
BSP User Guide
MIDAS M5000 Series

Single Board Computer
VxWorks 5.5

Version 1.2-Release 1.5

Notice
The information in this document is subject to change without notice and should not be construed
as a commitment by VMETRO. While reasonable precautions have been taken, VMETRO assumes
no responsibility for any errors that may appear in this document.

Trademarks
Trademarked names appear throughout this document. Rather than list the names and entities that
own the trademarks or insert a trademark symbol with each mention of the trademarked name, we
hereby state that the names are used only for editorial purposes and to the benefit of the trademark

owner with no intention of improperly using the trademark.
The mention of any trademarked name is not intended to imply that VMETRO products are

affiliated, endorsed or sponsored by such trademark owner.

Software and Firmware Licensing
Any Software and Firmware code provided by VMETRO described herein is proprietary to

VMETRO or its licensors. The use of this Software and Firmware is governed by a licensing
agreement included on the media on which the Software and Firmware was supplied. Use of the
Software or Firmware assumes that the user has agreed to the terms of the licensing agreement.

VMETRO retains all rights to the Software and Firmware under the copyright laws of the United
States of America and other countries. This Software or Firmware may not in contravention of the

licensing agreement be furnished or disclosed to any third party and may not be copied or
reproduced by any means, electronic, mechanical, or otherwise, in whole or in part, without

specific authorization in writing from VMETRO.

Copyright © 2007 VMETRO
This document may not be furnished or disclosed to any third party and may not be copied or

reproduced in any form, electronic, mechanical, or otherwise, in whole or in part, without the prior
written consent of VMETRO.

 Warranty

VMETRO products are warranted against defective materials and workmanship within the
warranty period of 1 (one) year from date of invoice. Within the warranty period, VMETRO will,
free of charge, repair or replace any defective unit covered by this warranty. A Return to
Manufacturer Authorization (RMA) number should be obtained from VMETRO prior to return of
any defective product. With any returned product, a written description of the nature of malfunction
should be enclosed. The product must be shipped in its original shipping container or similar
packaging with sufficient mechanical and electrical protection in order to maintain warranty. The
product should be returned at the user's expense (including insurance for the full product value).
This warranty assumes normal use. Products subjected to unreasonably rough handling, negligence,
abnormal voltages, abrasion, unauthorized parts replacement and repairs, or theft are not covered
by this warranty and will if possible be repaired for time and material charges in effect at the time
of repair. Any customer modification to VMETRO products, including conformal coating, voids
the warranty unless agreed to in writing by VMETRO.
If boards that have been modified are returned for repair, this modification should be removed prior
to the board being shipped back to VMETRO for the best possibility of repair. Boards received
without the modification removed will be reviewed for reparability. If it is determined that the
board is not repairable, the board will be returned to the customer. All review and repair time will
be billed to the customer at the current time and materials rates for repair actions.
This product has been designed to operate with modules, carriers or compatible user-provided
equipment. Connection of incompatible hardware is likely to cause serious damage. VMETRO
assumes no liability for any damages caused by such incompatibility. For products that have failed
or malfunctioned due to abuse, miss-use or accident or for products that have failed or
malfunctioned after the expiry of the warranty, the costs of repair or replacement will not be
covered by VMETRO.
VMETRO specifically disclaims any implied warranty of merchantability and fitness for a
particular purpose. The warranty provided herein for electronic equipment products is the user's
sole and exclusive remedy. In no event shall VMETRO, or its distributors and agents, be liable for
direct, indirect, special, incidental, or consequential damages (including but not limited to lost
profits, penalties or damages payable to third parties) suffered or incurred, whether based on
contract, tort or any other legal theory, even if VMETRO has been informed of the possibility of
such damages. This limitation of liability may not be enforceable in certain jurisdictions; therefore
the limitations may not apply. This warranty gives you specific rights. You may have other rights
that vary from jurisdiction to jurisdiction.
VMETRO's warranty is limited to the repair or replacement policy described above and neither
VMETRO nor its agent shall be responsible for consequential or special damages related to the use
of their products.

Limited Liability

VMETRO does not assume any liability arising out of the application or use of any product
described herein; neither does it convey any license under its patent rights nor the rights of others.
VMETRO products are not designed, intended, or authorized for use as components in systems
intended to support or sustain life, or for any application in which failure of the VMETRO product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
VMETRO products for any such unintended or unauthorized application, Buyer shall indemnify
and hold VMETRO and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that VMETRO was negligent regarding the design or
manufacture of the part.

Contact Us
Worldwide HQ
VMETRO asa

Østensjøveien 32
0667 OSLO, Norway

Phone: +47 22 10 60 90
Fax: +47 22 10 62 02

info@vmetro.no

United Kingdom
VMETRO Ltd

Manor Courtyard
Hughenden Avenue

High Wycombe HP13 5RE
United Kingdom

Phone: +44 (0) 1494 476000
Fax: +44 (0) 1494 464472

sales@vmetro.co.uk

North American HQ
VMETRO, Inc.

1880 Dairy Ashford, Suite 400,
Houston TX 77077, U.S.A.

Phone: (281) 584-0728
Fax: (281) 584-9034
info@vmetro.com

VMETRO, Inc.
Suite 275

171 E. State St, Box 120
Ithaca, New York 14850
Phone: (607) 272 5494
Fax: (607) 272 5498
info@vmetro.com

Asia Pacific
VMETRO Pte Ltd

175A Bencoolen Street
#06-09 Burlington Square

Singapore 189650
Phone: +65 6238 6010
Fax: +65 6238 6020
info@vmetro.com.sg

Nordic & Baltic Countries
VSYSTEMS AB

Drottninggatan 104
SE-111 60 Stockholm

Contact: Bengt-Olof Larsson
Phone: +46 8 444 15 50

Fax: +46 8 444 15 60
info@vsystems.se

Germany
VSYSTEMS Electronic GmbH

Elisabethstrasse 30
80796 München

Contact: Ralf Streicher
Phone: +49 89 273 763 0
Fax: +49 89 273 763 10

info@vsystems.de

France
VSYSTEMS SAS
P.A. du Pas du Lac

5, rue Michaël Faraday
78180 Montigny-le-Bretonneux

Contact: Alain D'Aux
Phone: +33 1 30 07 00 60

Fax: +33 1 30 07 00 69
info@vsystems.fr

Italy
VSYSTEMS srl
via Cavour 123

10091 Alpignano (TO)
Contact: Luca Ravera

Phone: +39 11 9661319
Fax: +39 11 9662368

 info@vsystems.it
www.vmetro.com

mailto:info@vmetro.com
mailto:info@vmetro.no
mailto:sales@vmetro.co.uk
mailto:info@vmetro.com
http://www.vmetro.com
mailto:valli@vmetro.no
mailto:info@vsystems.se
mailto:info@vsystems.de
mailto:info@vsystems.fr
mailto:info@vsystems.it

Preface

Introduction

The VMETRO MIDAS M5000 is a single-board computer (SBC) built in a 6U VMEbusform factor
based on the AMCC PPC440GX PowerPC processor. This document describes the VxWorks Board
Support Package (BSP) for the PPC440GX processor on the VMETRO MIDAS 5000-series
products.

This User's Guide provides important information on all aspects of the MIDAS M5xxx VxWorks
Board Support Package (BSP). Answers to questions such as “How do I install the BSP? How do I
boot the MIDAS board? How do I burn VxWorks boot code? How do I configure the MIDAS board
to be VME bus master/slave at certain base addresses? How do I connect a PCI interrupt? How do I
read/write the registers of a PCI device? Etc.” can be found in this document. The chapters are
summarized below:

• Overview provides a brief description of the PPC440GX processor and its surroundings. Model
Numbering describes the model-numbering approach used. Address Maps and Address Space
Mapping describes the address space layout for both PPC440GX local and PCIbus perspectives.

• System Memory describes the SDRAM memory system used and describes how to access
additional memory. Cache-safe Buffers provides a guideline to allocate a buffer that is
noncacheable. BSP users with questions such as “What is a cache safe buffer? How do I get a
buffer on the M5000 that can be used as shared memory between another board and the
M5000?” can find the answers here.

• PCIbus Operations provides an overview of the PCI bus architecture of the M5xxx board and a
description of the routines used to generate PCI bus cycles. BSP users with questions such as
“What is a PMC slot? How do I read/write the configuration registers of a PMC in slot 1? How
do I read/write PCI addresses? How do I convert a local address to a PCI address? Etc.” can find
the answers here. This chapter assumes that the reader has some knowledge of PCI
terminologies and bus specifications. PCI Interrupt Handling provides a guideline for
connecting an Interrupt Service Routine (ISR) for a PCI device. BSP users with question such as
“How do I connect an interrupt handler for my PMC board?” can find the answer here.

• Message Unit. Interrupt provides a guideline for using mailbox interrupt via the PPC440GX
Message Unit. BSP users with questions such as “What is a Message Unit? Where is the
MIDAS M5000's mailbox address? How can I interrupt the M5000 board from another board
across PCI, VME and/or RACEway?” can find the answers here.

• VME Master & Slave Access Configuration provides a guideline to configure the M5xxx board
to be master/slave at certain VME addresses. BSP users with question such as “How can I get
the M5xxx board to read/write a VME slave at sextets address? How can a VME master read/
write the M5xxx memory? Etc.” can find the answers here.

• RACEway-PCI Interface provides important information on how to handle M5000 board with
the RACEway interface (“-R”) option. BSP users with question such as “How can I use a
M5000-R board in a non-RACEway VME slot? I boot a M5xxx-R board with VxWorks and it
hangs, what happens? Etc.” can find the answers here.
vIssued June 20, 2007 M5000 Series: BSP User Guide

• Network Interfaces provides a guideline for using various network interfaces. BSP users with
questions such as “How do I boot the M5000 board with sm? How do I boot the M5000 board
with an ethernet interface?” can find the answers here.

• BSP Installation and Distribution provides information on BSP installation and software
distribution.

• Burning VxWorks Boot Code provides a guide on how to burn VxWorks boot code on the
M5000 board.

• DMA Drivers provides information on DMA drivers associated with the M5000
• The Midas File System provides information on the Midas File System implemented in FLASH

memory of the M5000 board.
• Fibre Channel Information provides information about the Fibre Channel interface built into the

M5000 board.
• Appendixes:

• Troubleshooting
• Deprecated Functions
• BIST (Built In Self Test)

• Technical Support.

Style Conventions Used
• Code samples are Courier font and at least one size less than context.
• Text that represents user input is bold Courier font.
• Directory path names are italicized.
• File names are in bold.
• Absolute path file names are italicized and in bold.
• Pressing of individual keys will be indicated as <key>. For example:

<Enter> Press the key marked “Return” or “Enter”.
• Pressing a key-combination will be indicated as Mod-n, where “Mod” refers to any of the

“Control” (Cut), “Alt” (Alt), or “Shift” (Shift) and “n” is any key. For example:
Ctrl-z Hold the Control key and press “z”.
Alt-s Hold the Alt key and press “s”.

• Simulated interaction with a computer will be shown in Courier type. Required keywords in
computer interaction examples are shown in bold Courier type, and placeholders for items that
vary or must be supplied by the user are indicated with italic Courier type. Output from the
computer is shown in one of these three preceding styles. Input from the user is also displayed in
one of these styles, but with the addition of underlining. Finally, comments that are not actually
displayed or typed, but are provided in the text as aids to understanding, are shown in italic Arial
type.

Warning! Indicates important information that can affect the operation of your
M5xxx
vi M5000 Series: BSP User Guide Issued June 20, 2007

IEC Prefixes for binary multiples

Quality Assurance

VMETRO is dedicated to supplying our customers with products and services of the highest
quality.

We therefore, continually review and assess our products and services with the aim to improve the
processes involved in the development of our world-class products.

If you have any comments or feedback with respect to our products and services, please feel free to
contact us through the support channels listed here, or email us at comments@vmetro.no

Technical Support

Please see the section Technical Support at the end of this guide.

Related Documentation

We recommend reading the documentation in the order shown.

• Release Notes
• M5000 User Guide (Hardware)

References Used in this document

[1] PPC440GX Embedded Processor User's Manual, AMCC.

[2] M5xxx User Guide, VMETRO, Inc.

[3] The PCI Specification v2.2, PCI Special Interest Group.

[4] VxWorks 5.5 Drivers API Reference Manual, Wind River Systems, Inc

[5] VMEbus Interface Components Manual, Tundra.

[6] The VMEbus Specification, VMEbus International Trade Association (VITA).

Note – This is information that will help you get the best performance.

Symbol Name Origin Derivation Size

Ki Kibi Kilo binary kilo 1024 bytes

Mi Mebi Mega binary mega 1 048 576 bytes

Gi Gibi Gig binary giga 1 073 741 824 bytes
viiIssued June 20, 2007 M5000 Series: BSP User Guide

[7] VxWorks 5.5 Programmer's Guide, Wind River Systems, Inc.

[8] WindRiver Platforms, Getting Started, Wind River Systems, Inc

[9] VxWorks 5.5 Network Programmer's Guide, Wind River Systems, Inc.

[10] VxWorks 5.5 Reference Manual, Wind River Systems, Inc.

[11] MIDAS Monitor User Guide, VMETRO, Inc.

[12] MIDAS PXB DMA Driver Software Reference Manual, VMETRO, Inc.

[13] VMFC Driver Software Reference Manual, VMETRO, Inc.
viii M5000 Series: BSP User Guide Issued June 20, 2007

Contents
 1 Overview . 1

1.1 Overview . 2
1.2 M5xxx Model Numbering . 4
1.3 M5xxx Address Maps and Address Space Mapping. 5

 2 System Memory . 9

2.1 System Memory. 10
2.2 Cache-safe Buffers. 11
2.3 Error Checking and Correction (ECC) . 12

 3 PCI Bus Operation. 13

3.1 PCI Bus Layout . 14
3.2 PCI Configuration Space Access. 15
3.3 PCI Memory and I/O Space Access . 16

sysBusToLocalAdrs . 17
sysLocalToBusAdrs . 18

3.4 PCI Interrupt Handling . 19
Interrupt Pin. 19
Interrupt Routing and Sharing. 19
Interrupt Connection and Enabling . 20

3.5 PCI Bus Operations . 21
Overview . 21
ixIssued June 20, 2007 1:49 M5000 Series: BSP User Guide

PCI buses and MidasBusID 21
PMC slot 22
MidasBusIdFromPciBusNo . 22
MidasBusIdToPciBusNo . 24
MidasGetPmcBridgeBusNumbers . 25
MidasPmcSlotInfoGet . 26
MidasPciSlotInfoGet . 27

3.6 PCI Optimizations . 28

 4 I2O Messaging Unit Support . 29

4.1 Overview . 30
4.2 Doorbell register support . 31

muOutDoorbellWrite . 31
muOutDoorbellRead . 31

 . 31
4.3 Message Register support . 32

Common Definitions . 32
muMessageConnect . 33
muIsMessageConnected. 34
muMessageDisconnect. 34
muMessageEnable . 35
muMessageDisable. 36
muMessageWrite . 37

Example - Inbound Message Register . 37
Example - Remote Use of the Message Registers. 40

4.4 Inbound Message Queue . 41
Common Definitions . 41

muCircularQueueInit . 42
muInPostQueueConnect. 42
muQueueConnect . 43
muInPostQueueDisconnect . 43
muCircularQueueFree . 43
muIsInPostQueueConnected . 44
muInPostQueueWrite . 45

Example - Inbound Message Queue . 45
Example - Remote Use of the Inbound Post Queue Register. 48

 5 VME Bus Operation. 49

5.1 VME Master & Slave Access Configuration. 50
Overview . 50
VME Address Modifier (AM) Codes . 56
VME Master (PCI Slave) Access Windows . 58
VME Slave (PCI Master) Access Windows . 59
Functions . 61

uniPciSlaveImageSet . 61
uniVmeSlaveImageSet . 63
x M5000 Series: BSP User Guide Issued June 20, 2007 1:49

uniVmeSlaveImageSetup . 65
uniImageShow . 67

5.2 Configuring PCI Slave Images in the Universe. 68
Procedure 68

Viewing PCI Slave Image Configuration . 68
Changing PCI Slave Image Configuration . 68

Option 1 68
Option 2 69
Option 3 70

5.3 VME Interrupts . 74
VME Interrupt Handling . 74
VME Interrupt Generation. 75

VxWorks Target Shell Example : 76
5.4 Universe DMA Functionality . 77

Universe DMA Driver . 77
Universe DMA Interface Functions . 77

uniDmaLibInit . 77
uniDmaDirect . 78
uniDmaChainCmdPktCreate . 79
uniDmaChain . 80
uniDmaChainStop . 80
uniDmaNotifyFncSet . 81

 6 RACEway PCI Interface . 83

6.1 RACEway-PCI Interface . 84
Overview . 84
PXB Initialization. 84
PXB DMA Driver. 85

 7 Network . 87

7.1 Ethernet (emac) Network Interface . 88
Configuring JUMBO packets 88

7.2 Shared Memory (sm) Backplane Network Interface 90
Modifying the kernel configuration . 90
Configuring The Development Host (UNIX) . 91

Specifying IP Addresses And Host Names For VxWorks Nodes 91
Specifying the Internet Gateway for VxWorks Nodes 91

Configuring The SM Network . 92
Configuring the SM Network Master 92
BSP Configuration for the SM Network 92
VxWorks Boot Parameters for the SM Network Master 92
Configuring M5000 as an SM Network Participant 93

Shared Memory Network Synchronization. 94
Testing And Troubleshooting . 95

7.3 Gigabit Ethernet Throughput Performance . 96
xiIssued June 20, 2007 1:49 M5000 Series: BSP User Guide

 8 BSP Installation . 99

8.1 BSP Installation & Distribution. 100
Installation . 100

Files & Directories 100

 9 Burning VxWorks Boot Code . 103

9.1 Burning VxWorks Boot Code from Rom Monitor (Serial) 104
9.2 Burning VxWorks Boot Code from VxWorks (Ethernet) 105
9.3 Burning VxWorks Boot Code from U-Boot (Ethernet). 106

Setting Network Parameters . 106
TFTP: 106
NFS: 106

Flash VxWorks image. 107

 10 DMA drivers. 109

10.1 PPC440GX DMA Driver. 110
Setting up a DMA transaction .110
Single DMA transactions .111
Chained DMA transactions .112
Common status structure .114
Address translation functions. .114
Single blocking DMA transfer example .115
Chained DMA transfer example .116

 11 MIDAS File System. 123

11.1 The Midas File System (MFS). 124
Overview . 124
The MFS Functions . 124

 mfs_open . 124
 mfs_close. 125
 mfs_remove . 125
 mfs_dir. 126
 mfs_seek . 126
 mfs_stat . 127
 mfs_tell . 127
 mfs_eof . 128
 mfs_ftrunc . 128
 mfs_gets. 129
 mfs_read . 130
mfs_write . 131
 mfs_pwd . 131
 mfs_ini_gettext . 132
xii M5000 Series: BSP User Guide Issued June 20, 2007 1:49

 mfs_ini_settext . 133
 mfs_ini_setlong . 133
 mfs_ini_setlongh . 134
 mfs_ini_getlong. 134
mfs_usr_load_file. 135

11.2 The vxbsp.ini File . 136
The RACEdrv Section . 136
The VmeInterface Section . 136

11.3 The mmon.ini File . 137
The BoardInfo Section . 137
The AutoStart Section. 137

 12 Fibre Channel Support. 139

12.1 Fibre Channel Information . 140
Overview . 140

APPENDIXES. 141

 A Troubleshooting . 143
Hello World Example Using WorkBench . 144

 B Deprecated Functions . 145
 pciToLocalAdrs (replaced with sysBusToLocalAdrs) 146
 pciLocalToPciAdrs (replaced with sysLocalToBusAdrs). 147

 C Built In Self Test (BIST) API. 149
Built In Self Test API Contents . 150
xiiiIssued June 20, 2007 1:49 M5000 Series: BSP User Guide

xiv M5000 Series: BSP User Guide Issued June 20, 2007 1:49

Figures
xvIssued June 20, 2007 1:49 M5000 Series: BSP User Guide

xvi M5000 Series: BSP User Guide Issued June 20, 2007 1:49

Tables
TABLE 1-1.M5xxx switch settings affecting BSP . 3
TABLE 1-2.M5xxx BSP 32-bit Effective (Virtual) Address Map with PCI Auto-config (default) 5
TABLE 1-3.M5xxx Inbound PCIbus-Memory-Space-Relative Address Map 6
TABLE 1-4.Effective virtual address space of PPC440GX to PCI I/O Space 7
TABLE 5-1.M5xxx Default Universe VME and PCI Slave Images. 51
TABLE 5-2.M5xxx Supported VME AM Codes . 56
TABLE 6-1.PXB-related flags used by M5xxx BSP . 85
xviiIssued June 20, 2007 1:49 M5000 Series: BSP User Guide

xviii M5000 Series: BSP User Guide Issued June 20, 2007 1:49

Is
 1 Overview
sued Ju
This section briefly describes the features and architecture of the PPC440GX and its incorporation
in the VMETRO M5xxx SBC. Complete details on the CPU itself may be found in the PPC440GX
Embedded Processor User's Manual[1] available from AMCC. See “Related Documentation” on
page vii.

Note – The BSP requires Tornado 2.2.1 with patch 90451 available from Wind River
1M5000 Series: BSP User Guidene 20, 2007

Overview
1.1 Overview

The AMCC PPC440GX Embedded Processor (hereafter referred to simply as “PPC440GX” or
“440”) combines a PowerPC 440 processor core, and various on-board peripheral components,
including L2 cache controller, SRAM controller, DDR SDRAM controller, PCI-X controller, DMA
controller, Ethernet controllers (including support for Gigabit Ethernet), timers, serial ports, and
others.

The MIDAS M5xxx implementation incorporates the PPC440GX operating at a core speed of 500/
667 MHz, 256 MBof SDRAM on a 166 MHz memory bus and 16 MiB of FLASH ROM. The
M5xxx interfaces the 440 to the PCI-X bus and provides access to all other PCI-X devices. The
M5xxx includes a Qlogic ISP2312 dual channel Fibre Channel interface. The M5xxx also includes
a Universe IID controller for interfacing with VME. The M5xxx may optionally include a
RACEway interface (PXB++). The M5xxx has two PCI-X compatible PMC sites where optional or
user-supplied modules may be mounted. shows a simplified block diagram of the M5xxx. As
shows, the MIDAS M5xxx board architecture implements a total of three separate PCI-X busses
and one PCI bus.

