
Wind River Workbench

USER’S GUIDE

VxWorks Version

®

2.4

Wind River Workbench User's Guide

Copyright © 2005 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench User’s Guide, 2.4 (VxWorks Version)

11 Oct 05
Part #: DOC-15623-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

PART I: INTRODUCTION

1 Overview .. 3

1.1 Introduction ... 3

1.2 Wind River Documentation ... 4

1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts ... 5

1.4.1 Hardware in a Cross-Development Environment 5

1.5 Basic Eclipse Concepts .. 7

1.5.1 Window ... 7

1.5.2 Workspace ... 7

1.5.3 Perspectives ... 8

1.5.4 Views .. 10

1.5.5 Editors .. 11

1.5.6 Projects ... 11

1.6 Accessing Additional Interface Information .. 12

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

iv

2 Wind River Workbench Tutorials ... 13

2.1 Introduction ... 13

2.2 Starting Wind River Workbench ... 14

2.3 Tutorial: Creating a Project and Running a Program 15

2.3.1 Before You Begin ... 15

2.3.2 Creating a Project ... 15

2.3.3 Importing Source Files Into Your Project .. 16

2.3.4 Building Your Project ... 17

2.3.5 Creating a Connection Definition to the VxWorks simulator 17

2.3.6 Downloading the Program and Attaching the Debugger 18

2.3.7 Setting Up the Device Debug Perspective .. 18

2.3.8 Setting and Running to a Breakpoint. ... 20

2.3.9 Modifying the Breakpoint ... 21

2.4 Tutorial: Editing and Debugging Source Files ... 21

2.4.1 Before You Begin ... 22

2.4.2 Introducing an Error into the Source Code .. 22

2.4.3 Tracking Down a Build Failure .. 22

2.4.4 Rebuilding the Project ... 23

2.5 Tutorial: Using the Editor’s Code Development Features 23

2.5.1 Using Code Completion to Add Symbols to Your File 23

2.5.2 Using Parameter Hints ... 24

2.5.3 Using Bracket Matching to Clarify Syntax ... 25

2.6 Tutorial: Tracking Items of Interest in Your Files ... 25

2.6.1 Creating a Bookmark on a Source Line in a File 26

2.6.2 Creating a Bookmark for an Entire File ... 26

2.6.3 Locating and Viewing Your Bookmarks ... 26

 Contents

v

3 Setting Up Your Hardware .. 29

3.1 Introduction ... 29

3.1.1 Overview of Host and Target Configuration Tasks 30

3.1.2 Understanding Target Servers and Target Agents 30

3.2 Configuring Your Cross-Development System .. 33

3.2.1 Configuring Host Software ... 33

3.2.2 Verifying Serial Setup and Power .. 37

3.3 Setting Up a Boot Mechanism ... 41

3.4 Booting VxWorks .. 43

3.4.1 Default Boot Process .. 43

3.4.2 Entering New Boot Parameters .. 44

3.4.3 Boot Program Commands ... 46

3.4.4 Description of Boot Parameters ... 47

3.4.5 Booting With New Parameters ... 50

3.4.6 Alternate Boot Methods .. 52

3.4.7 Rebooting VxWorks ... 53

3.5 Configuring Host-Target Communication for Workbench 54

3.5.1 Ethernet Connections ... 54

3.5.2 Serial-Line Connections ... 57

3.6 Troubleshooting VxWorks Problems ... 60

PART II: PROJECTS

4 Projects Overview .. 63

4.1 Introduction ... 63

4.2 Workspace/Project Location ... 64

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

vi

4.3 Creating New Projects ... 64

4.3.1 Subsequent Modification of Project Creation Wizard Settings 65

4.3.2 Projects and Application Code ... 65

4.4 Overview of Preconfigured Project Types ... 66

4.4.1 Workbench Sample Projects .. 66

4.4.2 VxWorks Image Project ... 66

4.4.3 VxWorks Board Support Package Project ... 67

4.4.4 VxWorks Downloadable Kernel Module Projects 67

4.4.5 Real-time Process Projects ... 68

4.4.6 VxWorks Shared Library Projects .. 69

4.4.7 VxWorks File System Projects ... 69

4.4.8 Native Application Projects .. 70

4.5 Projects and Project Structures .. 70

4.5.1 Adding Subprojects to a Project ... 71

4.5.2 Project Structures and Host File System Directory Structure 72

4.5.3 Project Structures and the Build System ... 73

4.5.4 Project Structures and Sharing Subprojects .. 74

4.5.5 Customizing Build Settings for Shared Subprojects 74

5 VxWorks Image Projects .. 75

5.1 Introduction ... 75

5.2 Importing a VxWorks Image Project .. 76

5.2.1 Migrating a VxWorks Image Project .. 76

5.3 Creating a VxWorks Image Project ... 77

5.4 VxWorks Image Projects in the Project Navigator ... 80

5.4.1 Global Project Nodes ... 80

5.4.2 Project Build Specs and Target Nodes ... 80

 Contents

vii

5.4.3 Build Output Folders ... 82

5.4.4 Makefile Nodes ... 82

5.4.5 Project File Nodes ... 83

5.5 Configuring Kernel Components ... 84

5.5.1 The Kernel Editor ... 85

5.6 Adding Application Projects to the VxWorks Image Project 85

5.7 Notes on Board Support Packages (BSPs) ... 86

5.7.1 Using the Simulator BSP ... 86

5.7.2 Using a Wind River or Third-Party BSP ... 87

5.7.3 Using a Custom BSP for Custom Hardware .. 87

6 Boot Loader Project ... 89

6.1 Introduction ... 89

6.2 Creating a Boot Loader Project .. 90

6.3 Boot Loader Projects in the Project Navigator .. 91

6.3.1 Global Project Nodes ... 91

6.3.2 Project Build Specs and Target Nodes ... 91

6.3.3 Makefile Nodes ... 92

6.3.4 Other Project Files .. 92

7 ROMFS File System Projects .. 93

7.1 Introduction ... 93

7.2 Creating a ROMFS File System Project ... 94

