Sequential logic, and synchronous logic
	Slide Number 31
	Slide Number 32
	Test benches
	Testbench example