FIGURE 1-1. PCI busses

The PCI-X bus segment attached directly to the PPC440GX is referred to as the Primary Bus. The
Primary Bus attaches to the Qlogic ISP2312 and the first on-board PLX P2P bridge (hereafter
called a “P2P”). The secondary side of the first P2P is referred to as the Secondary Bus, which
attaches PMC site #1 and the second on-board P2P. The secondary side of the second on-board P2P
is referred to as the Tertiary Bus, which attaches PMC site #2 and the third onboard P2P.

The secondary side of the third onboard P2P is referred to as the Quaternary Bus, which attaches
the Universe PCI/VME bridge and the PXB++ bridge if present. For M55xx series products, an
optional mezzanine daughter card provides three additional PCI-compatible PMC sites. The
mezzanine daughter card has a P2P which is attached to the Quaternary Bus. The three additional
PMC slots on the mezzanine are attached to the mezzanine's P2P.
2 M5000 Series: BSP User Guide Issued June 20, 2007

Overview
In general, P2P bridges may be “enabled” or “disabled”. Note that all three onboard P2Ps must be
enabled in order for the PPC440GX to have visibility of the Universe and other components on the
Quaternary Bus. Typically, users will not need to worry about enabling or disabling the onboard
P2Ps because the BSP properly configures the bridges through a process known as “PCI auto
configuration”. In the rare cases in which the user wishes to perform manual configuration of P2P
bridges, the functions to do so are available in the BSP. However, the user is cautioned that
improperly changing the configuration of onboard P2Ps can have unexpected results, particularly if
the P2P bridges are configured with inconsistent PCI bus numbers. See the section on PCIbus
operations for more information.

There are many switches on the M5xxx that are fully documented in the M5xxxUser Guide[2].
Only a few of the switches affect the operation of the BSP, and these are shown in the table below.
Default positions are noted in bold.

TABLE 1-1. M5xxx switch settings affecting BSP

Switch Controls Closed Open
Default
position

sw10-3 CPU FLASH write enable Write disabled Write enabled Write enabled

sw10-4 CPU FLASH Monitor write
enable

Write enabled Write disabled Write disabled

sw10-1 CPU Serial EEPROM write
enable

Write enabled Write disabled Write enabled

sw3-4 Controls board Reset to VME
Reset propagation. This
affects the function
systemReset()

Enabled Disabled Enabled

sw6-2 ECC Disabled Enabled Disabled
3Issued June 20, 2007 M5000 Series: BSP User Guide

Overview
1.2 M5xxx Model Numbering

The M5xxx is offered with a number of optional components, leading to many different possible
hardware configurations. The configuration of each M5xxx is encoded in the model number for the
board. This section reviews the available M5xxx options and how the model number can be used to
identify which options are present.

The general format for model numbers is:

M5ABCRP-XYZ#-rr where:

M is for Midas
5 represents this generation of Midas product
A is for the number of PMC positions (typically '2', or '5' for mezzanine)
B is for the number of PPCs ('0'=pure carrier, '1'=intelligent)
C is reserved for future options
R is used when RACE++/PXB++ is available
P denotes that there is a mounted P0 connector

XYZ gives front panel options present on the board, from top to bottom. XYZ can consist of:

• F is for Fibre channel SFF connector (optical)
• E is for Fast Ethernet (10/100) RJ45 connector (copper)
• G is for Gigabit Ethernet (10/100/1000) SFF (optical)
• J is for Gigabit Ethernet (10/100/1000) RJ45 (copper)

is for serial interface options, which can be:

• <no number> is for RS232 (2 ports)
• 4 is for RS232 (1 port) and RS422 (1 port)

rr is for the ruggedized version of the product

Additional restrictions apply to the usage of the three front panel. In particular:
“X” can be E (emac0), G (emac2), or J (emac2). “X” cannot be F.
“Y” can be E (emac1) or F
“Z” can be F, G (emac3), or J (emac3). “Z” can only be F if “Y” is also F.

The names in parentheses above refer to the name of each port within VxWorks. These names are
used when specifying a device used to boot VxWorks.
4 M5000 Series: BSP User Guide Issued June 20, 2007

M5xxx Address Maps and Address Space Mapping

tch
1.3 M5xxx Address Maps and Address Space Mapping

The address map layouts (CPU and PCI) for the M5xxx BSP implementation are as follows. These
maps are shown as supported with the default PCI auto-configuration. Manual PCI configuration is
not currently supported by the M5xxx BSP. A detailed look at PCI address space assignment is
given in the section of PCI bus layout.

a. The cached and non-cached regions access the same physical SDRAM.
b. User configurable through NONCACHEABLE_MEMORY_SIZE
c. User configurable through PCI_MASTER_PREFETCHABLE_POOL_SIZE

Regions marked “Not mapped--available” can provide addressing to PCIbus resources. To enable
access to these regions, the PPC440GX MMU must be initialized appropriately. This is done by
adding entries to the sysStaticTlbDesc[] array found in sysLib.c. See the sysStaticTlbDesc[] array
in "sysLib.c" for more details.

Figure 1-2 shows a graphic representation of Table 1-2.

TABLE 1-2. M5xxx BSP 32-bit Effective (Virtual) Address Map with PCI Auto-config (default)

Address range Resource Mapped Mapped by

0x00000000-0x0dffffffb Cached System SDRAM access MMU TLB Entry

0x0e000000-0x0fffffffab Non-cached System SDRAM access MMU TLB Entry

0x10000000-0xbffffffffc PCI outbound translation window MMU TLB Entry with prefetch

0xc0000000-0xefffffffc PCI outbound translation window MMU TLB Entry without prefe

0xf0000000-0xf0ffffff Internal CPU Peripherals MMU TLB Entry

0xf1000000-0xf1ffffff I2O MMU TLB Entry

0xf2000000-0xf2ffffff SRAM MMU TLB Entry

0xf3000000-0xf4ffffff FLASH memory (cached) MMU TLB Entry

0xf5000000-0xf5ffffff PLD MMU TLB Entry

0xf8000000-0xfbffffff PCI I/O outbound MMU TLB Entry

0xfc000000-0xfdffffff Not mapped-available -

0xfd000000-0xfdffffff PCI-X bridge MMU TLB Entry

0xfe000000-0xffffffff FLASH memory (non-cached) MMU TLBEntry
5Issued June 20, 2007 M5000 Series: BSP User Guide

Overview

FIGURE 1-2. Outbound Address Mapping to PCI Memory Space with PCI Auto-Configuration

Not Used

0 0000 0000

0 1000 0000

2 0801 0000

2 0880 0000

Not Used

440GX slave

2 0800 0000
PCI I/O

Not Used

Extra PCI I/O
2 1260 0000

Not Used
2 9000 0000

PCI Memory

3 7000 0000

F FFFF FFFF FFFF FFFF

36-bit PLB
(Processor Local

Bus) Address Map

32-bit (virtual)
Address Map

(by bsp)
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

Flash Memory

PLD

SRAM

I20

Internal CPU Peripherals

FF00 0000

FE00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F400 0000

F300 0000

F200 0000

F100 0000

F000 0000

C000 0000

FFFF FFFF

PCI memory Space
Address Map

Not Mapped, unused

non prefetch pool for
autoconfiguration

PPC440 SDRAM
+ I20

C000 0000

prefetch pool for
autoconfiguration

F000 0000

PCI Memory
Inbound window

PCI Memory
outbound window

1000 0000

PCI Memory outbound
window without prefetch

Cacheable access to local
PPC440 SDRAM

(mapped by POM0)

PCI Memory outbound
window with prefetch

1000 0000

0000 0000 0000 0000

TABLE 1-3. M5xxx Inbound PCIbus-Memory-Space-Relative Address Map

PCI Address range
 Resource
Mapped Mapped by

0x00000000-0x00000fff PPC440GX I2O PIM0/PIM1

0x00001000-0x0fffffff SDRAM PIM0
6 M5000 Series: BSP User Guide Issued June 20, 2007

M5xxx Address Maps and Address Space Mapping
The “I2O” is the PPC440GX Message Unit which facilitates the transfer of messages between the
PPC440GX and a device on PCI. Please see the PPC440GX Embedded Processor User's Manual[1]
for more information on the I2O. Figure 1-3 shows how the inbound PCI memory maps to local
PPC440GX memory.

FIGURE 1-3. Inbound Address Mapping from PCI Memory Space with PCI Auto-Configuration

The figure below shows how the Effective virtual address space of PPC440GX memory maps to
PCI I/O Space.

0 0000 0000

0 1000 0000

2 1260 0000

2 0800 0000

Not Used

SDRAM

0 FFFF 0000
I20 Msg Unit

Not Used

I/O
2 0800 1000

Not Used
2 0880 0000

Extra I/O

2 9000 0000

PCI Memory
3 7000 0000

F FFFF FFFF FFFF FFFF

36-bit PLB
(Processor Local

Bus) Address Map

I20 Msg Unit

SDRAM (mapped by PIM0)

PCI memory Space
Address Map

Not mapped, unused

0 0000 0000

Not Used

1 0000 0000 1 0000 0000

0 0000 0400

Not used

TABLE 1-4. Effective virtual address space of PPC440GX to PCI I/O Space

Local Memory Range PCI I/O Address range Resource Mapped Mapped by

0xf8800000-0xfbffffff 0x800000-0x4000000 32-bit PCI I/O Space MMU

0xf8000000-0xf800ffff 0x0-0x1000 16-bit PCI I/O Space MMU
7Issued June 20, 2007 M5000 Series: BSP User Guide

Overview
FIGURE 1-4. Address Mapping from Local Address Space to PCI I/O Space

32-bit (virtual)
Address Map

(by bsp)
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

Flash Memory

PLD

SRAM

I20

Internal CPU Peripherals

FFFF FFFF

PCI memory Space
Address Map

16-bit PCI I/O0001 0000

PCI Memory outbound
window without prefetch

local PPC440 SDRAM

PCI Memory outbound
window with prefetch

Not Used

Not Used

32-bit PCI I/O

0080 0000

400 0000

FFFF FFFF

FE00 0000

FD00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F400 0000

F300 0000

F200 0000

F100 0000

F000 0000

C000 0000

1 0000 0000

0 0000 0000
8 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 2 System Memory
sued Ju
 9M5000 Series: BSP User Guidene 20, 2007

System Memory
2.1 System Memory

The MIDAS M5xxx implementation includes 256 MBof 166 MHz Double Data Rate (DDR)
SDRAM. Memory is mapped by MMU Translation Lookaside Buffer (TLB) entries, which permits
the SDRAM memory to be accessed as either cacheable or non-cacheable. The malloc() or
calloc() functions can be used to allocate cacheable memory, while cacheDmaMalloc() can be
used to allocate non-cacheable memory.

By default, the M5xxx BSP implementation makes only 32 MiB available to the operating system.
This is because the PowerPC compiler uses the single instruction (branch) direct calls to
subroutines (by default). Single branch instruction allow only 25 effective address displacement
bits plus a signed bit resulting in possible jumps to subroutines within +/- 32 MiB offset from the
current branch instruction (i.e., at the current program counter). Object code compiled with single
branch instructions cannot call subroutines if they are loaded more than 32 MiB from the VxWorks
libraries (object modules are loaded into the heap which starts at sysMemTop() and grows toward
address 0).

If the compiler is instructed to use dual instruction indirect calls (the same as used when calling
function pointers), the resulting object module can call subroutines anywhere within the 32-bit
effective address space. This can be done by using the compiler option -mlongcall. However, dual
instruction calls are slightly more expensive in both code space and execution time. Therefore, it is
often better to keep sysMemTop() at 32 MiB in order to provide the best possible efficiency.

By default, the sysMemTop() function returns a value close to the 32 MiB effective address range.
The sysPhysMemTop() function can be used to determine the total amount of memory present on
the board. There are, at present, four ways an application can make use of the memory beyond the
first 32 MiB.

1. The first method is to create a separate memory pool for the extra memory (i.e., not part of the
system memory pool). Refer to memPartLib (memPartCreate) in the VxWorks Reference
Manual.

2. The second method of getting around this restriction for downloadable applications is to use the
-mlongcall compiler option in the GNU compiler. However, this option may introduce an
unacceptable amount of performance penalty and extra code size for some applications. It is for
this reason that the VxWorks kernel is not compiled using -mlongcall.

3. The third method uses the standard VxWorks distribution, but relies on loading all code modules
first, while only 32 MiB of memory is available, then adding the extra memory to the system
memory pool by a call to:
memAddToPool (LOCAL_MEM_LOCAL_ADRS + 0x02000000, size);

4. The fourth method involves simply addressing the extra memory directly, independent of
VxWorks. In this case, the user is responsible for managing the extra memory since the
VxWorks memory-management functions (such as malloc, calloc, free, etc.) will not work
for this method.
10 M5000 Series: BSP User Guide Issued June 20, 2007

Cache-safe Buffers
2.2 Cache-safe Buffers

Any time there is asynchronous access to DRAM, there is a potential cache coherency problem
(i.e., data in the cache is different from data in DRAM). The PPC440GX data cache may be write-
through cache (i.e., data is always written to both cache and memory when the CPU performs a
write) or copyback (i.e., data is flushed to main memory only when a pending read must reuse the
previously-written cache line). By default, the data cache is copyback.

If write-through caching is used, there is no cache coherency problem whenever data is transferred
from local memory to remote memory. Copyback caching (the default case) improves processor
throughput, but the local memory does not immediately reflect the value written. Read access by an
external agent (e.g., a DMA controller) may pick up the old (or uninitialized) value if the dirty
cache line has not yet been flushed when the external read access commences.

Regardless of the cache mode used, when data is written by another master (typically a DMA
controller) to local memory, the local buffer is now inconsistent with the cache. To handle cache
coherency problem on the M5xxx board, the user has three options:

• use cache-safe buffers. Cache-safe buffer is the best approach since data integrity is assured on a
per-buffer basis, and the performance penalty of calling cacheInvalidate is avoided. The M5xxx
BSP supports the VxWorks routine cacheDmaMalloc whenever MMU support is included (the
default case).

• call cacheInvalidate before reading from the local buffer and call cacheFlush after writing to the
local buffer.

• disable the data cache. This is not recommended except during device driver debugging.

FIGURE 2-1. Default Memory Configuration

Non Cached

Cache Unused

Cached

1000 0000

0200 0000

0000 0000

0E00 0000

Default Memory Configuration

LOCAL_MEM_LOCAL_ADRS

SysMemTop()

NONCACHEABLE_MEMORY_SIZE

SysPhysMemTop()

SysPhysMemTop() NONCACHEABLE_MEMORY_SIZE
11Issued June 20, 2007 M5000 Series: BSP User Guide

System Memory
2.3 Error Checking and Correction (ECC)

The MIDAS M5xxx BSP supports Error Checking and Correction (ECC). Switch 6-2 on the
MIDAS board is used to switch ECC on and off. When sw6-2 is ON, ECC is Enabled.

The ECC feature automatically corrects 1-bit errors. 2-bit and multiple bit errors are not corrected
and will result in the suspension of the task that initiated the memory transaction.
12 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 3 PCI Bus Operation
sued Ju
This chapter covers the PCI bus operation associated with the M5xxx BSP. You should already be
familiar with basic PCI bus operating principles. First the PCI bus layout of the M5xxx is
discussed. Then, methods for accessing the PCI bus are presented. All of the BSP functions that
provide access to the PCI bus are documented in this chapter.
13M5000 Series: BSP User Guidene 20, 2007

PCI Bus Operation
3.1 PCI Bus Layout

PCI IDSEL numbers and configuration addresses are given in the M5xxx User Guide[2]. The
device number to use in calls to PCI configuration functions (see section on PCIbus Operations
below) is the IDSEL number minus 16. Therefore, PMC#1 with IDSEL pAD[16] is device number
0. Device numbers for devices behind P2P bridges on PMCs are set by the PMC hardware,
according to the PCI Specification[3]. The standard VxWorks PCI-related query functions,
pciDeviceShow and pciHeaderShow are very useful for reviewing device numbers, as well as a
great deal of other information about each of the PCI devices in PCI configuration space.

The PCI auto-configuration process takes care of assigning all PCI Memory and I/O space
resources. The regions of PCI Memory Space are summarized as follows:

0x10000000 - 0xBFFFFFFF (2.75 GB) for PCI prefetchable memory space
0xC0000000 - 0xEFFFFFFF (768 MB) for PCI non-prefetchable memory space

These should be sufficient for almost all real-world applications. In rare instances when more PCI
memory space is needed, there are several possible approaches to obtaining larger amounts of PCI
Memory Space.

If the VME outbound windows are not required, the non-prefetchable memory pool can be
effectively made larger by disabling the VME outbound windows. See the section on VMEbus
operation for more information on how to do this. If even larger amounts of PCI Memory Space are
required, please contact Vmetro technical support for assistance.

The regions of PCI I/O Space are summarized as follows:

0xF8800000 - 0xFBFFFFFF (56 MiB) for 32-bit PCI I/O space
0xF8000000 - 0xF800FFFF (64 KB) for 16-bit PCI I/O space

These should be sufficient for almost all real-world applications. The sizes of the 16-bit and 32-bit
PCI I/O space are as large as the PPC440GX allow them to be.

In order to gain a better understanding of what the PCI autoconfigurator is doing and to determine
how much PCI Memory and I/O Space is being used by the PCI autoconfigurator, the
PCI_AUTO_DEBUG constant found in pciAutoConfigLib.c can be #define'd. This constant is
#undef'ed by default. By #define'ing this constant, a large amount of serial output will be generated
by the PCI autoconfigurator. It is recommended that the PCI_AUTO_DEBUG variable be left
undef'ed for distributable applications because the additional serial output causes the M5xxx to take
longer to boot up.

On M55xx boards, the MEZZ500 daughter-board allows for three additional PCI-compatible PMC
sites. The MEZZ500 has an on-board P2P that bridges between the Quaternary Bus and the three
PMC sites on the MEZZ500. The PCI autoconfigurator configures the MEZZ500 P2P bridge and
all devices installed on MEZZ500 PMC sites in the same way as all other P2P bridges and PCI/PCI-
X devices in the system. Thus, the user need not take any special action to allocate or reserve PCI
resources for the MEZZ500 or PMC devices mounted on the MEZZ500.
14 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Configuration Space Access
3.2 PCI Configuration Space Access

Access to M5xxx PCI configuration space is provided through functions defined in “target/h/drv/
pci/pciConfigLib.h”, which is part of the standard VxWorks/Tornado installation. See the
aforementioned file for details.

.

The following definitions in config.h can be used to access these resources:

M5000_PPC440GX_VENDOR
M5000_PPC440GX_DEVICE
M5000_PPC440GX_I2O_BAR
M5000_PPC440GX_SDRAM_BAR.
15Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation
3.3 PCI Memory and I/O Space Access

PCI Memory and I/O accesses are made through memory-mapped references to the regions
designated in the CPU-Relative address map shown in the section on address maps.

Because PCIbus is inherently little-endian (least-significant byte resides at the lowest address) and
the PPC440GX is inherently big-endian (most-significant byte at lowest address), care must be
exercised when accessing device registers or other non-memory devices, so that data values are
read and written properly.

An object and any pointer to it must agree in size, or the data read or written will be wrong or be in
the wrong place. Data read from a multi-byte entity must be byte-swapped before being used or
returned. Data must be byte-swapped before being written to a multi-byte entity.

The M5xxx BSP provides functions for accessing PCI-resident resources which take care of byte
swapping and guaranteeing in-order access to system resources. They are:

IMPORT VOID sysOutWord (ULONG address, UINT16 data); /* sysALib.s */
IMPORT VOID sysOutLong (ULONG address, ULONG data); /* sysALib.s */
IMPORT VOID sysOutByte (ULONG, UCHAR); /* sysALib.s */
IMPORT USHORT sysInWord (ULONG address); /* sysALib.s */
IMPORT ULONG sysInLong (ULONG address); /* sysALib.s */
IMPORT UCHAR sysInByte (ULONG); /* sysALib.s */

PCI-to-CPU and CPU-to-PCI address translations are provided by the functions
sysBusToLocalAdrs and sysLocalToBusAdrs, respectively.
16 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Memory and I/O Space Access

E
in
f

l
sysBusToLocalAdrs
Synopsis STATUS sysBusToLocalAdrs (

int adrsSpace,

char *busAdrs,

char **pLocalAdrs

)

adrsSpace - Represents the bus address space in which busAdrs resides. The value can be one of the
following:PCI_SPACE_IO_PRI (0x40) - 32-bit PCI I/O Space
PCI_SPACE_MEMIO_PRI (0x41) - Non-cacheable PCI Memory Space
PCI_SPACE_MEM_PRI (0x42) - Cacheable PCI Memory Space
PCI_SPACE_IO16_PRI (0x43) - 16-bit PCI I/O Space

A supported VMEbus AM code (see section on VMEbus).

busAdrs - the bus address to be converted to a local address

pLocalAdrs - holds the returned local address equivalent of the busAdrs if it exists

Description This function converts a bus address to a local address.The function can be used with both PCI and VM
address spaces. If the given bus address can be converted to a local address, the local address is placed
pLocalAdrs and the function returns OK. Otherwise, ERROR is returned. Note that an adrsSpace value o
PCI_SPACE_CFG_PRI is not supported. In other words, sysBusToLocalAdrs() cannot be used to
determine the local address space equivalent for PCI Config Space because there is no such direct
address mapping between local and PCI configuration space.

Returns OK, or ERROR.