7.3 ROMFS File System Projects in the Project Navigator 95

7.3.1 Global Project Nodes ... 95

7.3.2 Project File Nodes ... 95

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

viii

7.3.3 Configuring the ROMFS File System .. 96

8 VxWorks Real-time Process Projects ... 97

8.1 Introduction ... 97

8.2 Creating a VxWorks Real-time Process Project .. 98

8.3 VxWorks Real-time Processes in the Project Navigator 100

8.3.1 Global Project Nodes ... 101

8.3.2 Project Build Specs and Target Nodes ... 101

8.3.3 Makefile Nodes ... 101

8.3.4 Project File Nodes ... 102

8.4 Application Code for a VxWorks Real-time Process Project 103

8.5 Linking to VxWorks and Using Shared Libraries .. 103

9 VxWorks Shared Library Projects .. 105

9.1 Introduction ... 105

9.2 Creating a VxWorks Shared Library Project ... 106

9.3 Shared Libraries in the Project Navigator ... 108

9.3.1 Global Project Nodes ... 108

9.3.2 Target Node ... 108

9.3.3 Makefile Nodes ... 109

9.3.4 Project File Nodes ... 109

9.4 Source Code for the Shared Library ... 109

9.5 Making Shared Libraries Available to Applications 110

9.5.1 Configuring the Shared Library Project .. 110

9.5.2 Configuring the Application Projects .. 110

 Contents

ix

10 VxWorks Downloadable Kernel Module Projects 113

10.1 Introduction ... 113

10.2 Creating a VxWorks Downloadable Kernel Module Project 114

10.3 Downloadable Kernel Modules in the Project Navigator 116

10.3.1 Global Project Nodes ... 117

10.3.2 Project Build Specs and Target Nodes ... 117

10.3.3 Makefile Nodes ... 118

10.3.4 Project File Nodes ... 118

10.4 Application Code for a VxWorks DKM Project ... 118

11 VxWorks User-Defined Projects .. 121

11.1 Introduction ... 121

11.2 Creating a User-Defined Project .. 122

11.2.1 Linking to External Files ... 122

11.3 Creating an Application for VxWorks .. 124

12 Native Application Projects ... 125

12.1 Introduction ... 125

12.2 Creating a Native Application Project ... 126

12.3 Native Applications in the Project Navigator ... 128

12.3.1 Global Project Nodes ... 128

12.3.2 Project Build Specs and Target Nodes ... 128

12.3.3 Makefile Nodes ... 129

12.3.4 Project File Nodes ... 130

12.4 Application Code for a Native Application Project ... 130

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

x

13 Working in the Project Navigator .. 131

13.1 Introduction ... 131

13.2 Creating Projects ... 132

13.3 Adding Application Code to Projects ... 132

13.3.1 Importing Resources .. 132

13.3.2 Adding New Files to Projects ... 133

13.4 Opening and Closing Projects ... 134

13.4.1 Closing a Project ... 134

13.5 Scoping and Navigation .. 135

13.6 Moving, Copying, and Deleting Resources and Nodes 136

13.6.1 Resources and Logical Nodes ... 136

13.6.2 Manipulating Files ... 137

13.6.3 Manipulating Project Nodes ... 138

13.6.4 Manipulating Target Nodes .. 139

13.7 Project Navigator Quick Reference ... 140

14 Advanced Project Scenarios ... 143

14.1 Introduction ... 143

14.2 Resource Locations ... 144

14.3 Multiple, Unrelated Software Systems .. 145

14.3.1 Using Different Workspaces for Different Systems 145

14.3.2 Using the Same Workspace for Different Software Systems 146

14.4 Complex Project Structures .. 146

14.4.1 Project Assumptions .. 147

14.4.2 Infrastructure Design ... 148

 Contents

xi

14.4.3 Development ... 153

14.4.4 Finalization .. 158

PART III: DEVELOPMENT

15 Navigating and Editing ... 167

15.1 Introduction ... 167

15.2 Wind River Workbench Context Navigation .. 168

15.2.1 The Symbol Browser .. 168

15.2.2 The Outline View ... 169

15.2.3 The File Navigator ... 169

15.2.4 Type Hierarchy View ... 170

15.2.5 Include Browser .. 170

15.3 The Editor .. 171

15.4 Search and Replace: The Retriever ... 171

15.4.1 Intiating Text Retrieval .. 171

15.5 Static Analysis ... 172

16 Build Properties and the Build Console ... 173

16.1 Introduction ... 174

16.2 Accessing Build Properties ... 175

16.2.1 Project Build Properties and Preferences Build Properties 175

16.3 Build Support .. 177

16.4 Build Targets .. 178

16.5 Build Specs .. 181

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

xii

16.6 Build Tools ... 184

16.7 Build Macros ... 188

16.8 Build Paths ... 190

16.8.1 The Generate Include Search-Paths Wizard ... 192

16.9 Build Properties for VxWorks Image Projects .. 193

16.9.1 Build Specs for VIPs ... 193

16.9.2 Build Tools for VIPs ... 193

16.9.3 Build Macros for VIPs .. 193

16.9.4 Build Paths for VIPs ... 194

16.9.5 Link Order for VIPs .. 194

16.10 Folder, File, and Build-Target Properties ... 194

16.11 Makefiles .. 194

16.11.1 Derived File Build Support ... 195

16.12 Build Console View ... 197

16.12.1 Saving Build Output .. 197

16.12.2 Build Console Preference Settings ... 197

17 Building: Use Cases ... 199

17.1 Introduction ... 199

17.2 Adding Compiler Flags ... 200

17.2.1 Add a Compiler Flag by Hand ... 200

17.2.2 Add a Compiler Flag with GUI Assistance .. 201

17.3 Building Applications for Different Boards ... 202

17.4 Creating Library Build-Targets for Testing and Release 203

17.5 Architecture-Specific Implementation of Functions 206

 Contents

xiii

17.6 Executables that Dynamically Link to Shared Libraries 207

17.7 User-Defined Build-Targets in the Project Navigator 210

17.7.1 Custom Build-Targets in User-Defined Projects 210

17.7.2 Custom Build-Targets in Workbench Managed Projects 210

17.7.3 User Build Arguments ... 211

17.8 A Build Spec for New Compilers and Other Tools ... 211

17.9 Developing on Remote Hosts .. 213

17.9.1 General Requirements ... 214

17.9.2 Remote Build Scenarios ... 214

17.9.3 Setting Up a Remote Environment .. 215

17.9.4 Building Projects Remotely ... 215

17.9.5 Running Applications Remotely .. 216

17.9.6 Rlogin Connection Description .. 217

18 RTPs and Shared Libraries from Host to Target 219

18.1 Introduction ... 219

18.2 A VxWorks Real-time Process from Host to Target ... 220

18.2.1 Set Up the Project Structure for Real-time Processes 220

18.2.2 Add Code to the Real-time Process Project .. 221

18.2.3 Add the Real-time Process to the Target File System 223

18.2.4 Build the System ... 224

18.2.5 Set up the Target Connection .. 224

18.2.6 Run the Real-time Process on the Simulator .. 225

18.3 A VxWorks Shared Library from Real-time Process to Target 225

18.3.1 Set Up the VxWorks Shared Library Project .. 225

18.3.2 Add Code to the Shared Library Project ... 226

18.3.3 Add the Shared Library to the Run-Time Process 227

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

xiv

18.3.4 Modify the Code in the Real-time Process Project 230

18.3.5 Generate Include Search Paths ... 231

18.3.6 Add the Shared Library to the Target File System 231

18.3.7 Build the System Again ... 232

18.3.8 Run the RTP with the Shared Library on the Simulator 233

PART IV: TARGET MANAGEMENT

19 Connecting to Targets .. 237

19.1 Introduction ... 237

19.2 The Target Manager View ... 238

19.3 Defining a New Connection ... 238

19.4 The Registry ... 239

19.4.1 Remote Registries ... 240

19.4.2 Registry Data Storage .. 241

19.4.3 The Registry and Product Updates .. 241

19.4.4 Changing the Default Registry ... 241

19.5 Establishing a Connection .. 242

19.5.1 Assumptions ... 242

19.6 Connect to the Target ... 242

19.6.1 The Kernel Shell .. 243

20 New Target Server Connections ... 245

20.1 Introduction ... 245

20.2 Defining a New Target Server Connection ... 245

20.2.1 Wind River Target Server .. 246

20.2.2 Target Server Connection Page .. 246

 Contents

xv

20.2.3 Object Path Mappings Page .. 250

20.2.4 Target State Refresh Page .. 253

20.2.5 Connection Summary Page .. 254

20.3 Kernel Configuration .. 255

21 New VxWorks Simulator Connections ... 257

21.1 Introduction ... 257

21.2 Defining a New Wind River VxWorks Simulator Connection 257

21.2.1 VxWorks Boot Parameters Page ... 258

21.2.2 VxSim Memory Options Page .. 258

21.2.3 VxWorks Simulator Miscellaneous Options Page 258

21.2.4 Target Server Options Page ... 259

22 New On-Chip Debugging Connections ... 261

22.1 Defining a New Wind River ICE SX Connection .. 261

22.2 Defining a New Wind River ISS Connection ... 271

22.3 Defining a New Wind River Probe Connection ... 275

PART V: DEBUGGING

23 Launching Programs .. 285

23.1 Introduction ... 285

23.2 Launching a Kernel Task or a Process .. 286

23.2.1 Defining the Target Connection ... 287

23.2.2 Defining the Kernel Task or Process to Run ... 287

23.2.3 Specifying a Build Target to Download .. 288

23.2.4 Specifying The Projects to Build .. 288

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

xvi

23.2.5 Defining Debug Behavior ... 289

23.2.6 Specifying Where Workbench Should Look for Source Files 290

23.2.7 Configuring Access Methods ... 290

23.2.8 Using Your Launch Configuration .. 291

23.3 Reset & Download: Hardware Debugging Launches 291

23.4 Launching a Native Application ... 292

23.4.1 Specifying the Location and Arguments for Your Application 292

23.4.2 Specifying Remote Settings ... 292

23.4.3 Setting Environment Variables ... 293

23.4.4 Configuring Access Methods ... 293

23.4.5 Running Your Native Application ... 294

23.5 Relaunching Recently Run Programs ... 294

23.5.1 Increasing the Size of the Launch History List 295

23.6 Using Attach-to-Target Launches .. 295

23.6.1 Attaching the Debugger to a Running Task or Process 296

23.6.2 Attaching the Debugger to the Kernel .. 297

23.6.3 Attaching the Kernel in Task Mode ... 297

23.6.4 Attaching the Kernel in System Mode .. 297

23.7 Suggested Workflow .. 298

24 Managing Breakpoints .. 299

24.1 Introduction ... 299

24.2 Types of Breakpoints ... 299

24.2.1 Line Breakpoints ... 300

24.2.2 Expression Breakpoints ... 301

24.2.3 Hardware Breakpoints ... 301

 Contents

xvii

24.3 Manipulating Breakpoints ... 303

24.3.1 Importing Breakpoints .. 303

24.3.2 Exporting Breakpoints ... 304

24.3.3 Refreshing Breakpoints ... 304

24.3.4 Disabling Breakpoints ... 304

24.3.5 Removing Breakpoints .. 304

25 Debugging Projects .. 307

25.1 Introduction ... 307

25.2 Using the Debug View .. 308

25.2.1 Understanding the Debug View Display .. 309

25.3 Coloring Views ... 312