Example /* This example finds the Universe UCSR (held in BAR0 of the Universe) in loca
address space */

struct MIDAS_PCI_SLOT_INFO slot_info;

UINT32 PciBusNo, bar0, localAdrs;

/* Get slot_info for the Universe */

if (MidasPciSlotInfoGet (MPSLOT_UNIVERSE, &slot_info) == ERROR)

 return ERROR;

if (MidasBusIdToPciBusNo(slot_info.MidasBusId, &PciBusNo) == ERROR)

 return ERROR;

pciConfigInLong(PciBusNo, slot_info.PciDeviceNo, 0, 0x10, &bar0);

if (sysBusToLocal(PCI_SPACE_MEMIO_PRI,(char*)bar0, (char**)&localAdrs))

 return ERROR;

printf (The UCSR is at 0x%x in local address space\n", localAdrs);
17Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation

ng:

ts

E

 of

ss

f
sysLocalToBusAdrs
Synopsis STATUS sysLocalToBusAdrs (

int adrsSpace,

char *localAdrs,

char **pBusAdrs

)

adrsSpace - Represents the bus address space in which pBusAdrs resides. The value can be one of the followi
PCI_SPACE_IO_PRI (0x40) - 32-bit PCI I/O Space
PCI_SPACE_MEMIO_PRI (0x41) - Non-cacheable PCI Memory Space
PCI_SPACE_MEM_PRI (0x42) - Cacheable PCI Memory Space
PCI_SPACE_IO16_PRI (0x43) - 16-bit PCI I/O Space

A supported VMEbus AM code (see section on VMEbus).

localAdrs - the local address to be converted to a bus address

pBusAdrs - holds the returned bus address equivalent of localAdrs if it exis

Description This function converts a local address to a bus address. The bus address can be in either a PCI and VM
address space. If the given local address can be converted to a bus address, the bus address is placed in
pBusAdrs and the function returns OK. Otherwise, ERROR is returned. Note that an adrsSpace value
PCI_SPACE_CFG_PRI is not supported. In other words, sysLocalToBusAdrs() cannot be used to
determine the PCI Config Space equivalent of local address space because there is no such direct addre
mapping between local and PCI configuration space.

Returns OK, or ERROR.

Example /* This example allocates a cacheable buffer and determines the PCI address o
the buffer */

char *bufLocal, *bufPci;

bufLocal = (char *) malloc(1000);

if (sysLocalToBus(PCI_SPACE_MEM_PRI,bufLocal, &bufPci)

 return ERROR;

printf("The PCI address of the buffer is: 0x%x\n", bufPci);
18 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Interrupt Handling
3.4 PCI Interrupt Handling

This chapter documents interrupt routing and handling in the M5xxx implementation. The PCI
autoconfigurator automatically configures the PCI configuration space registers known as
“Interrupt Line” (offset 0x3c) and “Interrupt Pin” (offset 0x3d) for each PCI device. However, the
PCI autoconfigurator does not install any Interrupt Service Routines (ISRs). Setting up the ISRs is
typically performed by device drivers. In general, device drivers are specific to the operating
system (i.e., VxWorks 5.5) as well as the type of CPU (i.e., PPC440GX). They are often supplied
by the manufacturer of PCI devices. The M5xxx BSP includes the device drivers for all PCI devices
mounted on the M5xxx itself, except for the Fibre Channel controllers and RACEway. These
devices are supported through separate products available from VMETRO.

In PCI systems, interrupts may be shared by multiple PCI devices. In order to support interrupt
sharing, each ISR must determine whether its associated device caused an interrupt and if so, it
must clear the condition that caused the interrupt. The device driver/application programmer should
use the pciIntConnect() function to install an ISR for a particular PCI device on the M5xxx
board or mounted in a PMC slot. Using the VxWorks library function intConnect() is not
guaranteed to work because intConnect() does not support interrupt chaining, whereas
pciIntConnect() does. To disassociate an ISR from an interrupt, use the
pciIntDisconnect2() function. The pciIntConnect() and pciIntDisconnect2()
functions are documented in [4].

The application code needs to include the header files listed below:

• intLib.h - VxWorks interrupt-related function declarations
• drv/pci/pciIntLib.h - declarations for pciIntConnect()/pciIntDisconnect()
• mdrv/include/MidasPciLib.h - Midas PCI-related functions
• mdrv/include/midasppc440.h - PPC440GX primarily interrupt-related declarations

Interrupt Pin

Each PCI device may implement up to four interrupt pins (INTA, INTB, INTC, and INTD) on a
physical package of a multi-function PCI device. If a package implements one pin, it must be
INTA. If a package is single function, it must use INTA. The Interrupt Pin register can be read to
determine which of the four pins each device uses (see the PCI Specification[3]).

Interrupt Routing and Sharing

The M5xxx implements sixteen interrupt inputs to the PPC440GX. See M5xxx User Guide[2] for a
description of how interrupts from the various devices are routed to the Universal Interrupt
Controller (UIC) of the PPC440GX. Some of the PPC440GX interrupt inputs are shared between
PCI devices. Additionally, some PCI devices implement more than one interrupt output and may
have multiple interrupt outputs routed to the same PPC440GX interrupt input.

For example, PMC#2's INTA and INTC are both connected to interrupt input #1 of the PPC440GX.
If a multifunction device is installed on PMC#2 and two of its functions asserted INTA and INTC
respectively, an interrupt on either of those lines would be sent to interrupt input #1 of the
PPC440GX.
19Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation
Interrupt Connection and Enabling

The pciIntConnect() routine will install an interrupt handler for any vector in the table,
regardless of whether that vector is associated with an input to the UIC. The PowerPC architecture
also defines the functions intEnable() and intDisable(). Following connection with
pciIntConnect(), an interrupt must be enabled by calling intEnable(). In the M5xxx BSP
implementation, these functions operate only on interrupt levels/vectors associated with interrupt
inputs to the UIC. See mdrv/include/midasppc440.h for the interrupt levels and vectors defined
for the M5xxx implementation.

The functions sysIntEnable() and sysIntDisable() in sysLib.c applies only to VMEbus
interrupt-request levels. See the [7] for details.
20 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Bus Operations
3.5 PCI Bus Operations

Overview

The functions documented here are used to access the PCI buses on the M5xxx board. The
application code needs to include the header files listed below (all BSP-provided header files can be
found in the BSP directory “midasppc440” or in “midasppc440/mdrv/include”):

• MidasPciLib.h
• $WIND_BASE/target/h/drv/pci/pciConfigLib.h

PCI buses and MidasBusID

All M5xxx boards have three (3) PCI-X buses which are referred to as the Primary, Secondary, and
Tertiary PCI-X buses. All M5xxx boards also have one (1) PCI bus referred to as the Quaternary
PCI bus. In addition, M55xx boards have a fifth PCI bus referred to as the MEZZ500 PCI bus. To
differentiate between the five buses, some of the functions use a MidasBusId parameter. The
MidasBusId is an identifier used to specify which of the physical PCI-X/PCI buses are being
referenced. There is no MidasBusId associated with additional P2P bridges that may be present (for
example, P2P bridges installed on PMCs). The MidasBusId can only be one of the following
values:

• MIDAS_PRIMARY_BUS = 0 MidasBusId for primary PCI-X bus
• MIDAS_SECONDARY_BUS = 1 MidasBusId for secondary PCI-X bus
• MIDAS_TERTIARY_BUS = 2 MidasBusId for tertiary PCI-X bus
• MIDAS_QUATERNARY_BUS = 3 MidasBusId for quaternary PCI bus
• MIDAS_MEZZ500_BUS = 4 MidasBusId for MEZZ500 PCI bus

The MidasBusId is useful for identifying a PCI device (typically a PMC card) by its physical bus
location. This need typically arises in applications where multiple PMC slots carry the same type of
PMC card, and the user needs to associate each PMC card with different roles in the system. The
function MidasPmcSlotInfoGet() is used to retrieve the physical parameter associated with a
given PMC slot.

When there is only one PMC card of a certain type, the standard VxWorks library function
pciFindDevice is preferred in order to retrieve PCI bus and device numbers for the PMC card.

Note that the MidasBusId is not necessarily the same value as the actual secondary bus numbers
stored in the P2P bus number registers. The actual secondary bus number for a particular PCI
device is referred to in the PCI Specification[3] documentation, the BSP itself, and this
documentation as the “PCI bus number”. When PCI auto-configuration is enabled, PCI bus
numbers are automatically determined by the PCI auto-configurator. The PCI bus numbers assigned
by the PCI auto-configurator may change from one bootup to the next depending on the hardware
and options being used. Factors that affect the PCI bus numbers chosen by the autoconfigurator
include the number and configuration of all P2P bridges present in the system, whether the
MEZZ500 is present, and whether the PXBs are being used. The functions
MidasBusNoToPciBusNo() and MidasBusNoFromPciBusNo() are available for translating
between the MidasBusId parameter and PCI bus number.
21Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation
PMC slot

The M5xxx board can accommodate up to five (5) PCI Mezzanine Card (PMC) modules. Typically
these PMCs provide I/O, memory, or even DSP functions. Typically, in order to access the registers
of a PMC in PCI Configuration Space, the programmer has to provide information such as the
device number, and MidasBusId which can be obtained with the function
MidasPmcSlotInfoGet.

The function MidasPmcSlotTblShow() is useful for reviewing these attributes.

Following is a list of functions documented in this chapter: MidasBusIdFromPciBusNo,
MidasBusIdToPciBusNo, MidasGetPmcBridgeBusNumbers, MidasPciSlotInfoGet,
MidasPmcSlotInfoGet sysBusToLocalAdrs, and sysLocalToBusAdrs.

MidasBusIdFromPciBusNo
Synopsis int MidasBusIdFromPciBusNo (

UINT8 *MidasBusId,

UINT8 PciBusNo

)

MidasBusId - pointer to the returned Midas Bus ID. Returned value is
either:
MIDAS_PRIMARY_BUS (0)
MIDAS_SECONDARY_BUS (1)
MIDAS_TERTIARY_BUS (2)
MIDAS_QUATERNARY_BUS (3)
or MIDAS_MEZZ500_BUS (4).

PciBusNo - The PCI bus number.

Description This function translates a PCI bus number to its corresponding Midas bus ID. The MIDAS bus
ID is a software reference to one of the possible PCI-X/PCI buses on the M5xxx board. The PCI
bus number is the actual PCI bus number stored in the bus number registers of the P2P bridges
on a particular segment.

If any PMC cards (or any other interconnect bridge) implements a PCI bus which is physically
off board the M5xxx, the corresponding PCI bus number cannot be mapped to a MidasBusId
because only onboard busses have been assigned a MidasBusId value.
MidasBusIdFromPciBusNo() will return ERROR for off board PCI bus numbers.

Returns OK, or ERROR.
22 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Bus Operations
Example UINT8 MidasBusId;

UINT8 PciBusNo;

for (PciBusNo=0;PciBusNo<=255;PciBusNo++)

{

if (MidasBusIdFromPciBusNo (&MidasBusId, PciBusNo) != ERROR)

{

switch (MidasBusId)

{

case MIDAS_PRIMARY_BUS:

printf("Midas primary PCI bus corresponds to PCI bus

number:%x\n", PciBusNo);

break;

case MIDAS_SECONDARY_BUS:

printf("Midas secondary PCI bus corresponds to PCI bus

number:%x\n", PciBusNo);

break;

case MIDAS_TERTIARY_BUS:

printf("Midas tertiary PCI bus corresponds to PCI bus

number:%x\n", PciBusNo);

break;

case MIDAS_QUATERNARY_BUS:

printf("Midas quaternary PCI bus corresponds to PCI bus

number:%x\n", PciBusNo);

break;

case MIDAS_MEZZ500_BUS:

printf("Midas MEZZ500 PCI bus corresponds to PCI bus

number:%x\n", PciBusNo);

}

}

}

MidasBusIdFromPciBusNo (Continued)
23Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation

s

,

,
MidasBusIdToPciBusNo
Synopsis int MidasBusIdToPciBusNo (

UINT8 MidasBusId,

UINT8 *PciBusNo

)MidasBusId - The Midas Bus ID. Must be one of
MIDAS_PRIMARY_BUS (0)
MIDAS_SECONDARY_BUS (1)
MIDAS_TERTIARY_BUS (2)
MIDAS_QUATERNARY_BUS (3)
MIDAS_MEZZ500_BUS (4).

PciBusNo - pointer to a UINT8 that holds the returned PCI bus number.

Description This function translates a Midas bus ID to its corresponding PCI bus number. The MIDAS bus ID is a
software reference to one of the buses on the M5xxx board. The PCI bus number is the actual PCI bu
number stored in the bus number registers of the P2P bridges on a particular segment.

Returns OK, or ERROR.

Example UINT8 PciBusNo;

if (MidasBusIdToPciBusNo (MIDAS_PRIMARY_BUS, &PciBusNo) != ERROR)

 printf(Midas primary PCI bus corresponds to PCI bus number:%x\n",
PciBusNo);

if (MidasBusIdToPciBusNo (MIDAS_SECONDARY_BUS, &PciBusNo) != ERROR)

 printf(Midas secondary PCI bus corresponds to PCI bus number:%x\n"
PciBusNo);

if (MidasBusIdToPciBusNo (MIDAS_TERTIARY_BUS, &PciBusNo) != ERROR)

 printf(Midas tertiary PCI bus corresponds to PCI bus number:%x\n",
PciBusNo);

if (MidasBusIdToPciBusNo (MIDAS_QUATERNARY_BUS, &PciBusNo) != ERROR)

 printf(Midas quaternary PCI bus corresponds to PCI bus number:%x\n"
PciBusNo);

if (MidasBusIdToPciBusNo (MIDAS_MEZZ500_BUS, &PciBusNo) != ERROR)

printf(Midas MEZZ500 PCI bus corresponds to PCI bus number:%x\n",
PciBusNo);
24 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Bus Operations
MidasGetPmcBridgeBusNumbers
Synopsis int MidasGetPmcBridgeBusNumbers (

UINT8 PmcSlotNo,

UINT8 *primary,

UINT8 *secondary,

UINT8 *subordinate

)

PmcSlotNo - The PMC slot number. Must be one of 1,2,3,4, or 5.

primary - pointer to the returned value of the primary PCI bus number associated with a P2P bridge mounted in
a PMC slot

secondary - pointer to the returned value of the secondary PCI bus number associated with a P2P bridge
mounted in a PMC slot

subordinate - pointer to the returned value of the subordinate PCI bus number associated with a P2P bridge
mounted in a PMC slot

Description This function can be used to determine whether a given PMC has a P2P bridge mounted on it, and if
so, which PCI bus number(s) has been allocated for it. If a P2P bridge is present on a PMC slot, the
function returns OK. The primary, secondary, and subordinate PCI bus numbers associated with the
P2P bridge are returned through parameters. If no P2P bridge is found in the given PMC slot, the
function returns ERROR. The meaning of these PCI bus numbers are fully described in the PCI
specification[3]. Basically, the primary PCI bus number is the bus number for the side of the bridge
closest to the 440. The secondary PCI bus number is the bus number for the side of the bridge furthest
from the 440. The subordinate PCI bus number is the highest numbered bus that exists behind the
bridge.

Returns OK, or ERROR.

Example UINT8 primary, secondary, subordinate;

INT8 i;

for (i=1;i<=5;i++)

if (MidasGetPmcBridgeBusNumbers(i, &primary, &secondary, &subordinate == OK)

 printf("PMC with P2P bridge found in PMC #%d, primary: %d,
secondary: %d, subordinate %d\n", i, primary, secondary, subordinate);
25Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation
MidasPmcSlotInfoGet
Synopsis int MidasPmcSlotInfoGet (

int iPmcSlotNo,
MIDAS_PCI_SLOT_INFO *pMidasPciSlot
)

iPmcSlotNo - The PMC slot number. Must be one of 1,2,3,4, or 5.

MidasPciSlot - pointer to structure defined as follows:

struct MIDAS_PCI_SLOT_INFO {
char Name [16];
UINT8 PciDeviceNo;
UINT8 MidasBusId;
UINT8 PciIntLine [PCI_INT_LINES];
};

Description This function can be used to get information such as the PCI device number, the MIDAS bus ID of a
particular PMC slot, the name of the device, or the PCI interrupt line(s) associated with the slot. In
combination with other PCI-related functions, this information can be used to read/write the
configuration registers of the device. Note that when the PMC contains a P2P bridge, this function
returns the PCI device number for the P2P bridge. The PCI device numbers for any devices behind
the PMC's bridge are set by the PMC itself.

Returns OK, or ERROR.

Example struct MIDAS_PCI_SLOT_INFO slot_info;

if (MidasPmcSlotInfoGet (1, &slot_info) == ERROR)

 return ERROR;

printf ("For the PMC in slot 1: \n");

printf ("The device name is: %s \n", slot_info.Name);

printf ("The device number is: %d \n", slot_info.PciDeviceNo);

switch (slot_info.MidasBusId)

{

case PRIMARY_PCI_BUS:printf("PRIMARY PCI bus");break;

case SECONDARY_PCI_BUS:printf("SECONDARY PCI bus");break;

case TERTIARY_PCI_BUS:printf("TERTIARY PCI bus");break;

case QUATERNARY_PCI_BUS:printf("QUATERNARY PCI bus");break;

case MEZZ500_PCI_BUS:printf("MEZZ500 PCI bus");break;

default:printf("Unknown PCI bus");break;

}

26 M5000 Series: BSP User Guide Issued June 20, 2007

PCI Bus Operations

S
MidasPciSlotInfoGet
Synopsis int MidasPciSlotInfoGet (

int iPciSlotTblIdx,

MIDAS_PCI_SLOT_INFO *pMidasPciSlot

)

iPciSlotTblIdx - The PCI slot table index. Must be one of the MPSLOT_<X>
constants defined in MidasPciLib.h.

PMidasPciSlot - pointer to structure defined as follows:

struct MIDAS_PCI_SLOT_INFO {

char Name [16];

UINT8 PciDeviceNo;

UINT8 MidasBusId;

UINT8 PciIntLine [PCI_INT_LINES];

};

Description This function can be used to get information such as the PCI device number (see PCI spec.), the MIDA
bus ID, the name of the device, or the PCI interrupt line(s) associated with the PCI device. This
information can then be used to read/write the configuration registers of the device.

Returns OK, or ERROR.

Example struct MIDAS_PCI_SLOT_INFO slot_info;

if (MidasPciSlotInfoGet (MPSLOT_UNIVERSE, &slot_info) == ERROR)

 return ERROR;

printf ("Universe PCI device info: \n");

printf ("The device name is: %s \n", slot_info.Name);

printf ("The device number is: %d \n", slot_info.PciDeviceNo);
27Issued June 20, 2007 M5000 Series: BSP User Guide

PCI Bus Operation
3.6 PCI Optimizations

During PCI autoconfiguration the M5000 BSP sets the Latency Timer register of all PCI devices
(including any PMCs that may have mounted) to the maximum allowed value FF; which
corresponds to 255 PCI cycles. The Latency Timer register specifies, in units of PCI bus clocks, the
minimum guaranteed number of clocks allocated to the PCI master, after which it must surrender
tenure as soon as possible after its GNT# is deasserted.

The reason for maximizing the latency timers in the M5000 BSP is because many MIDAS
applications require a maximum throughput performance. If your application must minimize the
latency of each PCI transaction, please refer to section 3.5.4 Arbitration Latency in the PCI Local
Bus Specification revision 2.2, 2.3 or 3.0.

Note – Some PCI devices limit the maximum value of their Latency Timer to a value that is
optimized for their maximum burst size. This is allowed according to the PCI Local Bus
Specification and should not be mistaken as an error in the M5000 BSP.
28 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 4 I2O Messaging Unit Support
sued Ju
 29M5000 Series: BSP User Guidene 20, 2007

I2O Messaging Unit Support
4.1 Overview

The M5xxx BSP uses the PPC440GX I2O Messaging Unit (IMU) to implement mailbox interrupts.
The IMU allows external host processors and the PPC440GX to communicate via message passing
and interrupt notification (see Chapter 21 of the PPC440GX User's Manual[1] for a highly detailed
description of the IMU). On theM5xxx, the BSP makes the IMU visible on PCI, VME, and
RACEway so that it is possible for another processor to communicate/interrupt the PPC440GX via
those buses.

The IMU registers are accessible in local memory space at 0xF1FF0000. The IMU registers are
located in PCI space at 0x00000000. . By default, this region is mapped to VME A32 (AM code
0x0d) at a location dependent on CPU number (see section on VME bus for more information). An
external VME master can pass a message and interrupt the PPC440GX by writing to the appropriate
VME A32 address where the Inbound Message Register 0 is mapped (see the file mdrv/include/
mu.h for the address/byte offset of all the IMU's registers.) The IMU has three messaging
mechanisms.

• 4 Message Registers: (two inbound and two outbound); writing a 32-bit value to one of the two
Inbound Message Registers interrupts the PPC440GX.

• 2 Doorbell Registers.
• 2 Circular Queues.

Note – The M5xxx BSP only supports the Message Register mechanism. Doorbell Registers and
Circular Queues are not currently supported by the BSP.
30 M5000 Series: BSP User Guide Issued June 20, 2007

Message Register Support
4.2 Message Register Support

This section documents the following functions: muMessageConnect, muIsMessageConnected,
muMessageDisconnect and muMessageEnable. These functions let the user connect ISRs to the
IMU, in particular the Inbound Message Registers. An additional function supported by the BSP
related to the message unit is sysMailboxConnect, which internally calls muMessageConnect.

muMessageConnect
Synopsis int muMessageConnect (

int regNum,

int (*isr) (int),

int isrArg)

regNum - Inbound Message Register number, 0 or 1.

int (*isr) (int) - routine called at each message interrupt.

 isrArg - one argument to be passed to the ISR.

Description This function connects an ISR to the Inbound Message register specified by the regNum argument.

Returns OK, or ERROR.

Example int isr (int arg) {

logMsg ("This is my ISR, arg = %d\n", arg);

return (ERROR);

}

int isrInstall () {

int arg = 4;

/* Connect ISR to the Inbound Message Register 0 */

if (muMessageConnect (0, isr, arg) == ERROR)

return (ERROR);

}

31Issued June 20, 2007 M5000 Series: BSP User Guide

I2O Messaging Unit Support

nt.
muIsMessageConnected
Synopsis int muIsMessageConnected (

int regNum)

regNum - Inbound Message Register 0 or 1.

Description Test to see if there is an ISR connected to the Inbound Message Register specified by the regNum
argument.

Returns TRUE if there is an installed ISR, or FALSE.

Example If (muIsMessageConnected (1))

printf ("There is an ISR installed for Inbound Message Register 1\n");

muMessageDisconnect
Synopsis int muMessageDisconnect (

int regNum)

regNum - which Inbound Message Register, 0 or 1.

Description This function disconnects an ISR from the Inbound Message Register specified by the regNum argume

Returns OK, or ERROR.

Example if (muMessageDisconnect (1) == ERROR)

return (ERROR);

muMessageEnable
Synopsis int muMessageEnable (

int regNum)

regNum - which Inbound Message Register, 0 or 1.