25.4 Stepping Through a Program ... 313

25.5 Using Debug Modes .. 313

25.5.1 Setting and Recognizing the Debug Mode of a Connection 316

25.5.2 Debugging Multiple Target Connections ... 317

25.5.3 Disconnecting and Terminating Processes ... 317

25.6 Understanding Source Lookup Path Settings ... 317

25.7 Using the Disassembly View ... 318

25.7.1 Opening the Disassembly View ... 318

25.7.2 Understanding the Disassembly View Display 318

25.8 Using the Kernel Objects View ... 319

25.8.1 Understanding the Kernel Objects View Display 321

25.9 Run/Debug Preferences .. 322

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

xviii

26 Troubleshooting .. 323

26.1 Introduction ... 323

26.2 Startup Problems .. 324

26.2.1 Pango Error on Linux .. 327

26.3 General Problems ... 327

26.3.1 Java Development Tools (JDT) Dependency .. 327

26.3.2 Help System Does Not Display on Solaris or Linux 328

26.3.3 Help System Does Not Display on Windows 328

26.3.4 Removing Unwanted Target Connections .. 328

26.4 Error Messages .. 329

26.4.1 Project System Errors ... 329

26.4.2 Build System Errors ... 331

26.4.3 Target Manager Errors ... 334

26.4.4 Launch Configuration Errors ... 339

26.4.5 Debugger Errors ... 340

26.4.6 Static Analysis Errors ... 340

26.5 Troubleshooting VxWorks Configuration Problems 341

26.5.1 What to Check ... 341

26.6 Error Log View .. 344

26.7 Error Logs Generated by Workbench ... 344

26.7.1 Creating a ZIP file of Logs .. 345

26.7.2 Eclipse Log .. 345

26.7.3 DFW GDB/MI and Debug Tracing Logs .. 346

26.7.4 Debugger Views GDB/MI Log .. 347

26.7.5 Debugger Views Internal Errors Log ... 347

26.7.6 Debugger Views Broadcast Message Debug Tracing Log 347

 Contents

xix

26.7.7 Target Server Output Log ... 348

26.7.8 Target Server Back End Log .. 349

26.7.9 Target Server WTX Log ... 349

26.7.10 Target Manager Debug Tracing Log .. 350

26.7.11 Static Analysis Parser Logs ... 351

26.8 Technical Support ... 351

PART VI: UPDATING

27 Integrating Plug-ins .. 355

27.1 Introduction ... 355

27.2 Finding New Plug-ins ... 356

27.3 Incorporating New Plug-ins into Workbench .. 356

27.3.1 Creating a Plug-in Directory Structure ... 356

27.3.2 Installing a ClearCase Plug-in .. 357

27.4 Using Workbench with ClearCase Views .. 360

27.4.1 Adding Workbench Project Files to Version Control 360

27.5 Downloading and Installing Java Development Tools (JDT) 361

27.5.1 Creating a JDT Directory Structure ... 361

27.5.2 Downloading the JDT SDK ... 361

27.5.3 Making JDT Available to Workbench .. 361

27.6 Managing Multiple Plug-in Configurations ... 362

27.7 Using Workbench in an Eclipse Environment .. 363

27.7.1 Recommended Software Versions and Limitations 363

27.7.2 Setting Up Workbench ... 363

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

xx

PART VII: REFERENCE

A Updating Workspaces on the Command-line 369

A.1 Overview .. 369

A.2 wrws_update Reference .. 370

B Glossary ... 373

Index .. 379

1

PAR T I

Introduction

1 Overview ... 3

2 Wind River Workbench Tutorials 13

3 Setting Up Your Hardware 29

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

2

3

 1
Overview

1.1 Introduction 3

1.2 Wind River Documentation 4

1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts 5

1.5 Basic Eclipse Concepts 7

1.6 Accessing Additional Interface Information 12

1.1 Introduction

Welcome to the Wind River Workbench User’s Guide. Wind River Workbench 2.4 is
an Eclipse1-based development suite that provides an efficient way to develop
real-time and embedded applications with minimal intrusion on the target system.

Wind River Workbench is available on Windows, Linux, and Solaris hosts, but in
this guide, screenshots and paths will be shown as on Windows.

1. Eclipse is an industry-standard framework for building development suites.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

4

1.2 Wind River Documentation

A wide variety of documentation in many different formats is available to
Workbench customers. See the getting started for your platform for a description
of the full document set.

1.3 Road Map to the Wind River Workbench User’s Guide

■ This chapter provides an overview of cross-development concepts, and an
introduction to basic Eclipse terminology and functionality.

■ 2. Wind River Workbench Tutorials provides a tutorial that walks you through
all the major features of Workbench: creating projects, building and
debugging code, connecting to the VxWorks simulator, and running your
program.

■ 3. Setting Up Your Hardware explains how to set up your host and target in
order to run your programs on real target hardware.

■ Part II. Projects explains the Project System, including creating new projects,
importing and exporting existing projects, and creating VxWorks images and
user applications.

■ Part III. Development describes the Editor, Static Analysis, and Build System
features of Workbench.

■ Part IV. Target Management provides details about using the Target Manager,
including how to configure a target server, and how to create and manage
your target connections.