Description This function enables the message interrupt.

Returns OK, or ERROR.

Example if (muMessageEnable (1) == ERROR)

printf (“Message Register 1 was successfully enabled. \n”);
32 M5000 Series: BSP User Guide Issued June 20, 2007

Message Register Support
33Issued June 20, 2007 M5000 Series: BSP User Guide

I2O Messaging Unit Support
34 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 5 VME Bus Operation
sued Ju
 49M5000 Series: BSP User Guidene 20, 2007

VME Bus Operation
5.1 VME Master & Slave Access Configuration

Overview

This chapter defines terminology, and configuration macros that together provide a guideline for
how VME master/slave windows can be configured in the M5xxx BSP. The standard frame of
reference shall be the perceived view by the user and the local CPU (i.e. the PPC440GX). A master
transaction is one where the M5xxx board takes control of the VME bus and initiates a VME
transaction. A slave transaction is one where the M5xxx board responds as a VME bus slave device
to a transaction initiated by some other board acting as VME bus master.

On the M5xxx, the VME interface is controlled with the Tundra Universe IID chip (hereafter called
the Universe). The Universe databook[5] describes all the registers in the Universe and is a very
useful resource to have handy when working with the Universe. In the terminology of the Universe,
VME master windows are called "PCI slaves". Sometimes VME slaves are referred to as PCI
masters. In other words, "VME slaves" are the same as "PCI masters" and "PCI slaves" are the
same as “VME masters".

The Universe supports a maximum of 8 PCI slave images and 8 VME slave images. An "image" in
Universe terminology is essentially just a "window" in address space through which one bus can
access the other. There are functions available in the BSP to configure both PCI and VME slave
images, and all of these functions are reviewed in this section. These functions are
uniPciSlaveImageSet(), uniVmeSlaveImageSet(), and uniVmeSlaveImageSetup(). One
useful function for reviewing Universe slave images is uniImageShow(). This function provides
information about all of the currently defined Universe slave images (both PCI and VME) and their
attributes. Other useful functions are sysBusToLocalAdrs() and sysLocalToBusAdrs() which
are documented in the PCI section above.

By default, the PPC440GX BSP uses 3 PCI slave images and 1 VME slave image. The sections
below review the default slave image configurations. Using parameters in the vmbsp.ini file, one
additional PCI slave image and one additional VME slave image may be defined. Please see the
section of the manual on the vmbsp.ini file for more details.

Note – The VME slave bases of the M5xxx board are set in software (see below), not by hardware
jumpers. To change the bases from the default values, edit the VME Master/Slave Access
Window Macros in sysVme.h.
50 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
32-bit (virtual) Address
Map (by bsp)

C000 0000

FFFF FFFF

Outbound VMEbus
A32 Address Map

PCI Memory outbound
window with prefetch

Not Used

0 1000 0000

0 0000 0000

FFFF FFFF
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

PLD

Flash Memory

SRAM

I20

Internal CPU Peripherals

FE00 0000

FD00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F500 0000

F300 0000

F200 0000

F100 0000

F000 0000

local PPC440 SDRAM

1 0000 0000

0 0000 0000

PCI Memory outbound
window without prefetch

VmeA32MasterPciBase
51Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
TABLE 5-1. M5xxx Default Universe VME and PCI Slave Images

H
ow

 to
 d

is
ab

le
Se

t s
iz

e
m

ac
ro

 to
 0

Se
t s

iz
e

m
ac

ro
 to

 0

Se
t s

iz
e

m
ac

ro
 to

 0

D
is

ab
le

d
by

 d
ef

au
lt;

A

dd
 V

m
eA

32
M

as
te

r2
B

as
e

to
 v

xb
sp

.in
i t

o
en

ab
le

In
 c

on
fig

.h
, #

de
fin

e
V

M
EA

32
_S

LA
V

E_
D

IS
A

B
LE

O

R
 A

dd

V
m

eA
32

Sl
av

eD
is

ab
le

 in
 v

xb
sp

.in
i

D
ef

au
lt

Si
ze

V
M

E_
A

16
_M

A
ST

ER
_S

IZ
E

(6
4

K
iB

)

V
M

E_
A

24
_M

A
ST

ER
_S

IZ
E

(1
6

M
iB

)

V
M

E_
A

32
_M

A
ST

ER
_S

IZ
E

(2

56
 M

iB
)

V
M

E_
A

32
_S

EC
_M

A
ST

ER
_S

IZ
E

(6
4

K
iB

)

V
M

E_
V

M
EA

32
_T

O
_L

O
C

_S
IZ

E
If

 C
PU

=0
, S

iz
e

is
 1

28
 M

iB
.

El
se

 S
iz

e
is

 0
x1

00
00

PC
I B

as
e

G
lo

ba
l v

ar
ia

bl
e:

V
m
e
A
1
6
M
a
s
t
e
r
P
c
i
B
a
s
e

G
lo

ba
l v

ar
ia

bl
e:

V
m
e
A
2
4
M
a
s
t
e
r
P
c
i
B
a
s
e

G
lo

ba
l v

ar
ia

bl
e:

V
m
e
A
3
2
M
a
s
t
e
r
P
c
i
B
a
s
e

G
lo

ba
l v

ar
ia

bl
e:

V
m
e
A
3
2
M
a
s
t
e
r
2
P
c
i
B
a
s
e

0
x
0
0
0
0
0
0
0
0

(p

oi
nt

s t
o

PP
C

44
0G

X
 I2

0)

V
M

E
 B

as
e

M
ID

A
S_

LO
C

_T
O

_V
M

E_
A

16
_V

M
E_

B
A

SE

(0
x0

00
00

00
0)

M
ID

A
S_

LO
C

_T
O

_V
M

E_
A

24
_V

M
E_

B
A

SE

(0
x0

00
00

00
0)

M
ID

A
S_

LO
C

_T
O

_V
M

E_
A

32
_V

M
E_

B
A

SE

(0
x0

00
00

00
0)

V
m
e
A
3
2
M
a
s
t
e
r
2
B
a
s
e

 in
 v

xb
sp

.in
i

V
m
e
A
3
2
S
l
a
v
e
B
a
s
e

 in
 v

xb
sp

.in
i O

R

If
 C

PU
=0

, B
as

e
is

 0
 E

ls
e

B
as

e
is

0x

08
00

00
00

 +
 (s

ys
Pr

oc
N

um
 *

 0
x1

00
00

)

D
es

cr
ip

tio
n

A
16

PC

I s
la

ve

A
24

PC

I s
la

ve

A
32

PC

I s
la

ve

Se
c.

 A
32

PC

I s
la

ve

A
32

V

M
E

sl
av

e
52 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
FIGURE 5-1. Default Usage of Outbound VME A32 Address Space
53Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
FIGURE 5-2. Default Usage of Outbound VME A24 Address Space

Outbound VMEbus
A24 Address Map

FF FFFF

0 0000 0000

32-bit (virtual) Address
Map (by bsp)

C000 0000

PCI Memory outbound
window with prefetch

FFFF FFFF
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

PLD

Flash Memory

SRAM

I20

Internal CPU Peripherals

FE00 0000

FD00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F500 0000

F300 0000

F200 0000

F100 0000

F000 0000

local PPC440 SDRAM

1 0000 0000

0 0000 0000

PCI Memory outbound
window without prefetch

(POM1)VmeA32MasterPciBase
54 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
FIGURE 5-3. Default Usage of Outbound VME A16 Address Space

Outbound VMEbus
A16 Address Map

FFFF

0000

32-bit (virtual) Address
Map (by bsp)

C000 0000

PCI Memory outbound
window with prefetch (POM0)

FFFF FFFF
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

PLD

Flash Memory

SRAM

I20

Internal CPU Peripherals

FE00 0000

FD00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F500 0000

F300 0000

F200 0000

F100 0000

F000 0000

local PPC440 SDRAM

1 0000 0000

0 0000 0000

PCI Memory outbound
window without prefetch

(POM1)VmeA32MasterPciBase
55Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
FIGURE 5-4. Default Usage of Inbound VME A32 Address Space

32-bit (virtual) Address
Map (by bsp)

C000 0000

FFFF FFFF

Inbound VMEbus
A32 Address Map

PCI Memory outbound
window with prefetch

Not Used

Uni VME slave
image: 5

0 1000 0000

0 0000 0000

FFFF FFFF
Flash Memory

PCI-X bridge

Not Mapped, unused

32-bit PCI I/O outbound

Not mapped, unused

16-bit PCI I/O outbound

PLD

Flash Memory

SRAM

I20

Internal CPU Peripherals

FE00 0000

FD00 0000

FC00 0000

F880 0000

F801 0000

F800 0000

F500 0000

F300 0000

F200 0000

F100 0000

F000 0000

local PPC440 SDRAM

1 0000 0000

0 0000 0000

PCI Memory outbound
window without prefetch

PPC440GX I20
0 0000 0400
56 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
VME Address Modifier (AM) Codes

VME Address Modifier (AM) codes are a standard part of the VMEbus Specification[6]. In this
section, the VME AM codes will be reviewed, along with an indication of whether each is
supported by the address translation functions; sysBusToLocalAdrs() and
sysLocalToBusAdrs in the BSP. The Universe driver can be setup to support all AM codes
except A64 codes.

TABLE 5-2. M5xxx Supported VME AM Codes

HEX Binary Description Supported

0x00 00 0000 A64 64-bit block transfer Yes

0x01 00 0001 A64 32-bit single transfer Yes

0x02 00 0010 Reserved No

0x03 00 0011 A64 32-bit block transfer Yes

0x04 00 0100 A64 LOCK command No

0x05 00 0101 A32 LOCK command No

0x06 00 0110 Reserved No

0x07 00 0111 Reserved No

0x08 00 1000 A32 non-priv. 64-bit block transfer Yes

0x09 00 1001 A32 non-priv. 32-bit data access Yes

0x0a 00 1010 A32 non-priv. 32-bit program access Yes

0x0b 00 1011 A32 non-priv. 32-bit block transfer Yes

0x0c 00 1100 A32 supervisory 64-bit block transfer Yes

0x0d 00 1101 A32 supervisory 32-bit data access Yes

0x0e 00 1110 A32 supervisory 32-bit program access Yes

0x0f 00 1111 A32 supervisory 32-bit block transfer Yes

0x10 01 0000 User-defined No

0x11 01 0001 User-defined No

0x12 01 0010 User-defined No

0x13 01 0011 User-defined No

0x14 01 0100 User-defined No

0x15 01 0101 User-defined No

0x16 01 0110 User-defined No
57Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
0x17 01 0111 User-defined No

0x18 01 1000 User-defined No

0x19 01 1001 User-defined No

0x1a 01 1010 User-defined No

0x1b 01 1011 User-defined No

0x1c 01 1100 User-defined No

0x1d 01 1101 User-defined No

0x1e 01 1110 User-defined No

0x1f 01 1111 User-defined No

0x20 10 0000 Reserved No

0x21 10 0001 Reserved No

0x22 10 0010 Reserved No

0x23 10 0011 Reserved No

0x24 10 0100 Reserved No

0x25 10 0101 Reserved No

0x26 10 0110 Reserved No

0x27 10 0111 Reserved No

0x28 10 1000 Reserved No

0x29 10 1001 A16 non-priv. 32-bit access Yes

0x2a 10 1010 Reserved No

0x2b 10 1011 Reserved No

0x2c 10 1100 A16 LOCK command No

0x2d 10 1101 A16 supervisory 32-bit access Yes

0x2e 10 1110 Reserved No

0x2f 10 1111 Config. ROM/Control/Status Register No

0x30 11 0000 Reserved No

0x31 11 0001 Reserved No

0x32 11 0010 A24 LOCK command No

TABLE 5-2. M5xxx Supported VME AM Codes (Continued)
58 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
VME Master (PCI Slave) Access Windows

A VME master access window is a window from the M5xxx onto the VME bus. A master access
window enables the M5xxx board to become a VME bus master. The PPC440GX access to a local
address within the window generates a VME bus transaction. This is what referred to as address
translation mapping. The M5xxx BSP defines three VME master access windows (VME A32, A24,
and A16), and optionally one additional A32 window (referred to as the secondary VME master
access window. Each window is defined by a set of three macros: the PCI base, VME bus base, and
window size. See Table 4 for a summary of the default windows and their sizes.

• The following macro defines a window onto VME A16 address space from the PPC440GX:
1. PCI base address of the VME A16 window is configured automatically. The base address

is stored in the global variable VmeA16MasterPciBase
2. VME_A16_MASTER_BASE - VME A16 base of window. M5xxx BSP default is 0x0.
3. VME_A16_MASTER_SIZE - size of the window into A16 space. M5xxx BSP default

value is 64KB.
• The following macro defines a window onto VME A24 address space from the PPC440GX:

1. PCI base address of the VME A24 window is configured automatically. The base address
is stored in the global variable VmeA24MasterPciBase

2. VME_A24_MASTER_BASE - VME A24 base of window. M5xxx BSP default is 0x0.
3. VME_A24_MASTER_SIZE - size of the window into A24 space. M5xxx BSP default

value is 16MB.
• The following macros define a window onto VME A32 address space from the PPC440GX:

0x33 11 0011 Reserved No

0x34 11 0100 A40 access No

0x35 11 0101 A40 LOCK command No

0x36 11 0110 Reserved No

0x37 11 0111 A40 block transfer No

0x38 11 1000 A24 non-priv. 64-bit block transfer Yes

0x39 11 1001 A24 non-priv. 32-bit data transfer Yes

0x3a 11 1010 A24 non-priv. 32-bit program access Yes

0x3b 11 1011 A24 non-priv. 32-bit block Yes

0x3c 11 1100 A24 supervisory 64-bit block transfer Yes

0x3d 11 1101 A24 supervisory 32-bit data transfer Yes

0x3e 11 1110 A24 supervisory 32-bit program access Yes

0x3f 11 1111 A24 supervisory 32-bit block Yes

TABLE 5-2. M5xxx Supported VME AM Codes (Continued)
59Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
1. PCI base address of the VME A32 window is configured automatically. The base address
is stored in the global variable VmeA32MasterPciBase.

2. VME_A32_MASTER_BASE - VME A32 base of window. M5xxx BSP default is 0x0.
3. VME_A32_MASTER_SIZE - size of the window into A32 space. M5xxx BSP default

value is 256MB.
• The following macros define an optional window (disabled by default) onto VME A32 address

space from the PPC440GX:
1. PCI base address of the optional VME A32 window is configured automatically. The

base address is stored in the global variable VmeA32Master2PciBase
2. VME_A32_MASTER_2_BASE - VME A32 base of the optional window. M5xxx BSP

default is 0x0.
3. VME_A32_MASTER_2_SIZE - size of the optional window. M5xxx BSP default is

64KB.

The PCI addresses (and hence the local addresses) corresponding to the VME windows are
determined as part of the PCI autoconfiguration process. In order to access the VME windows
from local address space, the local address must be determined. The function sysBusToLocalAdrs
can be used to translate a VME address to a local address. The uniImageShow() function can also
be used to view the configuration of Universe windows.

VME Slave (PCI Master) Access Windows

A VME slave access window is a window on the VME bus that allows other VME bus masters to
access the M5xxx board as a VME bus slave device. A VME slave window usually makes main
memory (RAM) available. This is frequently called Dual Porting Memory. Any VME bus access
that addresses the VME slave window generates an access into the PPC440 local bus. Each
window is defined by a set of three macros: the local base, VME bus base, and window size.
Please see Table 4 for the default VME windows and sizes defined by the BSP.

• The following macros define a window from VME A16 address space into M5xxx memory.

Note – The M5xxx board uses A16 slave window to support BusNet. These macros are not
defined by default if #define INCLUDE_BUSNET is not in config.h

1. VME_A16_SLV_SIZE
window size in A16 space. BSP default value is 4KB.

2. VME_A16_SLV_BUS
VME (A16) bus base. BSP default value is 0x0.

3. VME_A16_SLV_LOCAL
Not applicable.

• The following macros define a window from VME A32 address space into M5xxx memory:
1. VME_A32_SLV_SIZE

size of window in A32 space. Window size depends on whether the entire DRAM is
dual ported. By default only the sm master (processor number 0) dual ports its DRAM.
For an M5xxx board which is not sm master, only 64KB is made visible (not the entire
DRAM) in order to limit VME A32 bus space consumed. The user can easily dual port
the entire DRAM by enabling the #define MIDAS_MAP_DRAM_TO_VME statement
in sysVme.h.
60 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration
2. VME_A32_SLV_BUS
VME A32 base of window. Each M5xxx board is mapped to a unique
VME_A32_SLV_BUS using VME_A32_SLV_SIZE and the processor number.

3. VME_A32_SLV_LOCAL
Local bus base of window. Do not change this value!
61Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation

E
Functions

uniPciSlaveImageSet
Synopsis STATUS uniPciSlaveImageSet

 (

 int image,

 UINT32 pciBase,

 UINT32 vmeBase,

 UINT32 size,

 UINT32 pciAddrSpace,

 UINT32 vmeAmCode,

 UINT32 vmeDataWidth,

 BOOL postedWrites

)

image - the Universe PCI slave image number, from 0 - 7

pciBase - the PCI base address of the window

vmeBase - the VME base address of the window

size - the size of the window in bytes

pciAddrSpace - the PCI address space. The value can be either UNI_PCI_MEMORY_SPACE (0),
UNI_PCI_IO_SPACE (1), or UNI_PCI_CFG_SPACE (2).

vmeAmCode - the VME AM code; specifying a "block" type AM code also implies that the similar AM code
corresponding to "single" cycles will also be supported by the window.

vmeDataWidth - the data width supported by the window. The value can be either
UNI_VMEBUS_DATAWIDTH_8 (0), UNI_VMEBUS_DATAWIDTH_16 (1),
UNI_VMEBUS_DATAWIDTH_32 (2), or UNI_VMEBUS_DATAWIDTH_64 (3)

postedWrites - whether the window allows posted (cached) writes. The value should be either TRUE (1) or
FALSE (0).

Description This function is used to configure a Universe PCI slave image. This allows the M5xxx to act as a VM
master and read/write to other VMEbus devices configured as VME slaves.
62 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration

s
Returns OK, or ERROR.

Example /* This example sets up a PCI slave image at PCI address 0xb0000000 and VME
address 0x50000000. The VME address space is A24, the size of the window is
0x400000 (4 MB). The AM code is 0x3c (A24 supervisory 64-bit block transfer).
Using this AM code implies that AM code 0x3d (A24 supervisory data access) i
also supported. Also note that even though the AM code specifies "64-bit",
only 32-bit data width will be supported because UNI_VMEBUS_DATAWIDTH_32 is
specified. */

uniPciSlaveImageSet(

 7,

 0xb0000000,

 0x50000000,

 0x400000,

 UNI_PCI_MEMORY_SPACE,

 0x3c,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);

uniPciSlaveImageSet (Continued)
63Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation

e

ta

to
uniVmeSlaveImageSet
Synopsis STATUS uniVmeSlaveImageSet

 (

 int image,

 UINT32 vmeBase,

 UINT32 pciBase,

 UINT32 size,

 UINT32 pciAddrSpace,

 UINT32 vmeAmCode,

 BOOL postedWrites,

 BOOL prefetchReads,

 BOOL pci64,

 BOOL pciLockOnRMWs

)

image - the Universe VME slave image number, from 0 - 7

vmeBase - the VME base address of the window

pciBase - the PCI base address of the window

size - the size of the window in bytes

pciAddrSpace - the PCI address space. The value can be either UNI_PCI_MEMORY_SPACE (0),
UNI_PCI_IO_SPACE (1), or UNI_PCI_CFG_SPACE (2).

vmeAmCode - the VME AM code; specifying a "block" type AM code also implies that the similar AM code
corresponding to "single" cycles will also be supported by the window.

postedWrites - specifies whether the window will support posted write operations. With posted write, write
operations may return before the data has been written to its final destination on the PCI bus.

prefetchReads - specifies whether the window will support prefetch read operations. With prefetch read, read
operations may actually read more than the amount of data requested so that surrounding data may more quickly b
returned on the next operation.

pci64 - specifies whether the window will support 64-bit operation. If this is enabled, the window supports a da
width of up to 64-bits.

postedWrites - whether the window allows posted (cached) writes. The value should be either TRUE (1) or
FALSE (0).

pciLockOnRMWs - tells whether the window will use PCI Lock signal on Read-Modiy-Write cycles from VME
PCI bus.
64 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration

E

 or
r

rs

,

Description This function is used to configure a Universe VME slave image. This allows the M5xxx to act as a VM
slave and support reading/writing to the local PCI bus from other VMEbus devices configured as VME
masters. Note that the AM code parameter specifies the size of VMEbus address space (i.e., A16, A24,
A32), whether the window will support either "Data" or "Program" transactions (not both), and whethe
the window will support either "Supervisor" or "Non-priviledged" operation (not both). The Universe
VME slave image itself can simultaneously support both "Data" and "Program" transactions and both
"Supervisor" and "Non-priviledged" operation. In order to open a window with support for such
combinations, use the uniVmeSlaveImageSetup() function instead. Also note that AM code does not
specify whether VME slave images always support single and/or block operation. The Universe VME
slave images always support both single and block operation (the VME master controls whether transfe
are single cycle or block transfers.

Returns OK, or ERROR.