■ Part V. Debugging explains Debugger functionality, including launch
configurations, attaching the debugger to processes, working with
breakpoints, displaying processes in the Debug and Disassembly views, and
examining registers and memory. This section also provides Troubleshooting
information, explaining how to respond to error messages you may see while
using Workbench.

■ Part VI. Updating describes how to incorporate Plug-ins, such as ClearCase,
into Workbench.

1 Overview
1.4 Understanding Cross-Development Concepts

5

1
■ Part VII. Reference provides information about updating your workspace with

the command-line, as well as a Glossary of Workbench and Eclipse terms for
which you may want more information.

1.4 Understanding Cross-Development Concepts

Cross-development is the process of writing code on one system, known as a host,
that will run on another system, known as a target.

Cross-development allows you to write code on a system that you have available
to you (such as a PC running Linux, Windows, or Solaris) and produce
applications that run on hardware that you would have no other convenient way
of programming, such as a chip destined for a mobile phone.

1.4.1 Hardware in a Cross-Development Environment

A typical host is equipped with large amounts of RAM and disk space, backup
media, printers, and other peripherals. In contrast, a typical target has only the
resources required by the real-time application with perhaps some small amount
of additional resources for testing and debugging.

Working on the Host

You use the host just as you would if you were writing code to run on the host
itself—to manage project files; edit, compile, link, store multiple versions of your
real-time code, and configure the operating system destined to run on the target.

Connecting the Target to the Host

A number of alternatives exist for connecting the target system to the host, such as
Ethernet, serial, and JTAG. See 3. Setting Up Your Hardware for more information
about setting up your hardware.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

6

Running Your Application Code

Run-time code is the code that is intended for the final application. The run-time
includes the kernel, your application-specific code, and some selected library code.
The term run-time does not usually refer to the target agent, although you will
typically include it during development and debugging. See 3.1.2 Understanding
Target Servers and Target Agents, p.30 for more information about the target agent.

Workbench allows you to avoid the cumbersome process of downloading your
complete run-time code each time you make a change by allowing you to
download and run individual application modules as they are developed. You can
even run application modules on the host in the integrated target simulator,
Wind River VxWorks Simulator, if target hardware is not available.

Advantages of Using Wind River Workbench

Wind River Workbench ensures the smallest possible difference between the
performance of the target you use during development, and the performance of
the target after deployment, by keeping most development tools on the host.

A fundamental advantage of using Wind River Workbench is that your
application does not need to be fully linked. Code that is only partially completed
can be downloaded for incremental testing and debugging; application modules
do not need to be linked with the run-time system libraries, or even with each
other. The host-resident shell and debugger can be used interactively to invoke
and test either individual application routines or complete tasks.

Workbench loads the relocatable object modules directly, and maintains a
complete host-resident symbol table for the target. This symbol table is
incremental: the target server incorporates symbols as it downloads each object
module. You can examine variables, call subroutines, spawn tasks, disassemble
code in memory, set breakpoints, trace subroutine calls, and so forth, all using the
original symbol names.

Wind River Workbench shortens the cycle between developing an idea and
implementing it by allowing you to quickly download your incremental run-time
code and dynamically link it with the operating system. Your application is
available for symbolic interaction and testing with minimal delay.

The Workbench debugger allows you to view and debug applications in the
original source code. Setting breakpoints, single-stepping, examining structures,
and so on are all done at the source level, using a convenient graphical interface.

1 Overview
1.5 Basic Eclipse Concepts

7

11.5 Basic Eclipse Concepts

Wind River Workbench is based on the Eclipse Platform, an industry-standard
framework for building development suites.

This section provides a very brief overview of some of the Workbench components
inherited from Eclipse.

1.5.1 Window

The term window refers to the desktop development environment. You can open
more than one window at a time by selecting Window > New Window (each
window will see the same projects and workspace.) A Workbench window can
contain one or more perspectives.

1.5.2 Workspace

Workbench uses a workspace to store your current working environment. Some of
the items that are saved with the workspace include the set of open projects, and
the size and location of views.

The workspace also contains information about the current session, including the
types and positions of your views when you last exited Workbench, current
projects, and installed breakpoints.

The default location of your workspace is installDir\workspace, but it can be
located elsewhere if necessary. If you want to run two or more copies of
Workbench, each must have its own workspace.

Maintaining More Than One Workspace

If you want to run two independent copies of Workbench (to keep some projects
and files completely separate from others) you must establish a second workspace.
This is not a required step for the tutorial in 2. Wind River Workbench Tutorials.

1. Launch Workbench as described in 2.2 Starting Wind River Workbench, p.14.

2. Select File > Switch Workspace to open the Select a workspace dialog.

3. Select the directory where you want your workspace to be located, then select
Make New Folder. Type the name of your new workspace, then click OK.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

8

1.5.3 Perspectives

A perspective groups together an editor area and one or more views that are
convenient to have available while working on a particular task.

For example, Figure 1-1 shows the Application Development perspective, which is
designed to help you create projects, browse files, and edit and build source code.

NOTE: The path to each of your workspaces must be unique. If you want a new
workspace to be located in the installation directory alongside your original
workspace, it must have a unique name (for example, workspace2 or
newWorkspace). If it is located in a different directory, it can have the same name
as the original: workspace.

Figure 1-1 Application Development Perspective

1 Overview
1.5 Basic Eclipse Concepts

9

1It includes the Project Navigator on the top-left side of the screen, the Outline view
on the top-right, the Target Manager on the bottom-left, and the Stacked view (also
known as a tabbed notebook) on the bottom-right with the Tasks view visible.

To open a new perspective, select Window > Open Perspective > Other and
choose a perspective you want to explore, or click the Open a perspective icon in
the upper right corner of the Workbench window, select Other, and choose a
perspective.

Figure 1-2 shows the Device Debug perspective, which contains views that are
useful when you are running and debugging programs, including the Debug and
Breakpoints views, and a tabbed notebook containing the Local Variables, Watch,
and Register views. These views replace the Outline view of the Application
Development perspective.

The Application Development perspective opens by default, but you can switch
between perspectives by selecting an icon in the shortcut bar along the top right
edge of the Workbench window. When you start Workbench for the first time, the

Figure 1-2 Device Debug Perspective

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

10

Open a perspective icon and the Application Development tab appear as shown
in Figure 1-3.

As you open perspectives, their icons appear in the shortcut bar. To see them all
side by side, click to the left of the Open a Perspective icon and drag to the left
until all open perspectives are visible.

To customize a perspective, you can open, close, and move views to create a
comfortable work environment, then select Window > Save Perspective As and
give your perspective a name. That configuration of views will be restored the next
time you open your perspective. You can further customize your perspective by
selecting Window > Customize Perspective.

You can restore a perspective to its default configuration by selecting
Window > Reset Perspective.

1.5.4 Views

Views reside in perspectives, and allow you to display, manipulate, and navigate
the information in Workbench.

Certain views appear in particular perspectives by default, but you can add any
view to any perspective by selecting Window > Show View, then either selecting
the view you want, or selecting Other, selecting the perspective containing that
view, then choosing the view from the list.

There are two things to remember when using views:

■ Only one view (or editor) can be active at a time. The title bar of the active view
is highlighted.

■ Only one instance of a type of view can be present in a perspective at a time
(but multiple editors can be present to view multiple source files).

Many views have their own menus. To open the menu for a view, click the down
arrow at the right end of the view's title bar. Some views also have their own tool
bars. The actions represented by buttons on view toolbars only affect the items
within that view.

Figure 1-3 Perspectives Shortcut Bar

1 Overview
1.5 Basic Eclipse Concepts

11

1
Moving and Maximizing Views

Move a view by clicking either its title bar or its tab in a stacked notebook, and
dragging it to a new location.

There are several ways to relocate a view:

■ Drag the view to the edge of another view and drop it. The area is then split,
and both views are tiled in the same area. The cursor changes to an appropriate
directional arrow as you approach the edge of a view.

■ Drag the view to the title bar of an existing view and drop it. The view will be
added to a stacked notebook with tabs. When you drag the view to stack it, the
cursor changes to an icon of a set of stacked folders.

■ If you drag a view over a tab in an existing view, the view will be stacked in
that notebook with its tab at the left of the existing view. You can also drag an
existing tab to the right of another tab to arrange tabs to your liking.

To quickly maximize a view to fill the entire perspective area, double-click its title
bar. Double-click the title bar again to restore it.

1.5.5 Editors

An editor is a special type of view used to edit files. You can associate different
editors with different types of files such as C, C++, Ada, Assembler, and Makefiles.
When you open a file, the associated editor opens in the perspective’s editor area.

Any number of editors can be open at once, but only one can be active at a time. By
default, editors are stacked in the editor area, but you can tile them in order to view
source files simultaneously (see 15. Navigating and Editing for more information
about Editors).

Tabs in the editor area indicate the names of files that are currently open for
editing. An asterisk (*) indicates that an editor contains unsaved changes.

1.5.6 Projects

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Navigator lets you visually
organize projects into structures that reflect their inner dependencies, and
therefore the order in which they are compiled and linked.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

12

1.6 Accessing Additional Interface Information

For more information about the Workbench interface, press F1 (or CTRL+F1 on
Linux, or the Help button on Solaris) to open a dialog (called an infopop) containing
a brief description of the current view. At the bottom of many infopops, you will
see links to sections of Workbench documentation with more information on the
same topic. You can also access the help system by selecting
Help > Help Contents > Wind River Documentation.

For more information on Eclipse functionality, see the Eclipse Workbench User Guide
under Help > Help Contents > Wind
River Partner Documentation > Eclipse Platform Documentation, as well as the
Eclipse web site at www.eclipse.org.

13

 2
Wind River Workbench

Tutorials

2.1 Introduction 13

2.2 Starting Wind River Workbench 14

2.3 Tutorial: Creating a Project and Running a Program 15

2.4 Tutorial: Editing and Debugging Source Files 21

2.5 Tutorial: Using the Editor’s Code Development Features 23

2.6 Tutorial: Tracking Items of Interest in Your Files 25

2.1 Introduction

This chapter provides tutorials designed to introduce you to Wind River
Workbench and to familiarize you with its views and development concepts. The
VxWorks Simulator is used to execute the sample programs, and no special
hardware or system setup is required.

In the course of these tutorials, you will:

■ Create a project.
■ Import source files.
■ Build a project.
■ Connect to a simulator.
■ Set breakpoints.
■ Step through code.

Wind River Workbench
User’s Guide, 2.4

14

■ Set a Watch variable.
■ Run code.
■ Edit source files.
■ Track build errors.
■ Compare file history.
■ Debug a project.
■ Rebuild and rerun your code.

These tutorials assume a basic understanding of embedded projects and
debugging concepts. They also assume that you have the Workbench software
(with VxWorks support) installed correctly on your host, and that the software is
installed in the default location and with the default settings.

For definitions of unfamiliar terminology, see B. Glossary.

2.2 Starting Wind River Workbench

1. Before you can run the tutorials, you must start Workbench.

On Windows:

Start > Programs > Wind River > Wind River
Workbench 2.4 > Wind River Workbench 2.4

On Linux and Solaris:

Open a terminal window, then navigate to your Workbench installation
directory. From the command line, type:

./startWorkbench.sh

2. When you start Workbench for the first time, Workbench creates a new
registry database1. A dialog appears telling you how to migrate your registry
settings from a previous registry to the new one2.