Example /* This example sets up a VME slave image at PCI address 0xb0000000 and VME
address 0x50000000. The AM code is 0x3d (therefore, VME address space is A24
and 32-bit "Supervisory" "Data" transactions are supported), the size of the
window is 0x400000 (4 MB). */

uniVmeSlaveImageSet(

 7,

 0x50000000,

 0xb0000000,

 0x400000,

 UNI_PCI_MEMORY_SPACE,

 0x3d,

 TRUE,

 TRUE,

 TRUE,

 TRUE);

uniVmeSlaveImageSet (Continued)
65Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation

be

-

"
uniVmeSlaveImageSetup
Synopsis STATUS uniVmeSlaveImageSetup

 (

 int image,

 UINT32 vmeBase,

 UINT32 pciBase,

 UINT32 size,

 UINT32 pciAddrSpace,

 BOOL amCodeAdrsSpace,

 BOOL amCodeUser,

 BOOL amCodeSuper,

 BOOL amCodeData,

 BOOL amCodeProgram,

 BOOL postedWrites,

 BOOL prefetchReads,

 BOOL pci64

 BOOL pciLockOnRMWs

)

image - the Universe VME slave image number, from 0 - 7
vmeBase - the VME base address of the window
pciBase - the PCI base address of the window
size - the size of the window in bytes

pciAddrSpace - the PCI address space. The value can be either UNI_PCI_MEMORY_SPACE (0),
UNI_PCI_IO_SPACE (1), or UNI_PCI_CFG_SPACE (2).

amCodeAdrsSpace - specifies the VME address portion of the AM codes supported by the window. It should
one of UNI_AMCODE_A16(0), UNI_AMCODE_A24(1), or UNI_AMCODE_A32(2).

amCodeUser - specifies whether the window will respond to VME transactions with AM codes indicating "Non
privilidged" access.

amCodeSuper - specifies whether the window will respond to VME transactions with AM codes indicating
"Supervisory" access.

amCodeData - specifies whether the window will respond to VME transactions with AM codes indicating "Data
access.

amCodeProgram - specifies whether the window will respond to VME transactions with AM codes indicating
"Program" access.
66 M5000 Series: BSP User Guide Issued June 20, 2007

VME Master & Slave Access Configuration

e

a

 to

E

ve

"
Synopsis
(continued)

postedWrites - specifies whether the window will support posted write operations. With posted write, write
operations may return before the data has been written to its final destination on the PCI bus.

prefetchReads - specifies whether the window will support prefetch read operations. With prefetch read, read
operations may actually read more than the amount of data requested so that surrounding data may more quickly b
returned on the next operation.

pci64 - specifies whether the window will support 64-bit operation. If this is enabled, the window supports a dat
width of up to 64-bits.

postedWrites - whether the window allows posted (cached) writes. Either TRUE (1) or FALSE (0).

pciLockOnRMWs - tells whether the window will use PCI Lock signal on Read-Modify-Write cycles from VME
PCI bus.

Description This function is used to configure a Universe VME slave image. This allows the M5xxx to act as a VM
slave and support reading/writing to the local PCI bus from other VMEbus devices configured as VME
masters. The difference between this function and uniVmeSlaveImageSet is that
uniVmeSlaveImageSetup allows the window to simultaneously support multiple AM codes while
uniVmeSlaveImageSet only allows a single AM code to be specified. Note that the Universe VME sla
images always support both single and block operation (the VME master controls whether transfers are
single cycle or block transfers.

Returns OK, or ERROR.

Example /* This example sets up a VME slave image at PCI address 0xb0000000 and VME
address 0x50000000. VME address space is A24, both "Supervisory" and "Non-
priviledged" transactions are supported, as well as both "Data" and "Program
operations. The size of the window is 0x400000 (4 MB). */

uniVmeSlaveImageSetup(

 7,

 0x50000000,

 0xb0000000,

 0x400000,

 UNI_PCI_MEMORY_SPACE,

 UNI_AMCODE_A24,

 TRUE,

 TRUE,

 TRUE,

 TRUE,

 TRUE,

 TRUE,

 TRUE,

 TRUE);

uniVmeSlaveImageSetup (Continued)
67Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation

ful

MW

--
uniImageShow
Synopsis void uniImageShow

(

)

Description This function is used to obtain a summary of the configuration of the Universe windows. It is very use
for determining the current status of VME connectivity. The information reported by this function is
extracted directly from the UCSR in PCI Configuration Space.

Returns Nothing is returned, other than the textual output printed by the function.

Example The following text is typical of the output of uniImageShow:

-> uniImageShow

Universe PCI slave images (VME master windows):

Image Type Local PCI Base VME Base Size VMEAM PWEN VDW

----- ---- -------- -------- -------- -------- ----- ---- ---

0 MEM d2000000 d2000000 00000000 00010000 2d Y 32

1 MEM d0000000 d0000000 00000000 01000000 3d Y 32

2 MEM c0000000 c0000000 00000000 10000000 0d Y 32

Universe VME slave images (PCI master windows):

Image Type Local PCI VME Size VMEAM codes PWEN PREN LD64 LR

----- ---- -------- -------- -------- -------- ----------- ---- ---- ---- --

5 MEM 00000000 00000000 00000000 11000000 09 0a 0d 0e Y Y N N

value = 0 = 0x0
68 M5000 Series: BSP User Guide Issued June 20, 2007

Configuring PCI Slave Images in the Universe
5.2 Configuring PCI Slave Images in the Universe

Procedure

PCI slave images are used whenever the M5xxx needs to access external VME resources. The
Universe supports up to 8 PCI slave images. By default, the M5xxx BSP uses 3 of the 8 PCI slave
images. These PCI slave images support (256 MiB + 16 MiB) in VME A32 space starting at
0x00000000, 16 MiB in VME A24 space starting at 0x000000, and 64 KiB in VME A16 space
starting at 0x0000. A fourth PCI slave image optionally used by the BSP is disabled by default. It
can be enabled by using the VmeA32Master2Base flag in the VmeInterface section of the vxbsp.ini
file. If this parameter is present, the fourth PCI slave image will support 64 KiB in VME A32 space
starting at the value of the VmeA32Master2Base parameter.

Viewing PCI Slave Image Configuration

A convenient way to view how the Universe PCI (and VME) slave images are configured is to use
the uniImageShow function. In the default BSP configuration, the uniImageShow function gives
the following information:

This default configuration covers the VMEbus interface requirements of many applications, but not
all.

Changing PCI Slave Image Configuration

There are several ways to change the PCI slave image configuration to customize to application
requirements.

Option 1

The simplest approach is to modify the constants in the BSP that determine the VME base
addresses, sizes, and AM codes of the default PCI slave images. The BSP can then be recompiled
and reloaded into the M5xxx. This is appropriate when only one or two VME regions are required,
which may be the case when interfacing to one or two external VME resources.

-> uniImageShow

Universe PCI slave images (VME master windows):

Image Type Local PCI Base VME Base Size VMEAM PWEN VDW

----- ---- -------- -------- -------- -------- ----- ---- ---

0 MEM d2000000 d2000000 00000000 00010000 2d Y 32

1 MEM d1000000 d1000000 00000000 01000000 3d Y 32

2 MEM c0000000 c0000000 00000000 11000000 0d Y 32

Universe VME slave images (PCI master windows):

Image Type Local PCI VME Size VMEAM codes PWEN PREN LD64 LRMW

----- ---- -------- -------- -------- -------- ----------- ---- ---- ---- ----

5 MEM 00000000 00000000 00000000 10000000 09 0a 0d 0e Y Y N N
69Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
For example, suppose the M5xxx needs to interface with a VME-based digitizer board that uses 16
MiB of VME A32 space (specifically AM code 0x09) starting at 0x60000000 in VME A32 space.
If there are no other VME interface requirements, the existing A32 window can be modified. This is
done by modifying the code in sysVme.c that sets up the PCI slave image. The original code:

may be modified to:

If the single region is larger than VME_A32_MASTER_SIZE , then the value of
VME_A32_MASTER_SIZE would need to be changed.

Option 2

Another approach to configuring the PCI slave image in this example is to modify the existing
VME slave images in the application prior to usage (instead of modifying the BSP). Because the
default value of VME_A32_MASTER_SIZE is 256 MiB, this approach will only work if the region
size needed is less than or equal to 256 MiB. In the case for the example above, simply call the
following from the application prior to using the PCI slave image:

/* Set Universe window to VME A32 space */

uniPciSlaveImageSet (MIDAS_UNI_A32_WIN_NUM,

 VmeA32MasterPciBase,

 MIDAS_LOC_TO_VME_A32_VME_BASE,

 VME_A32_MASTER_SIZE,

 UNI_PCI_MEMORY_SPACE,

 0x0d,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);

/* Set Universe window to VME A32 space */

uniPciSlaveImageSet(MIDAS_UNI_A32_WIN_NUM,

 VmeA32MasterPciBase,

 0x60000000,

 0x01000000,

 UNI_PCI_MEMORY_SPACE,

 0x09,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);
70 M5000 Series: BSP User Guide Issued June 20, 2007

Configuring PCI Slave Images in the Universe
This second approach has the disadvantage of keeping 240 MiB (256 MiB - 16 MiB) of PCI space
MMU-mapped, reserved, and unused, although this shouldn't be a problem in most applications
since there is usually more than enough PCI memory space available to the PCI autoconfigurator.

Option 3

The most flexible approach to configuring PCI slave images is a little more sophisticated. In this
approach, the total amount of extra space required for all additional VME interface regions is
reserved by the PCI autoconfigurator. Then, the application can use uniPciSlaveImageSet to
reconfigure existing PCI slave images and to configure up to four additional PCI slave images.

This sequence is necessary because the PCI autoconfigurator must consistently configure the three
P2P bridges between the CPU and the Universe chip to handle all of the PCI slave images that will
be used.

For example, suppose the M5xxx needs to interface with four VMEbus digitizer boards with the
following specifications:

Also assume that these four boards are the only VME interfacing requirement for the M5xxx.

The total amount of VME space required to interface to these boards is 1 GiB + 256 MiB. Due to
the large amount of space needed, a default setting in the PCI autoconfigurator must be changed to
make this possible.

/* Set Universe window to VME A32 space */

uniPciSlaveImageSet(MIDAS_UNI_A32_WIN_NUM,

 VmeA32MasterPciBase,

 0x60000000,

 0x01000000,

 UNI_PCI_MEMORY_SPACE,

 0x09,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);

Board VME base Size
AM
code

1 0x18000000 0x20000000 0x0d

2 0x40000000 0x10000000 0x0d

3 0x60000000 0x10000000 0x0d

4 0x80000000 0x10000000 0x0d
71Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
The PCI autoconfigurator reserves all PCI memory space associated with VME spaces from non-
prefetchable memory space. By default, the M5xxx BSP has a maximum of 768 MiB available for
all non-prefetchable PCI resources. This can be increased by decreasing the value of
PCI_MASTER_PREFETCH_POOL_SIZE in config.h. For this example, the constant can be set in
config.h as follows:

#define PCI_MASTER_PREFETCH_POOL_SIZE 0x80000000

Since a total of 0xE0000000 memory space is available for both prefetchable and non-prefetchable
resources, the above line increases the amount of non-prefetchable space used by the PCI
autoconfigurator to 0x60000000 (0xE0000000 - 0x80000000).

In this example, the default A32 PCI slave image may be used for the first board since there are no
additional VME interface requirements. The first slave image is configured as follows (by
modifying the sysVme.c file in the location described above):

For this example, the value of VME_A32_MASTER_SIZE should be changed in sysVme.h to
0x20000000 to match the size of the requirement for Board 1:

#define VME_A32_MASTER_SIZE 0x20000000

Three more PCI slave images must still be configured to meet the interface requirements. In this
example, the optional fourth PCI slave image may be used for the one of these three PCI slave
images.

To properly configure the P2P bridges, change the value of VME_A32_MASTER_2_SIZE in
sysVme.h to 0x30000000. The value of VmeA32Master2Base should also be set in vxbsp.ini, for
example to 0x40000000. This can be done from the Midas monitor with the line:

#miset VmeInterface VmeA32Master2Base 0x40000000 vxbsp.ini

/* Set Universe window to VME A32 space */

uniPciSlaveImageSet(MIDAS_UNI_A32_WIN_NUM,

 VmeA32MasterPciBase,

 0x18000000,

 VME_A32_MASTER_SIZE,

 UNI_PCI_MEMORY_SPACE,

 0x0d,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);
72 M5000 Series: BSP User Guide Issued June 20, 2007

Configuring PCI Slave Images in the Universe
After rebooting, uniImageShow shows:

The following command reconfigures the optional PCI slave image window:

The following two commands configure the additional PCI slave image windows:

-> uniImageShow

Universe PCI slave images (VME master windows):

Image Type Local PCI Base VME Base Size VMEAM PWEN VDW

----- ---- -------- -------- -------- -------- ----- ---- ---

0 MEM e1000000 e1000000 00000000 00010000 2d Y 32

1 MEM b0000000 b0000000 00000000 01000000 3d Y 32

2 MEM 90000000 90000000 10000000 20000000 0d Y 32

3 MEM b1000000 b1000000 40000000 30000000 0d Y 32

Universe VME slave images (PCI master windows):

Image Type Local PCI VME Size VMEAM codes PWEN PREN LD64 LRMW

----- ---- -------- -------- -------- -------- ----------- ---- ---- ---- ----

5 MEM 00000000 00000000 00000000 10000000 09 0a 0d 0e Y Y N N.

uniPciSlaveImageSet (3,

 VmeA32Master2PciBase,

 0x40000000,

 0x10000000,

 UNI_PCI_MEMORY_SPACE,

 0x0d,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);

uniPciSlaveImageSet (4,

 VmeA32Master2PciBase + 0x10000000,

 0x60000000,

 0x10000000,

 UNI_PCI_MEMORY_SPACE,

 0x0d,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);
73Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
At this point, all VME interface requirements are met. This is confirmed with uniImageShow:

uniPciSlaveImageSet (5,

 VmeA32Master2PciBase + 0x20000000,

 0x80000000,

 0x10000000,

 UNI_PCI_MEMORY_SPACE,

 0x0d,

 UNI_VMEBUS_DATAWIDTH_32,

 TRUE);

-> uniImageShow

Universe PCI slave images (VME master windows):

Image Type Local PCI Base VME Base Size VMEAM PWEN VDW

----- ---- -------- -------- -------- -------- ----- ---- ---

0 MEM e1000000 e1000000 00000000 00010000 2d Y 32

1 MEM b0000000 b0000000 00000000 01000000 3d Y 32

2 MEM 90000000 90000000 18000000 20000000 0d Y 32

3 MEM b1000000 b1000000 40000000 10000000 0d Y 32

4 MEM c1000000 c1000000 60000000 10000000 0d Y 32

5 MEM d1000000 d1000000 80000000 10000000 0d Y 32

Universe VME slave images (PCI master windows):

Image Type Local PCI VME Size VMEAM codes PWEN PREN LD64 LRMW

----- ---- -------- -------- -------- -------- ----------- ---- ---- ---- ----

5 MEM 00000000 00000000 00000000 10000000 09 0a 0d 0e Y Y N N
74 M5000 Series: BSP User Guide Issued June 20, 2007

VME Interrupts
5.3 VME Interrupts

The Universe chip provides the means to:

• Handle VME interrupts on a selected set of levels (i.e. act as interrupt controller) and notify the
PPC440GX processor with a PCI interrupt and the vector from the interrupt source.

• Generate VME interrupts on all levels and automatically communicate a user specified interrupt
vector to the interrupt controller.

The Universe driver in the M5xxx BSP implements functions that support both VME interrupt
handling and generation. “VME Interrupt Handling” on page 74 describes how to setup and handle
VME interrupts. “VME Interrupt Generation” on page 75 describes how to generate VME
interrupts.

VME Interrupt Handling

All boards may generate interrupts on all lines - in contrast to that there may only be one interrupt
controller (destination) for a given interrupt line. (I.e. there may be several interrupt sources and
only one interrupt destination for a given VME interrupt line.) Therefore, as board configuration
and selection of interrupt controllers is user system specific, VME interrupt handling is not enabled
by default in the M5xxx BSP. You should determine which boards should handle which interrupt
levels and activate the hardware (Universe) on each board accordingly.

The uniPciIntEnable() function is used to activate and route interrupts from a user-specified
VME interrupt lline to a user specified PCI interrupt PIN. This function is declared as follows:

<source> is one of the following:

UNI_INT_ACFAIL - AC fail signal
UNI_INT_SYSFAIL - Sys Fail signal
UNI_INT_SW_INT - Software interrupt
UNI_INT_SW_IACK - Software interrupt Acknowledged
UNI_INT_VERR - VME bus error
UNI_INT_LERR - PCI bus error
UNI_INT_DMA - DMA controller interrupt
UNI_INT_VIRQ7 - VME interrupt level 7
UNI_INT_VIRQ6 - VME interrupt level 6
UNI_INT_VIRQ5 - VME interrupt level 5
UNI_INT_VIRQ4 - VME interrupt level 4
UNI_INT_VIRQ3 - VME interrupt level 3
UNI_INT_VIRQ2 - VME interrupt level 2
UNI_INT_VIRQ1 - VME interrupt level 1
UNI_INT_VOWN - VME ownership interrupt

STATUS uniPciIntEnable

(

int lint, /* PCI interrupt pin */

int source /* Universe interrupt source */

);
75Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
<lint> is one of the following:

UNI_INT_LINT7 - PCI interrupt pin 7
UNI_INT_LINT6 - PCI interrupt pin 6
UNI_INT_LINT5 - PCI interrupt pin 5
UNI_INT_LINT4 - PCI interrupt pin 4
UNI_INT_LINT3 - PCI interrupt pin 3
UNI_INT_LINT2 - PCI interrupt pin 2
UNI_INT_LINT1 - PCI interrupt pin 1
UNI_INT_LINT0 - PCI interrupt pin 0

It is also required to implement and register a function that can act as the interrupt service routine
(ISR) for a given interrupt source. When generating the VME interrupt, the interrupt source
communicates a vector that will be used by the main interrupt service routine of the Universe driver
(implemented internally in the M5xxx BSP) in order to lookup the ISR registered for the interrupt
source.

The ISR must be registered with the VxWorks function called intConnect which is declared in
$(WIND_BASE)/target/h/intLib.h as follows :

<vector> is the vector communicated by the interrupt source.
<routine> is a function pointer to the interrupt service routine for the interrupt source/device.
<parameter> is a user-defined value that will be sent as the one and only parameter to the ISR
when called.

VME Interrupt Generation

All boards may generate interrupts on all lines - in contrast to that there may only be one interrupt
controller (destination) for a given interrupt line. (I.e. there may be several interrupt sources and
only one interrupt destination for a given VME interrupt line.)

In order to generate a VME interrupt the uniVmeIntGenerate function is called as follows:

STATUS intConnect

(

VOIDFUNCPTR* vector,

VOIDFUNCPTR routine,

int parameter

);

STATUS uniVmeIntGenerate

(

int level,

int vector /* interrupt vector to return (0-255) */

)

Note – The Universe II only supports even vector numbers. The least significant bit is always 0.
76 M5000 Series: BSP User Guide Issued June 20, 2007

VME Interrupts
<level> is VME interrupt level to generate.
<vector> is a value in the range 0-255 that will be communicated to the interrupt controller in
order for the interrupt controller to identify the interrupt source and call the correct interrupt service
routine.

VxWorks Target Shell Example :

You need two boards for this example :

• BOARD1 - board that is to act as VME interrupt controller (handler)
• BOARD2 - board that is to act as VME interrupt source (device)

1. Register an interrupt service routine on BOARD1:
-> intConnect 0x30,logMsg,"\n\n\nhello\n\ngoodbye\n\n"

2. Tell the Universe to handle VME interrupt level 3, and signal to the 440GX on PCI interrupt line
0 :

-> uniPciIntEnable 0,3

3. Generate the interrupt on BOARD2:
-> uniVmeIntGenerate 3,0x30

4. The following messages should appear on the console of BOARD1 :
-> interrupt:

hello

goodbye
77Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
5.4 Universe DMA Functionality

The Universe includes a built-in DMA controller that enables high-speed block transfers between
PCI and VME. This enables high-throughput block transfers without the involvement of the CPU.
The BSP includes a module, called uniDmaLib, which provides functions for interfacing with the
Universe DMA controller. Both direct DMA transfers and chained DMA transfers are supported by
this module.

Universe DMA Driver

In order to use the Universe DMA controller module of the BSP, include the following line at the
top of the application source file:

#include "uniDmaLib.h"

The object module <bsp directory>/mdrv/lib/uniDmaLib.o must be loaded prior to loading the
application. The uniDmaLib.o module may also be directly linked with the application.

The Universe DMA controller supports 2 modes of operation:

1. Direct mode transfers a single block of data between the PCI bus and the VME bus. Use
uniDmaDirect function to initiate a direct DMA transfer.

2. Linked list (chained) mode transfers one or multiple blocks of data between the PCI bus and the
VME bus. The DMA engine uses DMA command packets to describe how to transfer each
block of data. Use uniDmaChainCmdPkCreate to create DMA command packets. Use the
uniDmaChain function to initiate a chained DMA transfer. Use uniDmaChainStop to stop a
chained DMA transfer.

Use the uniDmaNotifyFncSet to specify a function to be called when the DMA engine is done or
halts due to an error situation.

Universe DMA Interface Functions

uniDmaLibInit

Synopsis
STATUS uniDmaLibInit (int show_release)

Description
This function initializes the Universe DMA library. If the parameter show_release is
TRUE, the driver release info is printed to the console.

Returns
OK or ERROR

Notes
none
78 M5000 Series: BSP User Guide Issued June 20, 2007

Universe DMA Functionality
uniDmaDirect

Synopsis

STATUS uniDmaDirect
(
UINT32 vmeAdrs,
UINT32 pciAdrs,
UINT32 byteCount,
UINT32 vmeAmCode,
BOOL pci64,
int direction
)

Description

This function commands the Universe DMA engine to transfer a single DMA block.

<vmeAdrs> is the VME bus address of the DMA block.

<pciAdrs> is the PCI bus address of the DMA block.

<byteCount> is the number of bytes in the DMA block.

<vmeAmCode> is the VME Address Modifier code to be used when transferring the
DMA block.

If <pci64> is TRUE, then PCI dual address cycles are enabled.

<direction> is either UNI_DMA_V2L (0) meaning VME to PCI, or
UNI_DMA_L2V (1) meaning PCI to VME.

Returns
OK or ERROR

Notes

The vmeAdrs and pciAdrs parameters are not required to have any particular byte-
alignment in memory. For example, a PCI or VME address of 0x00200001 can be used.
However, the vmeAdrs and pciAdrs must be aligned to an 8-byte boundary with each
other. For example, if a PCI address of 0x00200001 is used, some valid VME addresses
are 0x10001001, 0x10001009, 0x10001011, etc. If vmeAdrs and pciAdrs are not
aligned to an 8-byte boundary with each other, no DMA transfer is performed, even
though uniDmaDirect returns with no error.

The DMA transfer will only succeed if the VME target device accepts the specified AM
code. If no VME target accepts the AM code, a VME bus error will occur. There must be
only one VME target device in the system accepting the specified AM code and VME
address. Otherwise the results of this function are unpredictable.