3. Click OK. The Wind River Workbench welcome screen appears.

4. Select the Start arrow to open a second welcome screen containing links to
useful destinations, including the Workbench window itself.

1. A new database will also be created in /tmp if the default database is not accessible.
2. If you did not have a previous version of Workbench installed and therefore do not

have registry settings to migrate over, you can safely ignore this dialog.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

15

2

5. To follow these tutorials, select the Workbench arrow. Workbench opens and
displays the Application Development perspective.

2.3 Tutorial: Creating a Project and Running a Program

This tutorial uses the ball sample program, written in C. This program implements
a set of balls bouncing in a two-dimensional grid. As the balls bounce, they collide
with each other and with the walls. You see the balls move by setting a breakpoint
with the property Continue on break at the outer move loop, and watching a
global grid array variable in the Memory window.

First, you will create a new project in your workspace, then you will import the ball
source files into it from their directory in the Workbench installation.

2.3.1 Before You Begin

Workbench preserves its configuration when you close it, so that at next launch
you can resume where you left off in your development.

If you experimented with opening perspectives and moving views before starting
this tutorial, switch back to the Application Development perspective by clicking
its icon in the upper right corner of the Workbench window. If its icon is not
visible, drag the shortcut bar to the left (your cursor will turn to a double-headed
arrow) or click the double-right arrows (a dropdown list will open).

To reset the perspective and its views to their default settings, select
Window > Reset Perspective.

2.3.2 Creating a Project

1. Select File > New > VxWorks Downloadable Kernel Module Project. The
Project dialog appears.

Wind River Workbench
User’s Guide, 2.4

16

2. Enter ball in the Project Name field, then click Next. If this is your first
Workbench project, skip to step 5.

3. If you have previously created any projects before starting this tutorial, the
Project Structure dialog appears. Here you can choose to make your new
project a subproject of an existing one, or to make an existing project a
subproject of your new one. Click Next.

4. If you have any existing projects, the Build Defaults dialog appears. Here you
can choose whether your project should use the build defaults from an existing
project of the same type, or from the default Workbench template. Click Next.

5. The Build Support dialog appears. Click Next to accept the default settings.

6. The Build Specs screen appears. Click Deselect All, then select the check box
next to the VxWorks simulator build spec for your platform and compiler (you
can select more than one if you want). Click Next.

■ On Windows, select SIMNTdiab or SIMNTgnu
■ On Linux, select SIMLINUXdiab or SIMLINUXgnu
■ On Solaris, select SIMSPARCSOLARISdiab or

SIMSPARCSOLARISgnu

7. The Build Target screen appears. By default the build target name is the same
as the project name, but you can customize it if you prefer. Click Next.

8. The Static Analysis screen appears. Leave these options checked for now.
Click Finish to create the project files. The new ball project appears in the
Project Navigator.

2.3.3 Importing Source Files Into Your Project

Next, import the ball sample project files.

1. Right-click the ball project folder, then select Import. The Import wizard
appears.

2. Select File System and click Next. The File System page of the Import wizard
appears.

3. Click the Browse button next to the From directory field. The
Import from directory page appears.

4. Navigate to the installDir\workbench-2.4\samples directory. Select ball, then
click OK. The File system page reappears, with the ball folder in the left pane
and the files in that folder in the right pane.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

17

2

5. Select the check box next to ball. This automatically selects all the files in the
right pane. Because you are importing into the ball project, ball appears in the
Into folder field. Click Finish.

6. To see the contents of the ball project folder, click the plus next to it in the
Project Navigator. You will see the project files in black, and the build targets
in blue. Any files that appear in gray are read-only.

2.3.4 Building Your Project

1. Build the ball project by right-clicking the ball folder in the Project Navigator
and selecting Build Project from the context menu.

2. The first time you build a project, a dialog appears asking if you want
Workbench to generate include paths (for more information about include
paths, see 16.8.1 The Generate Include Search-Paths Wizard, p.192). You do not
need to do this for the tutorial, so click Continue.

3. Build output displays in the Build Console tab at the bottom of the screen, and
the output file ball.out appears in a subdirectory of ball called
ball.out (SIMNTdiab_DEBUG).

2.3.5 Creating a Connection Definition to the VxWorks simulator

You create and manage connections to a target, including the VxWorks simulator,
using the Target Manager.

1. To create a new target connection definition, click the Create a New Target
Connection icon on the Target Manager toolbar, or right-click in the
Target Manager and select New > Connection.

NOTE: The string SIMNTdiab_DEBUG reflects the active build spec, and the
fact that debug mode flags are turned on by default. If you selected a different
build spec, or turned off debug mode flags, the string will be different.

NOTE: If you installed VxWorks support when you installed Workbench, a
VxWorks simulator connection definition named vxsim0 automatically appears
below default(localhost).

This is a valid connection definition, but to understand how to manually create
new target connections, continue with this tutorial.

Wind River Workbench
User’s Guide, 2.4

18

2. In the New Connection wizard, select Wind River VxWorks Simulator
Connection, then click Next.

3. Continue clicking Next to accept all of the default configuration settings, then
click Finish to create your connection definition. Because the
Immediately connect to target if possible box is selected by default,
Workbench attempts to connect to the simulator.

Workbench displays [connecting......], then [connected] once the connection is
made. A VxWorks simulator window opens3, and the connection appears
under default(localhost), with the type of target displayed under the
connection.

You are now ready to run the sample program.

2.3.6 Downloading the Program and Attaching the Debugger

1. In the Project Navigator, right-click the build target ball.out, then select
Debug Kernel Task. The Debug launch configuration dialog appears, with
ball.out already filled in as part of the Name of the launch.