The size of the DMA transfer can be as small as one byte and as large as 16 MB. If a
"block" AM code is specified (such as 0x8, 0xb, 0xc, or 0xf), and the size of the transfer
is less than 8 bytes, the Universe generates single-cycle accesses (i.e. using a "non-block"
data AM code such as 0x9 or 0xd). The Universe also generates single-cycle accesses
when vmeAdrs and pciAdrs are not aligned to 8-byte boundaries. See the Universe
Reference Manual from Tundra Semiconductor Corp. for more information.
79Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
uniDmaChainCmdPktCreate

Synopsis

UNI_DMA_CHAIN_CMDPKT_NODE * uniDmaChainCmdPktCreate
(
UINT32 vmeAdrs,
UINT32 pciAdrs,
UINT32 byteCount,
UINT32 vmeAmCode,
BOOL pci64,
int direction,
UNI_DMA_CHAIN_CMDPKT_NODE *prev,
UNI_DMA_CHAIN_CMDPKT_NODE *next
)

Description

<uniDmaChainCmdPktCreate> allocates a new DMA chain command packet and
initializes it according to the arguments given.

<vmeAdrs> is the VME bus address of the DMA block.

<pciAdrs> is the PCI bus address of the DMA block.

<byteCount> is the number of bytes in the DMA block.

<vmeAmCode> is the VME Address Modifier code to be used when transferring the
DMA block.

If <pci64> is TRUE then PCI Dual Address Cycles are enabled.

<direction> is either UNI_DMA_V2L (0) meaning VME to PCI, or
UNI_DMA_L2V (1) meaning PCI to VME.

If the newly created command packet is to be part of an already existing chain of DMA
command packets, <prev> should point to the <UNI_DMA_CHAIN_CMDPT_NODE>
structure representing the packet in front of the new one, and <next> should point to the
<UNI_DMA_CHAIN_CMDPKT_NODE> structure representing the next packet in the
chain. Both <prev> and <next> may point to NULL.

Returns
Pointer to newly created <UNI_DMA_CHAIN_CMDPKT_NODE> structure on success or
NULL on failure

Notes

The chain of DMA command packets is stored internally as a singly linked list. Please
see the uniDmaLib.h file for the complete structure definition.

Internally, this function calls cacheDmaMalloc to allocate memory for the new node.
Therefore, the memory for the node can be freed by calling cacheDmaFree with the
returned value of uniDmaChainCmdPktCreate as the parameter. Note that freeing a
node in this manner invalidates the chain of DMA command packets unless the user
manually re-attaches the previous and next links of the chain.

Please see the Notes section of the uniDmaDirect function in regard to vmeAdrs,
pciAdrs, byteCount, and vmeAmCode. These notes apply to the parameters of the
uniDmaChainCmdPktCreate function when the created command packet is used in
a chained DMA transfer.
80 M5000 Series: BSP User Guide Issued June 20, 2007

Universe DMA Functionality
uniDmaChain

Synopsis

STATUS uniDmaChain
(
UNI_DMA_CHAIN_CMDPKT_NODE *cpp
)

Description

This function commands the Universe DMA engine to run a chained DMA block
transfer. <cpp> points to the first command packet node in the chain of DMA command
packets to be executed.

Returns
OK or ERROR

Notes
none

uniDmaChainStop

Synopsis

STATUS unidDmaChainStop
(
UNI_UCSR *ucsr
)

Description

This function commands the Universe DMA engine to stop after the current DMA
command packet node transfer is complete. If the DMA engine is not active, an error is
returned. This function does not return until after the current command packet node
DMA transfer is complete.

Returns
OK or ERROR

Notes
none
81Issued June 20, 2007 M5000 Series: BSP User Guide

VME Bus Operation
uniDmaNotifyFncSet

Synopsis

STATUS uniDmaNotifyFncSet
(
FUNCPTR fnc,
int arg
)

Description

This function may be used to specify a function to be called when a DMA event occurs.
A DMA event may be one of

UNI_DMA_EVENT_DONE - DMA completion event

UNI_DMA_EVENT_LERR - DMA engine caused PCI bus error

UNI_DMA_EVENT_VERR - DMA engine caused VME bus error

UNI_DMA_EVENT_P_ERR - DMA protocol error event

<fnc> points to the entry point of the function to be called on DMA event

<arg> is the first argument to be passed to <fnc>

Returns
Always OK

Notes

The function declaration for <fnc> is of the form:

void uniDmaNotifyFnc (int arg, int event);

The second argument passed to <fnc> is the DMA event that caused the call to <fnc>.
This argument is one of

UNI_DMA_EVENT_DONE - DMA completion event

UNI_DMA_EVENT_LERR - DMA engine caused PCI bus error

UNI_DMA_EVENT_VERR - DMA engine caused VME bus error

UNI_DMA_EVENT_P_ERR - DMA protocol error event
82 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 6 RACEway PCI Interface
sued Ju
 83M5000 Series: BSP User Guidene 20, 2007

RACEway PCI Interface
6.1 RACEway-PCI Interface

Overview

An M5xxx board with the “R” option (M5XXX-R) has an on-board RACEway-PCI interface ASIC
chip, the PXB. The MIDAS BSP initializes the PXB (if present) to a known non-conflicting state in
order to guarantee proper operation.

See also chapter 9 for information about the bundled PXB DMA Driver.

PXB Initialization

The PXB interface chip operates in either “bridge” mode or “endpoint” mode. In bridge mode, the
PXB chip operates like a PCI P2P bridge. In endpoint mode, the PXB chip operates like a PCI
device. The M5xxx BSP only supports the PXB operating in bridge mode. When an M5xxx-R
board boots VxWorks, the BSP will attempt to initialize the PXB, and this includes placing the PXB
in bridge mode. However, if the M5xxx-R is not installed in a RACEway VME slot (i.e., the slot's
P2 is not overlaid with an ILK device), the PXB initialization process will cause the board to hang.
The M5xxx monitor allows the user to switch the PXB initialization on or off, thus enabling an
M5xxx-R board to be used in either a RACEway or non-RACEway VME slot.

• To enable PXB initialization, enter the following command at the VxWorks target shell prompt:
-> mfs_ini_settext(“vxbsp.ini”, “RACEdrv”, "PxbInit", "TRUE")

• To disable PXB initialization, enter the following command at the VxWorks target shell prompt:
-> mfs_ini_settext("vxbsp.ini", "RACEdrv", "PxbInit", "FALSE")

Or omit this item altogether.

However, the ability to inhibit PXB initialization is potentially quite dangerous, especially in
boards deployed in production system, because if the PXB chip is not initialized, RACEway-PCI
data transfer will work with undefined result or not at all. In other words, RACEway-PCI
communication requires PXB initialization. To insure that the BSP always initializes the PXB, see
the function sys_pxb_init in sysLib.c and follow the instructions there.

When using PCI auto-configuration and PXB initialization is enabled, the auto-configurator
reserves a secondary bus number to each PXB device, but it does not scan for PCI devices behind
the PXB device, as it would normally do for other P2P bridges. The BSP provides a special
mechanism that allows the PCI auto-configurator to reserve PCI memory and I/O address space for
PXB-related applications. This mechanism is available through a set of parameters in the
"RACEdrv" section of the vxbsp.ini file. The PXB-related parameters are shown in Table 6-1
84 M5000 Series: BSP User Guide Issued June 20, 2007

RACEway-PCI Interface
.

PXB DMA Driver

The PXB DMA driver is sold as part of a separate product called "RACE driver for VxWorks"
(RACE-DRV-VXWORKS) and is documented in the PXB DMA Driver Software Reference
Manual.

TABLE 6-1. PXB-related flags used by M5xxx BSP

Parameter name Meaning Values Default

PxbInit Initialize PXB TRUE, FALSE FALSE

PxbPrefMemSize Size of prefetch memory pool for PXB Power of 2, 1MiB - 512MiB 256 MiB

PxbMemIoSize Size of non-prefetch memory pool for PXB Power of 2, 1 MiB - 64 MiB 0 (disabled)

PxbIoSize Size of PCI I/O pool for PXB Power of 2, 16 bytes - 256 KiB 0 (disabled)

Note – If a M5xxx-R board hangs during VxWorks boot, first check to see if the VME slot is a
RACEway slot. If the slot is a non-RACEway slot, reset the board, enter the M5xxx
monitor, disable PXB initialization then reset the board and allow it to boot VxWorks.
85Issued June 20, 2007 M5000 Series: BSP User Guide

RACEway PCI Interface
86 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 7 Network
sued Ju
This chapter documents various network interfaces supported by
the M5xxx BSP. The conditional #define INCLUDE_NETWORK in
config.h controls the inclusion of network protocol and device
driver support by the M5xxx BSP.
87M5000 Series: BSP User Guidene 20, 2007

Network
7.1 Ethernet (emac) Network Interface

The PPC440GX CPU includes four Ethernet interfaces, generally referred to as “emac”. The
M5xxx BSP includes support for the emac interface using the Wind River Enhanced Network
Device (END) driver model which is enabled when INCLUDE_END is defined in config.h.

The M5xxx may support up to 3 simultaneous Ethernet connections, depending on the specific
configuration of the board. In all configurations, at least one Ethernet connection will always be
available. Either emac0 or emac2 will be available in all configurations. The other ports that may be
available are emac1 or emac3.

• emac0 is the onboard fast Ethernet port (10/100 Mbps)
• emac1 is an IOSpacer fast Ethernet port (10/100 Mbps)
• emac2 is an IOSpacer gigabit Ethernet port (10/100/1000 Mbps)
• emac3 is an IOSpacer gigabit Ethernet port (10/100/1000 Mbps)

Configuring the boot parameters for the emac interface may be done using the 'c' command in the
VxWorks bootrom, or through the 'bootChange()' command of a running VxWorks system. An
example of boot parameters for the emac interface is shown in Figure 7-1

FIGURE 7-1. Example Boot paramneters for the emac interface

Configuring JUMBO packets

The Ethernet Network Interface driver supports JUMBO packets for both the fast Ethernet and
Gigabit Ethernet channels. JUMBO packets is a feature of gigabit Ethernet controllers, which
basically increases the Ethernet frame size (also referred to as MTU - Maximal Transmission Unit)
from 1500 bytes (typically) to several kilobytes. The maximum Ethernet frame size depends on the
Ethernet controller.

Ethernet communication with JUMBO packet MTU sizes gives better performance than smaller
packets because the number of interrupts and CPU overhead is reduced per byte transmitted. This is
of benefit where it is necessary to maximize Gigabit Ethernet throughput potential as much as
possible.

boot device : emac0

processor number : 0

host name :

file name : /usr/wind/target/config/bspname/vxWorks

inet on ethernet (e) : 192.168.100.10

inet on backplane (b) :

host inet (h) : 192.168.100.1

gateway inet (g) :

user (u) : fred

ftp password (pw) (blank=use rsh) :

flags (f) : 0
88 M5000 Series: BSP User Guide Issued June 20, 2007

Ethernet (emac) Network Interface
The use of JUMBO packets is not needed in order to maximize the throughput potential of Fast
Ethernet. By default the fast Ethernet channels are configured to use 1500 bytes Ethernet frame
sizes (MTU) while the Gigabit Ethernet channels are configured to use 8000 bytes Ethernet frame
sizes.

When the Ethernet Network Interface communicates with other Ethernet network devices, the
network devices will negotiate and use the smallest of the maximum frame sizes of both of the
devices. The configuration of MTU sizes should therefore not break communication between
network devices.

The PPC440GX supports MTU sizes up to 9000 bytes. The default MTU size is set to 8000, this is
because 8000 is better aligned with the MAL buffer sizes than the maximum MTU (9000), and
therefore gives higher performance.

MTU size can be configured in config.h

For most users the default configuration should work fine.

/*

 * EMAC MTU Size.

 *

 * MTU Size is the maximum packet size the EMAC is configured to use when

 * communicating with other Ethernet devices.

 * Maximum MTU size for the PPC440GX is 9000.

 *

 * The Fast Ethernet EMACS have a default value of 1500.

 * The Gigabit Ethernet EMACS have a default value of 8000.

 * The default value of 8000 for the Gigabit Ethernet EMACS gives an optimal

 * performance due to alignment with the MAL buffer size.

 */

#define EMAC0_MTU 1500 /* Fast Ethernet Channel */

#define EMAC1_MTU 1500 /* Fast Ethernet Channel */

#define EMAC2_MTU 8000 /* Gigabit Ethernet Channel */

#define EMAC3_MTU 8000 /* Gigabit Ethernet Channel */
89Issued June 20, 2007 M5000 Series: BSP User Guide

Network
7.2 Shared Memory (sm) Backplane Network Interface

.

1. M5xxxboards. If the M5xxx boards are attached, then the problem is more likely to be with the
gateway or with the host system configuration.

2. You can use host system utilities, such as arp, netstat, etherfind, and ping, to study the state of
the network from the host side.
90 M5000 Series: BSP User Guide Issued June 20, 2007

Gigabit Ethernet Throughput Performance
7.3 Gigabit Ethernet Throughput Performance

Most Ethernet transfer protocols use the IP stack when transferring data across Ethernet. The IP
stack is processor demanding and therefore it is important to configure and use the stack optimally
in order to get high throughput.

In order to improve Gigabit Ethernet throughput the BSP has implemented support for JUMBO
packets. This feature enhances the Ethernet throughput performance significantly.

The maximum size of the JUMBO packets for the PPC440GX is 9000 bytes. By default the size is
set to 8000 since this gives better alignment with the internal buffer sizes in the PPC440GX.

It is important that Gigabit Ethernet switches that are used together with JUMBO packets have
support for JUMBO packets and that this feature is enabled. Otherwise communication will fail.

It is also important that both of the devices that communicate with Gigabit Ethernet have support
for JUMBO packets and that this feature is enabled. Otherwise the standard MTU size of 1500 will
be used, which will slow down the throughput significantly.

In order to get maximum throughput performance on Gigabit Ethernet, the JUMBO packets should
be enabled and set to size 8000 as they are by default (look for EMAC2_MTU and EMAC3_MTU in.
config.h). Optimizations of the IP stack are also configured by default in config.h.

It is important to increase the TCP and/or UDP socket buffer sizes in order to get the maximum
throughput. This can be done for test purposes by setting global variables from the VxWorks shell
prompt as follows:

-> tcp_sendspace=0x38000

-> tcp_recvspace=0x38000

-> udp_sendspace=0x38000

-> udp_recvspace=0x38000
91Issued June 20, 2007 M5000 Series: BSP User Guide

Network
A better approach however, is to use the command setsockopt(...) to set the buffer sizes to the
same values as above on socket level. This is to avoid that all TCP and UDP sockets use such large
buffer sizes.

/*

 * Set SO_SNDBUF and SO_RCVBUF for TCP and UDP.

 */

{

 int soSndBufSize = 0x38000;

 int soRcvBufSize = 0x38000;

 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (char *) &soSndBufSize,
sizeof(soSndBufSize)) < 0)

 printf("ERROR:setsockopt failed for SO_SNDBUF.\n");

 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *) &soRcvBufSize,
sizeof(soRcvBufSize)) < 0)

 printf("ERROR:setsockopt failed for SO_RCVBUF.\n");

}

92 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 8 BSP Installation
sued Ju
 99M5000 Series: BSP User Guidene 20, 2007

BSP Installation
8.1 BSP Installation & Distribution

Installation

The M5xxx BSP is distributed on CD-ROM media. Refer to the CD-ROM for installation
procedure. This BSP is only compatible with Tornado 2.2.1 (which includes VxWorks 5.5.1) with
Patch 90451 applied. The patch can be obtained from Wind River Systems technical support.

Files & Directories

The following is a summary of M5xxx PPC440GX BSP software distribution. This distribution
contains all the BSP specific files that allows VxWorks to run on the M5xxx.

doc - this directory contains all of the documentation for the BSP

mdrv - this directory contains all M5xxx-specific drivers and associated header files.

mdrv/include - this directory contains all the BSP user-include header files.

mdrv/include/Common.h - numerous common definitions used by the BSP

mdrv/include/flash.h - flash memory driver header file

mdrv/include/flashlib.h - flash storage device interface library header file

mdrv/include/i2o_mu.h - I2O message unit header file

mdrv/include/iospacer.h - header file supporting io spacer

mdrv/include/mfs.h - header file supporting the Midas File System in Flash

mdrv/include/mfs_ini.h - .ini file support for Midas File System

mdrv/include/mfs_usr.h - header file for support of Midas File System (mfs_user functions)

mdrv/include/midas.h - header file containing many M5xxx board-specific addresses and other
hardware defines.

mdrv/include/MidasIntLib.h - header file with MIDAS interrupt routing support

mdrv/include/MidasPciLib.h - M5xxx-specific PCI usage header file

mdrv/include/midasppc440.h - header file with PPC440GX-specific I/O addresses and constants

mdrv/include/model.h - header file associated with identifying model number of Midas products

mdrv/include/mu.h - message unit definition header file

mdrv/include/p2pLib.h - header file for PCI-to-PCI (P2P) bridge library
100 M5000 Series: BSP User Guide Issued June 20, 2007

BSP Installation & Distribution
mdrv/include/pcicfg.h - PCI configuration header file

mdrv/include/pciLib.h - PCI library header file

mdrv/include/ppc440DmaLib.h - header file for the PPC440 DMA

mdrv/include/pxb.h - header file with PXB driver definitions

mdrv/include/pxb_bsp_midas.h - header file with Midas BSP-specific PXB driver definitions

mdrv/include/sprom.h - header file supporting sprom.c

mdrv/include/sprom_ppc440.h - PPC440 specific SPROM definitions

mdrv/include/sysLibMidas.h - header file for extra sysLib functionality added to the M5xxx BSP

mdrv/include/uniDmaLib.h - header file for Universe DMA engine

mdrv/include/uniLib.h - header file for Universe library

mdrv/lib - contains all the BSP archive libraries.

mdrv/lib/libmdrvs.a - this is an archive library that contains all the BSP drivers. The object modules
in this library are linked in on demand as part of VxWorks.

440gxBusErr.s - PPC440GX-dependent bus error reporting

440gxBusErrOriginShow.c - used for decoding the bus error value from sysBusErrRegsGet

config.h - this file contains configuration parameters for VxWorks. This file may be edited directly.
Usually, BSP development from the command prompt is the desired approach. However, the BSP
may be developed from within Tornado itself, in which case, the configuration parameters may be
changed from within Tornado.

configNet.h - Platform-independent network configuration

cprDcr.h - IBM chip clocking and PDR DCR definitions

dmaDcr.h - PPC440GP DMA controller DCR access assembly routines

ebcDcr.h - IBM external bus controller DCR definitions

emacEnd.c/.h - EMAC Ethernet driver with patch 90835

L2Lib.c- Level 2 cache controller support

Makefile - this file performs the compilation and linking steps to build various VxWorks images as
requested by the user.

maDcr.h - IBM Memory Access Layer (MAL) DCR access assembly routines
101Issued June 20, 2007 M5000 Series: BSP User Guide

BSP Installation
midas_ppc440.h - MIDAS PPC440GX board (M5xxx) header file

pciAutoConfigLib.c - modified version of the VxWorks PCI autoconfigurator that supports the
M5xxx

phyLib.c/.h - MII/physical network configuration code and header

ppc440gx.h - IBM PPC440GX specific header file

ppc440Timer.c - PPC440GX timer function library

romInit.s - Assembly source code supporting power up reset

sdramDcr.h - IBM SDRAM controller DCR access assembly routines

sdrDcr.h - IBM system DCR register definitions

sysALib.s - this is the assembly source code supporting sysLib.c

sysBusPci.c - Support routines for PCI auto-configuration

sysCpcr.c/.h - IBM PPC440GX clocking & power and system device access header

sysDcr.h/.s - DCR access header and assembly routines

sysLib.c - this is the primary BSP source file

sysNet.c - Ethernet hardware initialization

sysSerial.c - Serial hardware initialization

sysVme.c/.h - Functions for VMEbus support

uicDcr.h - IBM Universal Interrupt Controller (UIC) DCR access definitions and assembly routines

uicIntr.c - PPC440GX IBM Universal Interrupt Controller (UIC) library

usrExtra.c - VxWorks support for optionally included modules

zmiiLib.h - ZMII macro header
102 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 9 Burning VxWorks Boot Code
sued Ju
There are two methods of burning VxWorks boot code:

• Ethernet - This is the preferred method and should be used
where Ethernet connection is available.

• Serial Port - If no Ethernet access is available or VxWorks does
not boot, then the Rom Monitor (serial load) must be used to
burn VxWorks boot code.
103M5000 Series: BSP User Guidene 20, 2007

Burning VxWorks Boot Code
9.1 Burning VxWorks Boot Code from Rom Monitor (Serial)

On the M5xxx board, VxWorks boot code is stored in non-removable FLASH. The board is always
first booted by the M5xxx low-level monitor program which will then boot VxWorks automatically.
The M5xxx monitor is used to download VxWorks boot code into FLASH via the serial port and
file transfer with the KERMIT protocol. The M5xxx monitor prompt is the symbol #. Follow the
steps below to burn VxWorks boot code into FLASH:

1. Make the VxWorks boot file if one does not exist. This is typically “bootrom.bin”, but other
targets that produce binary may be used, as appropriate for the application.

2. Use the set-baudrate command to configure the baudrate for the download operation. Baud
rates up to 115200 bps are supported.

3. Connect to the M5xxx board's serial port with any terminal emulator program (such as
HyperTerminal in Windows) using the configured baudrate. The terminal emulator program
must be able to send files with the KERMIT protocol.

4. At the M5xxx monitor prompt, download the boot file. (This procedure automatically erases the
appropriate region of FLASH, so it is not necessary to explicitly erase the FLASH.)

#serial-load 0xf4000000 [0x<filesize>]

Where the optional parameter <filesize> is the length of the file in Bytes.
• Escape back to the host and send the boot file with the KERMIT protocol.
• Wait for file transfer to finish. There will be a number of progress messages displayed as the

M5xxx monitor writes the bootcode to FLASH.

Note – after the serial-load command is given, the board waits to receive the boot file,
accepting no further input until file transfer is done or time-out exception.
104 M5000 Series: BSP User Guide Issued June 20, 2007

Burning VxWorks Boot Code from VxWorks (Ethernet)
9.2 Burning VxWorks Boot Code from VxWorks (Ethernet)

In order to program a boot image from VxWorks, Ethernet must be configured properly. Details
about how this is done are described in “Ethernet (emac) Network Interface” on page 88.

Burning boot code into Flash from VxWorks is done as follows:

1. Make sure that the Ethernet connection is working. For example, use the command “ping” or
“ls”.

2. Program the boot image through: flashLoad “<path>/<filename>", <address>

Example:

flashLoad "/tornado-2.2.1.90451-ppc/target/config/midas-ppc440-bsp1.2-
r1.3.1/bootrom.bin", 0xf4000000

The address 0xf4000000 is the default address to program boot images. This address has to match
ROM_TEXT_ADRS in config.h and Makefile. ROM_TEXT_ADRS is possible to change, but it must be
within the Flash address area.

If the Flash is locked by switch settings, the flashLoad command will inform the you about this.
The M5000 User Guide explain how the locking/unlocking of Flash through DIP switches is
performed. The default address 0xf4000000 is not locked by fabric switch settings.
105Issued June 20, 2007 M5000 Series: BSP User Guide

Burning VxWorks Boot Code
9.3 Burning VxWorks Boot Code from U-Boot (Ethernet)

The M5000 board is shipped with a U-Boot image programmed in Flash memory. U-Boot is a
bootloader with an ethernet driver which is used to load and boot Linux on the M5000 board.

Additionally, U-Boot can load and flash VxWorks images across Ethernet - which is the preferred
method. Serial loading with the MIDAS Monitor is the only alternative.

In order to download a VxWorks binary image to the M5000, U-Boot supports two communication
protocols: TFTP (client) and NFS (client). The VxWorks image must be available on a networked
TFTP server or NFS server in order to load the image. The U-Boot command sequence in order to
download a VxWorks image is described below:

Setting Network Parameters

The following command sequence is required to setup the network parameters for both TFTP and
NFS download methods:

1. Specify which ethernet port to use (ppc_440x_eth0, ppc_440x_eth1, ppc_440x_eth2 or
ppc_440x_eth3):
=> setenv ethact ppc_440x_eth0

2. Set the IP address of the M5000 board:
=> setenv ipaddr 192.168.168.175

3. Set the hostname of the M5000 board:
=> setenv hostname c5000

4. Set the IP address of the NFS or TFTP server:
=> setenv serverip 192.168.168.4

TFTP:
1. Put the vxWorks image in the /tftpboot directory on the TFTP server

2. Download the VxWorks image (bootrom.bin or vxWorks.st_rom.bin) into SDRAM at address
01000000:
=> tftpboot 1000000 bootrom.bin

NFS:
1. Put the vxWorks image in the exported directory on the NFS server (for instance /export/

images/bootrom.bin).

2. Download the VxWorks image (bootrom.bin or vxWorks.st_rom.bin) into SDRAM at address
01000000:
=> nfs 1000000 /export/images/bootrom.bin
106 M5000 Series: BSP User Guide Issued June 20, 2007

Burning VxWorks Boot Code from U-Boot (Ethernet)
Flash VxWorks image

The following command sequence is required in order to flash the vxWorks image for both TFTP
and NFS download methods:

1. 1. Unlock the flash blocks where the VxWorks image should be written
=> protect off f4000000 f41fffff

2. 2. Erase the flash blocks where the VxWorks image should be written
=> erase f4000000 f41fffff

3. 3. Copy the VxWorks image from SDRAM to flash (the filesize parameter is updated
automatically by U-boot when the file is downloaded) :
=> cp.b 1000000 f4000000 $(filesize)
107Issued June 20, 2007 M5000 Series: BSP User Guide

Burning VxWorks Boot Code
108 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 10 DMA drivers
sued Ju
The M5xxx has several on-board DMA controllers including the
PPC440GX, Universe, and PXB, which move data between
DRAM, PCI memory, VME, and RACEway. DMA drivers are
included in the M5xxx BSP for the PPC440GX.
109M5000 Series: BSP User Guidene 20, 2007

DMA drivers
10.1 PPC440GX DMA Driver

The PPC440GX DMA Driver is capable of moving data to/from any memory reachable from the
PPC440GX. However for performance reasons this driver is mostly applicable for data transfers
involving system DRAM. Once the DMA transfer is initiated data is moved without any need for
processor intervention. The driver supports one channel transfers, where the transfers can be single
DMA transactions or chained (scather/gather) DMA transactions. To use the PPC440GX DMA
driver include the ppc440DmaLib.h header file from the BSP distribution.

Setting up a DMA transaction

A DMA transaction is set up by using a DMA transaction structure. The structure is defined as
follows:

The fields are used as follows:

Channel: DMA channel to use. Must be set to 0.

typedef struct ppc440DmaTransactionInfo

{

int Channel; /* Always 0 */

int Alignment;

uint32_t TransferByteCount;

uint32_t SourceAddressLow;

uint32_t SourceAddressHigh;

uint32_t DestinationAddressLow;

uint32_t DestinationAddressHigh;

int Status;

int DetailedStatus;

/* Pointer to callback routine */

int (*Callback)(int Status,

int DetailedStatus,

void *UserContext);

/* User applied callback parameter */

void *UserContext;

} ppc440DmaTransaction_t;
110 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
Alignment: Alignment of user buffers. The alignment affects the transfer line width used by the
DMA engine to transfer data, and thus the performance. The user application can either force this
field to an alignment or leave it up to the driver to decide. If forced then the driver will return with
an error if the user buffers are not correctly aligned. Values used for this field are as follows:

TransferByteCount: Size of transaction in bytes. The DMA engine supports transferring 1024k
transfer lines. The transfer line width is dependent on the alignment, and thus the maximum value
of this field is 1024k times the alignment.

Buffer addresses: Addresses of the source and destination buffers as seen from the processor local
bus (PLB). Translation functions from local and PCI addresses are provided by the driver. See
“Address translation functions” on page 114 for a description. The buffers must be aligned as
implied by the alignment field.

Status: Status of operation where applicable. Always set OK or ERROR.

DetailedStatus: Detailed status of operation where applicable. See header file for values.

Callback: Pointer to callback function. If this field is set to NULL then blocking mode is implied.

UserContext: Pointer to user context used in non-blocking mode. The callback function will be
called with this field as a parameter.

Some fields in the structure are only applicable to the given user mode. For single transactions the
driver supports both blocking and non-blocking modes. Chained transactions only support non-
blocking mode.

Single DMA transactions

Transfers involving only one transaction structure are most efficiently executed through the
ppc440DmaXfer function. This function supports both blocking and non-blocking mode. Blocking
mode is chosen by setting the callback field in the transaction structure to NULL. The
ppc440DmaXfer function is defined as follows:

DMA_ALIGNED_SELECT (0) Alignment selected by driver.

DMA_ALIGNED_1 (1) 1 byte aligned.

DMA_ALIGNED_2 (2) 2 bytes aligned.

DMA_ALIGNED_4 (4) 4 bytes aligned.

DMA_ALIGNED_8 (8) 8 bytes aligned

DMA_ALIGNED_16 (16) 16 bytes aligned.

int ppc440DmaXfer

(

ppc440DmaTransaction_t *trans,

int timeout,

ppc440DmaStatus_t *dmaStatus

);
111Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
The fields are used as follows:

trans: Pointer to a DMA transaction structure. See “Setting up a DMA transaction” on page 110 for
a description.

timeout: Driver timeout for execution. The PPC440GX DMA engine does not support timeouts.
Thus this timeout is only used in software when waiting for control over the engine.

dmaStatus: Pointer to a status structure. See “Common status structure” on page 114 for a
description. This structure is only used on ERROR.

The return value for the ppc440DmaXfer functions only reflects whether the driver was able to
initiate the transfer or not. To find the status of the actual transfer the relevant fields in the DMA
transaction structure must be checked.

Chained DMA transactions

Transfers involving one or more DMA transactions are executed through the
ppc440DmaChainXfer function. DMA chains can only be executed in a non-blocking mode.
Before a chain can be executed a DMA descriptor must be created through the
ppc440DmaChainDescCreate function. This function is defined as follows:

The fields are used as follows:

trans: Pointer to a DMA transaction structure. See “Setting up a DMA transaction” on page 110 for
a description. Since DMA chains can only be executed in non-blocking mode, the user application
must fill in the callback fields. The user application may choose not to have a callback on every
transaction in the chain. This is however not advised since there is no way to find out if the given
transaction failed or not.

prev: Pointer to a DMA descriptor. If this field is not NULL, then the new descriptor is added in the
chain after the previous descriptor.

next: Pointer to a DMA descriptor. If this field is not NULL, then the new descriptor is added in the
chain before the next descriptor.

dmaStatus: Pointer to a status structure. See “Common status structure” on page 114 for a
description of this structure. This structure is only used if the create function for some reason failed
(i.e. returned NULL).

ppc440DmaChainDesc_t *ppc440DmaChainDescCreate

(

ppc440DmaTransaction_t *trans,

ppc440DmaChainDesc_t *prev,

ppc440DmaChainDesc_t *next,

ppc440DmaStatus_t *dmaStatus

);
112 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
If the ppc440DmaChainDescCreate function succeeded in creating a new descriptor then a
pointer to this descriptor is returned. If not the return value is NULL.

To remove a descriptor the ppc440DmaChainDescRemove function is used. This function is
defined as follows:

The fields are used as follows:

desc: Pointer to the descriptor to be removed from the chain.

dmaStatus: Pointer to a status structure. See “Common status structure” on page 114 for a
description. This field is only used on ERROR. This field may be set to NULL if status is not
wanted.

This function will return OK or ERROR depending on if the remove succeeded or not. Further
status may be retrieved through the status structure. When a descriptor is removed the rest of the
chain is modified to keep the chain consistent.

The DMA chain is executed through the ppc440DmaChainXfer function. This function is defined
as follows:

The fields are used as follows:

desc: Pointer to a DMA descriptor. The user application may choose which descriptor in the chain
to start at. If the chain is to be started from the beginning then the user application must make sure
that this field is a pointer to the first descriptor.

timeout: Driver timeout for execution. The PPC440GX DMA engine does not support timeouts.
Thus this timeout is only used in software when waiting for control over the engine.

dmaStatus: Pointer to a status structure. See “Common status structure” on page 114 for a
description of this structure. This structure is only used on ERROR.

int ppc440DmaChainDescRemove

(

ppc440DmaChainDesc_t *desc,

ppc440DmaStatus_t *dmaStatus

);

int ppc440DmaChainXfer

(

ppc440DmaChainDesc_t *desc,

int timeout,

ppc440DmaStatus_t *dmaStatus

);
113Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
Common status structure

Several of the function calls in the PPC440GX DMA driver interface use a common status
structure. This structure is defined as follows:

The fields are used as follows:

status_code: Integer value representing the status.

status_text: Symbolic string describing the status.

Usually this structure is used to describe an error condition. See the relevant function call for use.

Address translation functions

The PPC440GX DMA driver expects processor local bus (PLB) addresses as input. The driver
provides functions to translate both local addresses and PCI addresses to PLB addresses. These are:

Each function will return OK or ERROR depending on if the translation succeeded or not. The
ppc440PciAdrsToPlbAdrs function currently supports PCI MEMORY address space and 32 bits
addresses.

typedef struct ppc440DmaStatus

{

int status_code;

char status_text[256];

} ppc440DmaStatus_t;

int ppc440LocalAdrsToPlbAdrs

(

uint32_t localAdrs,

uint32_t *plbAdrsLo,

uint32_t *plbAdrsHi

);

int ppc440PciAdrsToPlbAdrs

(

int adrsSpace,

uint32_t pciAdrsLo,

uint32_t pciAdrsHi,

uint32_t *plbAdrsLo,

uint32_t *plbAdrsHi

);
114 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
Single blocking DMA transfer example

The following source code is an example of a single blocking DMA transfer. The code starts in the
doSingle function.

#include "vxWorks.h"

#include "ppc440DmaLib.h"

extern int logMsg(char *fmt, ...);

/* ppc440DmaXferBlocking is a simple interface to the ppc440DmaLib BSP
module.

 * THE ALIGNMENT WILL BE DETERMINED BY THE DMA DRIVER. MAX TRANSFER SIZE
IS

 * DEPENDENT ON THE ALIGNMENT.

 * sourceBuffer is the local address of the data to be DMA'ed

 * destinationBuffer is the local address of where to place the data

 * bufferSizeBytes is the size of the buffer to transfer

 */

int ppc440DmaXferBlocking

(

 uint32_t sourceBuffer,

 uint32_t destinationBuffer,

 int bufferSizeBytes

)

{

 int status = OK;

 ppc440DmaTransaction_t trans;

 ppc440DmaStatus_t dmaStatus;

 char funcName[] = "ppc440DmaXferBlocking";

 /* Set up the transfer data structure */

 trans.Alignment = DMA_ALIGNED_SELECT; /* Driver selected alignment */

 trans.Callback = NULL;

 trans.UserContext = NULL;

 trans.Channel = 0;

 trans.Status = 1234;

 trans.DetailedStatus = 4321;

 trans.TransferByteCount = bufferSizeBytes;
115Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
 ppc440LocalAdrsToPlbAdrs(sourceBuffer,

 &(trans.SourceAddressLow),

 &(trans.SourceAddressHigh));

 ppc440LocalAdrsToPlbAdrs(destinationBuffer,

 &(trans.DestinationAddressLow),

 &(trans.DestinationAddressHigh));

 status = ppc440DmaXfer(&trans, -1, &dmaStatus);

 if (status != OK)

 {

 logMsg("%s: xfer FAILED. Status = 0x%x, Text = %s\n",

 funcName, dmaStatus.status_code, dmaStatus.status_text,

 0,0,0);

 }

 else

 {

 if (trans.Status != OK)

 {

 logMsg("%s: transaction FAILED. Status = %d, DetailedStatus =
0x%x\n",

 funcName, trans.Status, trans.DetailedStatus,0,0,0);

 status = ERROR;

 }

 }

 return(status);

}

Chained DMA transfer example

The following source code is an example of a chained DMA transfer. The code starts in the doChain
function.

#include "vxWorks.h"

#include "stdio.h"

#include "cacheLib.h"

#include "taskLib.h"

#include "ppc440DmaLib.h"

void setPattern(uint32_t *buf, int size)
116 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
{

for (; size > 0; size--, buf++)

{

*buf = size;

}

}

int checkPattern(uint32_t *buf, int size)

{

for (; size > 0; size--, buf++)

{

if (*buf != size)

{

return (ERROR);

}

}

return (OK);

}

void erasePattern(uint32_t *buf, int size)

{

for (; size > 0; size--, buf++)

{

*buf = 0xffffffff;

}

}

static int doXferChained_totalIntr;

static int doXferChained_status;

int doXferChainedIsr

(

int Status,

int DetailedStatus,

void *UserContext

)

{

doXferChained_totalIntr++;

if (doXferChained_status)

{

/* Already set donít overwrite */
117Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
return (OK);

}

if (Status)

{

doXferChained_status = DetailedStatus;

}

if (UserContext != NULL)

{

doXferChained_status = ERROR;

}

return (OK);

}

static int doXferChained

(

int width,

int bufferSize,

uint32_t sourceBuffer,

uint32_t destinationBuffer,

int descs

)

{

int status = OK;

int cnt;

ppc440DmaTransaction_t trans;

ppc440DmaStatus_t dmaStatus;

ppc440DmaChainDesc_t *desc[10] = {0,0,0,0,0,0,0,0,0,0};

ppc440DmaChainDesc_t *prev = NULL;

if (descs > 10)

{

printf("Number of descs larger than 10
return (ERROR);

}

setPattern((uint32_t *)sourceBuffer, bufferSize/4);

erasePattern((uint32_t *)destinationBuffer, bufferSize/4);
118 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
trans.Alignment = width;

trans.Callback = doXferChainedIsr;

trans.UserContext = NULL;

trans.Channel = 0;

ppc440LocalAdrsToPlbAdrs(sourceBuffer,

&(trans.SourceAddressLow),

&(trans.SourceAddressHigh));

ppc440LocalAdrsToPlbAdrs(destinationBuffer,

&(trans.DestinationAddressLow),

&(trans.DestinationAddressHigh));

trans.TransferByteCount = bufferSize;

trans.Status = 1234;

trans.DetailedStatus = 4321;

for (cnt = 0; cnt < descs; cnt++)

{

desc[cnt] = ppc440DmaChainDescCreate(&trans,

prev,

NULL,

&dmaStatus);

if (!(desc[cnt]))

{

status = ERROR;

for (; cnt > 0; cnt--)

{

ppc440DmaChainDescRemove(desc[cnt-1], NULL);

}

break;

}

prev = desc[cnt];

}

if (status == OK)

{

doXferChained_totalIntr = 0;

doXferChained_status = OK;
119Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
status = ppc440DmaChainXfer(desc[0],

 sysClkRateGet()*30,

 &dmaStatus);

if (status != OK)

{

 printf("ppc440DmaChainXfer FAILED."

" Status = 0x%x, text = %s
dmaStatus.status_code, dmaStatus.status_text);

}

else

{

/* Wait for all descs */

while (doXferChained_totalIntr < descs)

{

taskDelay(sysClkRateGet());

}

status = doXferChained_status;

if (status == OK)

{

/* Check buffer */

if (checkPattern((uint32_t *)destinationBuffer,

bufferSize/4) != OK)

{

printf("checkPattern FAILED
status = ERROR;

}

}

}

for (cnt = 0; cnt < descs; cnt++)

{

if (ppc440DmaChainDescRemove(desc[cnt], &dmaStatus) != OK)

{

status = ERROR;

}

}

}

return (status);

}

int doChain(void)
120 M5000 Series: BSP User Guide Issued June 20, 2007

PPC440GX DMA Driver
{

int width = 16;

int bufferSize = 1024;

int descs = 2;

int status = OK;

void *sMallocPtr;

void *dMallocPtr;

uint32_t sourceBuffer;

uint32_t destinationBuffer;

sMallocPtr = cacheDmaMalloc(bufferSize + width);

if (sMallocPtr == NULL)

{

printf("cacheDmaMalloc FAILED
return (ERROR);

}

dMallocPtr = cacheDmaMalloc(bufferSize + width);

if (dMallocPtr == NULL)

{

printf("cacheDmaMalloc FAILED
cacheDmaFree(sMallocPtr);

return (ERROR);

}

sourceBuffer =(uint32_t)sMallocPtr +

 (width - ((uint32_t)sMallocPtr) % width);

destinationBuffer = (uint32_t)dMallocPtr +

 (width - ((uint32_t)dMallocPtr) % width);

status = doXferChained(width,

 bufferSize,

 sourceBuffer,

 destinationBuffer,

 descs);

cacheDmaFree(sMallocPtr);

cacheDmaFree(dMallocPtr);

return (status);

}

121Issued June 20, 2007 M5000 Series: BSP User Guide

DMA drivers
122 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 11 MIDAS File System
sued Ju
 123M5000 Series: BSP User Guidene 20, 2007

MIDAS File System
11.1 The Midas File System (MFS)

Overview

The M5xxx contains a serial EEPROM that is accessible as a file system referred to as the Midas
File System (MFS). The MFS can be accessed from the BSP or from the Midas Monitor. Please see
the M5xxx BSP Monitor User's Guide[10] for information on how to access MFS files from the
Midas Monitor. The functions used for interfacing with MFS from the BSP are documented in this
section, along with the default files that are placed in MFS and their contents.

The MFS Functions

This section documents the MFS access functions available in the BSP. The include files mfs.h and
mfs_ini.h should be included when using these functions.

 mfs_open
Synopsis int mfs_open(char *filename, int flags)

filename - the name of the file to open in MFS
flags - 0 or MFS_CREATE(1)

Description This function opens a file in MFS, or creates it if it does not exist and the MFS_CREATE option is set.

Returns File number of opened file if OK, else ERROR

Example int fd;

if ((fd = mfs_open(filename, 0) == ERROR)

return ERROR
124 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)
 mfs_close
Synopsis STATUS mfs_close

 (

 int fd

)

fd - the file number that was previously returned from mfs_open

Description This function close a file in MFS that was previously opened with mfs_open.

Returns OK, or ERROR.

Example /* Close a previously opened file in MFS. */

mfs_close(fd);

 mfs_remove
Synopsis STATUS mfs_remove

 (

 char *filename

)

filename - the name of the MFS file to remove

Description This function removes a file in MFS.

Returns ERROR if file doesn't exist, else OK.

Example /* Remove the file in MFS named test.txt. */

mfs_remove("test.txt");
125Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System

 mfs_dir
Synopsis STATUS mfs_dir

(

)

Description This function lists the files in the MFS.

Returns Nothing

Example /* List the files in MFS */

mfs_dir;

 mfs_seek
Synopsis STATUS mfs_seek

 (

 int fd,

 int offset,

 int refpos

)

fd - the file number that was previously returned from mfs_open

offset - the position in the file to read/write next (in bytes)

refpos - The position from which to seek. The value can be either MFS_START (0), MFS_END (-1), or an
offset in bytes.

Description This function seeks to a specified point in an MFS file so that future reads/writes to the file occur from the given
point.

Returns If the seek cannot be performed, ERROR is returned. Otherwise OK is returned.

Example /* Seek to the end of a file in MFS. */

mfs_seek(fd, 0, MFS_END);
126 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)

/

 mfs_stat
Synopsis STATUS mfs_stat

 (

 int fd,

 MFS_STAT *stat

)

fd - the file number that was previously returned from mfs_open

stat - pointer to an MFS_STAT structure which contains offset, and size of the file.

Description This function queries the status of a file in sprom.

Returns If the stat cannot be performed, ERROR is returned. Otherwise OK is returned.

Example /* Get the status of a previously opened file in MFS. */

MVS_STAT mfs_stat;

mfs_stat(fd, &mfs_stat);

 mfs_tell
Synopsis int mfs_tell

 (

 int fd

)

fd - the file number that was previously returned from mfs_open

Description This function returns the current offset location for reading/writing from/to a file in SPROM.

Returns If the operation cannot be performed, ERROR is returned. Otherwise the offset is returned.

Example /* Get the current read/write location of a previously opened file in MFS. *

int offset;

offset = mfs_tell(fd);
127Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System

e

;

ile

h.
 mfs_eof
Synopsis int mfs_eof

(

int fd

)

fd - the file number that was previously returned from mfs_open

Description This function tests the given stream for an end-of-file indicator. Once the indicator is set read operations on the fil
return the indicator until rewind is called or the file is closed. The end-of-file indicator is reset with each input
operation.

Returns This function returns nonzero if an end-of-file indicator was detected on the last input operation on the
named stream and 0 if end-of-file has not been reached.

Example /* Determine if the given file is at its end-of-file marker. */

if (mfs_eof(fd)

 printf("This file is positioned at its end-of-file mark\n");

else

 printf("This file is not positioned at its end-of-file location\n")

 mfs_ftrunc
Synopsis int mfs_ftrunc

 (

 int fd,

 int length

)

fd - the file number that was previously returned from mfs_open

length - the length to which the file will be truncated

Description This function truncates a file to the specified length. If the file is already shorter than this length, the length of the f
is not changed.

Returns This function returns OK if the file was truncated or if the file is already shorter than the specified lengt
The function returns ERROR if an error condition is detected.

Example /* Truncate the given file to 100 bytes. */

mfs_ftrunc(fd, 100);
128 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)

er
 mfs_gets
Synopsis char *mfs_fgets

 (

 int *buf,

 int len,

 int fd

)

buf - buffer the put the read line into

len - the maximum length of the line to be read

fd - the file number that was previously returned from mfs_open

Description This function reads data from file fd until the next 0x0a character or until the next 0x0a character is found, whichev
comes first. The data is stored into buf. This function is similar to the "C" library function fgets.

Returns This function returns buf if OK, or NULL if there is an error or EOF

Example /* Read up to an 80 byte line from the given file in mfs */

char buf[80];

if (mfs_gets(buf, 80, fd) != ERROR)

 printf("The line read is: %s\n", buf);

else

 printf("Error reading a line\n");
129Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System

 mfs_read
Synopsis int mfs_read

 (

 int fd,

 int *buf,

 int len

)

fd - the file number that was previously returned from mfs_open

buf - buffer to put the read data into

len - the maximum amount of data to be read

Description This function reads up to "len" bytes of data from file fd and stores the data into buf. This function is similar to the
"read" C library function.

Returns This function returns the length read if OK, otherwise ERROR.

Example /* Read up to 80 bytes from the given file in mfs */

char buf[80];

int val;

val = mfs_read(fd, buf, 80);

if (val != ERROR)

 printf("Read %d bytes: %s\n", val, buf);

else

 printf("Error reading data\n");
130 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)
mfs_write
Synopsis STATUS mfs_write

 (

 int fd,

 int *buf,

 int len

)

fd - the file number that was previously returned from mfs_open

buf - buffer to put the read data into

len - the amount of data to be written

Description This function writes up to "len" bytes of data from "buf" into the file fd. This function is similar to the "write" C
library function.

Returns OK or ERROR.

Example /* Write some data to the given file in mfs */

char buf[80] = "abcdefg";

int val;

mfs_write(fd, buf, 7);

 mfs_pwd
Synopsis STATUS mfs_pwd

(

)

Description This function prints the current working directory in MFS.

Returns Nothing.

Example /* Print the current working directory in MFS */

mfs_pwd;
131Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System

 to
 mfs_ini_gettext
Synopsis STATUS mfs_ini_gettext

 (

 char *filename,

 char *section,

 char *item,

 char *buf,

 int buflen

)

Description This function reads the value of the item "item" in section "section" from file "filename" and puts it into "buf", up
the length "buflen". Note the actual section name in the file has brackets around it, i.e. "[RACEdrv]", while the
"section" parameter to this function should not have brackets, i.e. "RACEdrv".

Returns OK or ERROR

Example /* Find whether PXB initialization is enabled */

char init_flag[40];

if (mfs_ini_gettext("vxbsp.ini", "RACEdrv", "PxbInit",

 init_flag, sizeof(init_flag)) == OK)

 printf("Value of init_flag is: %s\n", init_flag);

else

 printf("Value of init_flag not found\n");
132 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)

on

on
 mfs_ini_settext
Synopsis STATUS mfs_ini_settext

 (

 char *filename,

 char *section,

 char *item,

 char *text

)

Description This function sets the value of the item "item" in section "section" of file "filename" to "text". Note the actual secti
name in the file has brackets around it, i.e. "[RACEdrv]", while the "section" parameter to this function should not
have brackets, i.e. "RACEdrv". Setting the "text" parameter to a null string, i.e. "" will remove the item from the
section.

Returns OK or ERROR

Example /* Set the PXB initialization flag to be enabled */

mfs_ini_gettext("vxbsp.ini", "RACEdrv", "PxbInit", "TRUE");

 mfs_ini_setlong
Synopsis STATUS mfs_ini_setlong

 (

 char *filename,

 char *section,

 char *item,

 long *value

)

Description This function sets the value of the item "item" in section "section" of file "filename" to the value "value". Note the
actual section name in the file has brackets around it, i.e. "[RACEdrv]", while the "section" parameter to this functi
should not have brackets, i.e. "RACEdrv".

Returns OK or ERROR

Example /* Set the VmeA16SlaveBase flag to "16384" */

int val = 16384;

mfs_ini_setlong("vxbsp.ini", "VMEInterface", "Vme16SlaveBase", &val);
133Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System

 is

his
 mfs_ini_setlongh
Synopsis STATUS mfs_ini_setlongh

 (

 char *filename,

 char *section,

 char *item,

 long *value

)

Description This function sets the value of the item "item" in section "section" of file "filename" to the value "value". The value
written as a hex value with a prefix of "0x". Note the actual section name in the file has brackets around it, i.e.
"[RACEdrv]", while the "section" parameter to this function should not have brackets, i.e. "RACEdrv".

Returns OK or ERROR

Example /* Set the VmeA16SlaveBase flag to "0x10000" */

int val = 0x10000;

mfs_ini_setlongh("vxbsp.ini", "VMEInterface", "Vme16SlaveBase", &val);

 mfs_ini_getlong
Synopsis STATUS mfs_ini_getlong

 (

 char *filename,

 char *section,

 char *item,

 long *value

)

Description This function sets the value of the item "item" in section "section" of file "filename". The value is read as a 32-bit
unsigned integer, and it can appear in the file in either decimal or hex format. The hex format has a prefix of "0x".
Note the actual section name in the file has brackets around it, i.e. "[RACEdrv]", while the "section" parameter to t
function should not have brackets, i.e. "RACEdrv".

Returns OK or ERROR

Example /* Get the value of the VmeA16SlaveBase flag */

int val;

mfs_ini_getlong("vxbsp.ini", "VMEInterface", "Vme16SlaveBase", &val);
134 M5000 Series: BSP User Guide Issued June 20, 2007

The Midas File System (MFS)

he
mfs_usr_load_file
Synopsis STATUS mfs_usr_load_file

(
char *networkFilename,
char *mfsFilename)

Description This function loads the specified file “networkFilename” from the network and saves it in MFS with t
specified filename “mfsFilename”

Returns Returns OK or ERROR

Example status = mfs_usr_load_file("/home/WindRiver/c5000-bsp1.2-r1.1/pci.ini",
"pci.ini");
135Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System
11.2 The vxbsp.ini File

The RACEdrv Section

The VmeInterface Section

The Universe DMA driver is part of the BSP and is documented in the Universe DMA Driver
Software Reference Manual.

Flag name Meaning Values Default

PxbInit Initialize PXB TRUE, FALSE FALSE

PxbPrefMemSize Size of prefetch memory pool for PXB Power of 2,
1MiB - 512 MiB

0 (disabled)

PxbMemIoSize Size of non-prefetch memory pool for PXB Power of 2,
1 MiB - 64 MiB

0 (disabled)

PxbIoSize Size of PCI I/O pool for PXB Power of 2,
16 bytes -256 KiB

0 (disabled)

Flag name Meaning Values Default

VmeA32Master2Base VME A32 base address of secondary
PCI slave base image
(no such space if not present)

VME A32
base address

Not present

VmeA16SlaveBase 32-bit VME base address of A16 VME
slave image used for booting other
boards over VME

32-bit VME
base address

Not present

VmeA32SlaveBase VME A32 base address of secondary
VME slave base image

VME A32
base address

Not present

VmeA32SlaveDisable If present, secondary VME slave base
image is disabled.

0, 1 Not present
136 M5000 Series: BSP User Guide Issued June 20, 2007

The mmon.ini File
11.3 The mmon.ini File

Normally, the mmon.ini file does not need to be modified by the user.

The BoardInfo Section

The AutoStart Section

Flag name Meaning Values Default

Model The model number of the

board

(Set by factory) Depends on board config.

SerialNo The serial number of the
board

(Set by factory) Assigned by manufacturer

ECO level The ECO level of the board (Set by factory) Assigned by manufacturer

TotalDramSize The size of the SDRAM
memory

(Set by factory) Assigned by manufacturer

Flag name Meaning Values Default

StartAddr The addres from which to start
booting an application (VxWorks).

0xf400 0000-0xf4ffffff 0xf400 0000
137Issued June 20, 2007 M5000 Series: BSP User Guide

MIDAS File System
138 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 12 Fibre Channel Support
sued Ju
 139M5000 Series: BSP User Guidene 20, 2007

Fibre Channel Support
12.1 Fibre Channel Information

Overview

The M5xxx models with 'F' in the model name contain an onboard Qlogic ISP2312 dual Fibre
Channel controller. Models with a single 'F' have front panel access to one Fibre Channel port, and
models with two 'F's in the model name have front panel access to both Fibre Channel ports. The
Fibre Channel driver is sold as part of a separate product called "VMFC driver for VxWorks"
(VMFC-DRV-VXWORKS) and is documented in the VMFC Driver Software Reference
Manual[12].
140 M5000 Series: BSP User Guide Issued June 20, 2007

APPENDIXES
141Issued June 20, 2007 M5000 Series: BSP User Guide

142 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 A Troubleshooting
sued Ju
This section covers common problems encountered with the
M5000.
143M5000 Series: BSP User Guidene 20, 2007

Troubleshooting
Gigabit Ethernet network communication does not work.

For Gigabit Ethernet Switches

The default configuration of the M5000 BSP requires that all Gigabit Ethernet switches in the data
path (between the M5000 and other Gigabit Ethernet peers) support Ethernet packets larger than the
MTU (Maximum Transmission Unit) being used, and that this feature (jumbo packets) is enabled
for all switches in the network.

If you are not using a Gigabit Ethernet switch that supports jumbo packets, a work around for this
problem is to configure EMAC2_MTU and EMAC3_MTU to 1500 in config.h. This turns off jumbo
packet usage in software. New “bootrom/vxWorks” or “vxWorks.st_rom” images must be
compiled and used with these new configurations.

For Fast Ethernet Switches (100 Mbps)

Fast Ethernet switches will work with the M5000 regardless of whether jumbo packets are
configured or not.

Command line compilation of the BSP fails.

In order to compile the BSP from a shell, there are two steps that must be completed:

1. Installation of Tornado 2.2.1 with patch 90451.
2. Set up the compilation environment using the torVars script.

Wind River has installation files for installing Tornado 2.2.1 for PowerPC directly. It is also
acceptable to install Tornado 2.2 for PowerPC, followed by installing the "Tornado 2.2 Cumulative
Patch 1. Patch 90451 must be installed on top of Tornado 2.2.1 (or Tornado 2.2 with Tornado 2.2
Cumulative Patch 1 applied).

Before compiling the BSP, it is also necessary to run the torVars script. Run torVars.bat/
torVars.sh or torVars.csh script depending on which platform and shell is used.

In Solaris, the torVars script is run using ‘source torVars.sh’ or ‘source torVars.csh’.
Running torVars.csh or torVars.sh without using the ‘source’ command won't work.

Having installed Tornado 2.2.1 with patch 90451 and run the torVars script in the current shell,
the BSP should be able to compile using commands such as ‘make’, ‘make vxWorks’, ‘make
vxWorks.st_rom.bin’ or ‘make bootrom.bin ADDED_CFLAGS=-DBOOT_ROM’ (from the BSP
directory).

The bootrom.bin should be compiled with the ‘ADDED_CFLAGS=-DBOOT_ROM’ option in order to
not include Flash and Built In Self Test functionality in the bootrom image.

Note – Many Gigabit Ethernet switches that support jumbo packets are shipped with this
feature disabled by default.
144 M5000 Series: BSP User Guide Issued June 20, 2007

If you encounter problems compiling the BSP after having installed Tornado 2.2.1 with Patch
90451 and run the torVars script, check that the WIND_BASE environment variable correctly
points to the Tornado 2.2.1-90451 installation.

•

145Issued June 20, 2007 M5000 Series: BSP User Guide

Troubleshooting
146 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 B Deprecated Functions
sued Ju
 145M5000 Series: BSP User Guidene 20, 2007

Deprecated Functions

e

s
 pciToLocalAdrs (replaced with sysBusToLocalAdrs)

Synopsis. int pciToLocalAdrs (

int adrsSpace,

char *busAdrs,

char **localAdrs,

int busId)

adrsSpace - specifies which PCI address space. Must be one of the following defined constants:
PCI_MEMORY_SPACE (1) or PCI_IO_SPACE (2).

busAdrs - PCI bus address to convert.

localAdrs - where the converted address is returned.

busId - This parameter is not used.

Descrip-
tion.

The PPC440GX accesses the PCI buses via address translation mappings set up by the BSP. Say you have a PCI
device that maps its registers to certain PCI addresses. In order for the PPC440GX to read/write those registers, th
PCI address must be converted to a local address. This function converts a PCI bus address to its equivalent local
address.

Returns. OK, or ERROR if the translation is not valid, in which case localAdrs will be NULL.

Example. struct my_device_regs *devRegs;

int value;

/* The device registers start at memory address 0xC0000000 on the Primary bu
*/

if (pciToLocalAdrs (PCI_MEMORY_SPACE, (char *)0xC0000000,

(char **)&devRegs, 0) == ERROR)

 return (ERROR);

/* Read a 32-bit value from the device's status register */

value = devRegs->status;
146 M5000 Series: BSP User Guide Issued June 20, 2007

er,
 pciLocalToPciAdrs (replaced with sysLocalToBusAdrs)

Synopsis. int pciLocalToPciAdrs (

int adrsSpace,

char *localAdrs,

char **busAdrs,

int busId)

adrsSpace - specifies which PCI address space. Must be one of the following defined constants:
PCI_MEMORY_SPACE (1) or PCI_IO_SPACE (2).

localAdrs - local address to convert.

busAdrs - where the converted address is returned.

busId - This parameter is not used.

Descrip-
tion.

Say the application code allocates a buffer in the PPC440 DRAM. In order for other PCI masters to access this buff
the buffer's PCI address must be obtained from its corresponding local address.

Returns. OK, or ERROR.

Example. char *localAdrs, *busAdrs;

 /* Allocate a 1KB buffer in MPC8240 DRAM */

localAdrs = malloc (1024);

if (localAdrs == NULL)

 return (ERROR);

 /* Find PCI address of buffer */

if (pciLocalToPciAdrs (PCI_MEMORY_SPACE,

localAdrs, &busAdrs, 0) == ERROR)

 return (ERROR);

printf ("buffer local addr=0x%x, buffer PCI

 bus address=0x%x\n", localAdrs, busAdrs);
147Issued June 20, 2007 M5000 Series: BSP User Guide

Deprecated Functions
148 M5000 Series: BSP User Guide Issued June 20, 2007

Is
 C Built In Self Test

(BIST) API.
sued Ju
 149M5000 Series: BSP User Guidene 20, 2007

Built In Self Test (BIST) API.
C-1 Built In Self Test API Contents

The Built In Self Test API (BIST API) is a set of functions that tests the M5000 hardware and not
any external IO. The tests are grouped as follows:

• Processor device tests. Tests SDRAM, Flash, SPROM, PLD and temperature sensors.
(bist_proc_*).

• P2P tests. Tests the three P2P bridges on the M5000 board. (bist_p2p_*).
• Fibre Channel tests. Tests the Fibre Channel interface on the M5000 board. (bist_p2fc_*).
• VME tests. Tests the VME interface on the M5000 board. (bist_p2vme_*).
• Raceway tests. Tests the RaceWay interface on the M5000 board. (bist_p2race_*).
• I/O Spacer tests. Tests Gigabit Ethernet extension modules mounted on some M5000 boards.

(bist_iospacer_*).
• Mezzanine tests. Tests the Mezzanine connection that is present on some M5000 boards, the

M55xx boards. (bist_mezz_*).
• Base board tests. Tests other items on the board, primarily the Ethernet interrupt.

(bist_baseboard_*).

Each group has an "all" function (I.E. bist_proc_all) that runs all the tests for that groups. There are
also two functions "bist_all" and "bist_all_show" that run all the tests appropriate for the board on
which they are being run.

A full list and explanation of the BIST API functions can be found in the BIST API Reference
Guide. A link directly to the API Reference Guide can be found on the main documentation
webpage located in the documentation directory.
150 M5000 Series: BSP User Guide Issued June 20, 2007

Technical Support

In order for us to provide fast technical support, please provide the following information:

• Any modifications made to the default BSP.
• Any changes to the default versions of the FLASH files, such as mmon.ini and pci.ini.
• Detailed description of all symptoms observed, including serial port output and PCI or VME

analyzer trace files if applicable

Online Support

http://www.vmetro.com/support

North and South America

Telephone Support (281) 584-0728
Fax (281) 584-9034

United Kingdom

Telephone Support +44 (0) 1494 476000
Fax +44 (0) 1494 464472

Singapore

Telephone Support +65 6238 6010
Fax +65 6238 6020

Europe and the rest of the world

Telephone Support +47 23 17 28 00
Fax +47 23 17 28 01
151Issued June 20, 2007 M5000 Series: BSP User Guide

http://www.vmetro.com/support

References

The Fibre Channel Industry Association (FCIA)

http://www.fibrechannel.org

American National Standards Institute

http://www.ansi.org
152 M5000 Series: BSP User Guide Issued June 20, 2007

	Preface
	Introduction
	Style Conventions Used
	IEC Prefixes for binary multiples
	Quality Assurance
	Technical Support
	Related Documentation
	References Used in this document

	1 Overview
	1.1 Overview
	1.2 M5xxx Model Numbering
	1.3 M5xxx Address Maps and Address Space Mapping

	2 System Memory
	2.1 System Memory
	2.2 Cache-safe Buffers
	2.3 Error Checking and Correction (ECC)

	3 PCI Bus Operation
	3.1 PCI Bus Layout
	3.2 PCI Configuration Space Access
	3.3 PCI Memory and I/O Space Access
	sysBusToLocalAdrs
	sysLocalToBusAdrs

	3.4 PCI Interrupt Handling
	Interrupt Pin
	Interrupt Routing and Sharing
	Interrupt Connection and Enabling

	3.5 PCI Bus Operations
	Overview
	PCI buses and MidasBusID
	PMC slot

	MidasBusIdFromPciBusNo
	MidasBusIdToPciBusNo
	MidasGetPmcBridgeBusNumbers
	MidasPmcSlotInfoGet
	MidasPciSlotInfoGet

	3.6 PCI Optimizations

	4 I2O Messaging Unit Support
	4.1 Overview
	4.2 Message Register Support
	muMessageConnect
	muIsMessageConnected
	muMessageDisconnect
	muMessageEnable

	5 VME Bus Operation
	5.1 VME Master & Slave Access Configuration
	Overview
	VME Address Modifier (AM) Codes
	VME Master (PCI Slave) Access Windows
	VME Slave (PCI Master) Access Windows
	Functions
	uniPciSlaveImageSet
	uniVmeSlaveImageSet
	uniVmeSlaveImageSetup
	uniImageShow

	5.2 Configuring PCI Slave Images in the Universe
	Procedure
	Viewing PCI Slave Image Configuration
	Changing PCI Slave Image Configuration
	Option 1
	Option 2
	Option 3

	5.3 VME Interrupts
	VME Interrupt Handling
	VME Interrupt Generation
	VxWorks Target Shell Example :

	5.4 Universe DMA Functionality
	Universe DMA Driver
	Universe DMA Interface Functions
	uniDmaLibInit
	uniDmaDirect
	uniDmaChainCmdPktCreate
	uniDmaChain
	uniDmaChainStop
	uniDmaNotifyFncSet

	6 RACEway PCI Interface
	6.1 RACEway-PCI Interface
	Overview
	PXB Initialization
	PXB DMA Driver

	7 Network
	7.1 Ethernet (emac) Network Interface
	Configuring JUMBO packets

	7.2 Shared Memory (sm) Backplane Network Interface
	7.3 Gigabit Ethernet Throughput Performance

	8 BSP Installation
	8.1 BSP Installation & Distribution
	Installation
	Files & Directories

	9 Burning VxWorks Boot Code
	9.1 Burning VxWorks Boot Code from Rom Monitor (Serial)
	9.2 Burning VxWorks Boot Code from VxWorks (Ethernet)
	9.3 Burning VxWorks Boot Code from U-Boot (Ethernet)
	Setting Network Parameters
	TFTP:
	NFS:

	Flash VxWorks image

	10 DMA drivers
	10.1 PPC440GX DMA Driver
	Setting up a DMA transaction
	Single DMA transactions
	Chained DMA transactions
	Common status structure
	Address translation functions
	Single blocking DMA transfer example
	Chained DMA transfer example

	11 MIDAS File System
	11.1 The Midas File System (MFS)
	Overview
	The MFS Functions
	mfs_open
	mfs_close
	mfs_remove
	mfs_dir
	mfs_seek
	mfs_stat
	mfs_tell
	mfs_eof
	mfs_ftrunc
	mfs_gets
	mfs_read
	mfs_write
	mfs_pwd
	mfs_ini_gettext
	mfs_ini_settext
	mfs_ini_setlong
	mfs_ini_setlongh
	mfs_ini_getlong
	mfs_usr_load_file

	11.2 The vxbsp.ini File
	The RACEdrv Section
	The VmeInterface Section

	11.3 The mmon.ini File
	The BoardInfo Section
	The AutoStart Section

	12 Fibre Channel Support
	12.1 Fibre Channel Information
	Overview

	APPENDIXES
	A Troubleshooting
	Gigabit Ethernet network communication does not work.
	Command line compilation of the BSP fails.

	B Deprecated Functions
	pciToLocalAdrs (replaced with sysBusToLocalAdrs)
	pciLocalToPciAdrs (replaced with sysLocalToBusAdrs)

	C Built In Self Test (BIST) API.
	C-1 Built In Self Test API Contents

	Technical Support
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