2. Type main in the Entry Point field (or select it from the drop-down list), then
click Debug.

3. Several events now occur: Workbench automatically switches to the
Device Debug perspective, runs the ball program on the simulator, attaches
the debugger, executes the program up to main(), and then breaks.

For more information about using the other tabs and fields in the launch
configuration dialog, see 23. Launching Programs and Wind River Workbench User
Interface Reference: Launch Configuration Dialog.

2.3.7 Setting Up the Device Debug Perspective

As with the Application Development perspective, the views in the Device Debug
perspective can be repositioned to suit your needs.

To set up the Device Debug perspective to match this tutorial:

1. The action of the ball program is viewed in the Memory view, so select
Window > Show View > Memory.

3. You do not need the VxWorks simulator window for this tutorial, so minimize it if you wish,
but do not close it. For more information, see Wind River VxWorks Simulator User’s Guide.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

19

2

The Memory view appears in the lower-right corner of the Workbench
window, in the tabbed notebook with the Local Variables and Watch views.

2. Click on the title bar of the Memory view and drag it to the left, over the tabbed
notebook containing the Tasks view and the Build Console. Wait for an icon of
a set of stacked folders to appear at the cursor, then drop the view.

3. Right-click in the Memory view and select Display > Items size - 8 bytes.

4. Resize the Memory view so you see at least 10 rows (place the cursor over the
top border of the view, and when it becomes a double-headed arrow, click and
drag upwards).

5. Resize the view horizontally so you see one column in the Address pane, two
columns in the Binary pane (the central section of the Memory view) and one
column in the Text pane (the right-hand section of the view). The view should
look similar to Figure 2-1.

6. In the Watch view, click the Name column, then type grid and press ENTER.
The memory address of the grid global variable appears in the value column.

Figure 2-1 Resizing the Memory View

Wind River Workbench
User’s Guide, 2.4

20

7. Type the memory address of the grid global variable into the Memory view
address bar and press ENTER.

8. To initialize the program, click the Step Over icon in the Debug view twice so
the Memory view displays an empty box. If necessary, resize the Memory
view horizontally or vertically to frame the box correctly, as shown in
Figure 2-2.

As the program runs, characters representing different types of balls (two
zeros, two @ signs, and two asterisks) appear in this empty box, bounce
around, and collide with each other and with the walls.

2.3.8 Setting and Running to a Breakpoint.

1. In the Project Navigator, double-click main.c to open it in the Editor. Scroll
past the three initialization for loops and set a breakpoint at the while
statement by double-clicking in the vertical ruler to the left of it.

A blue dot appears in the vertical ruler, and the Breakpoints view displays the
module and line number of the breakpoint.

2. With the breakpoint set, run to it by clicking the Resume button in the Debug
view. Workbench stops when it hits the breakpoint.

3. Examine the Memory view. You should see the six characters of the sample
program (representing balls) in the box. Click Resume again; colored

NOTE: If the box does not appear, make sure the address you entered in the
Memory window is that of the grid global variable.

Figure 2-2 Initializing the ball Program

2 Wind River Workbench Tutorials
2.4 Tutorial: Editing and Debugging Source Files

21

2

highlights indicate changes in ball position since the Memory view was last
refreshed.

2.3.9 Modifying the Breakpoint

Next, change the behavior of the breakpoint so that at each break, the display will
refresh (to show the bouncing balls) without stopping execution.

1. Right-click the breakpoint in the vertical ruler and select
Breakpoint Properties from the context menu (or right-click the breakpoint in
the Breakpoints view and select Properties). The Line Breakpoint Properties
dialog appears.

2. Select the checkbox next to Continue on Break, change the Continue Delay to
50, then click OK.

3. Now click the Resume button and watch the balls bounce in the Memory
window.

4. To stop the program, open the Breakpoint Properties dialog again, clear
Continue on Break, then click OK. The balls may bounce once more after you
click OK, but they will stop.

2.4 Tutorial: Editing and Debugging Source Files

This tutorial demonstrates how Workbench can help you with some of the most
basic activities in development: editing code, building your project and noting
where the build fails, and tracking and fixing errors.

Wind River Workbench
User’s Guide, 2.4

22

2.4.1 Before You Begin

To set up Workbench for this tutorial, switch back to the default Application
Development perspective as described in 2.3.1 Before You Begin, p.15.

2.4.2 Introducing an Error into the Source Code

Because the ball sample program is shipped without errors, you must introduce
one into the sources in order to view a failed build.

1. In the Project Navigator, double-click main.c to open it in the Editor.

2. Select main() in the Outline view. The Editor switches focus to display it.

3. Delete the semicolon (;) after the call to gridInit() so that it reads as follows:

gridInit()

4. Right-click in the Editor and select Save to save the file.

5. Click the X on the tab (at the top of the view) to close the main.c file.

2.4.3 Tracking Down a Build Failure

1. Build the ball project by right-clicking the ball folder in the Project Navigator
and selecting Build Project from the context menu. Build output appears in
the Build Console tab at the bottom of the screen.

2. When the build encounters the error you created in the main.c file, the build
fails. Workbench displays a red icon containing a white X in several places:

■ In the Build Console, which comes to the foreground and displays
information about the error, including the general location where the
problem is suspected to be.

■ In the Project Navigator, which displays red error markers to alert you that
the build failure was in the ball project, and that main.c is the file
containing the error.

■ In the Problems view, which displays a description of the error, including
the filename, folder, and line number.

NOTE: The status bar at the bottom of the Workbench window displays the line
number and column (61:16) where your cursor is located in the Editor.

2 Wind River Workbench Tutorials
2.5 Tutorial: Using the Editor’s Code Development Features

23

2

3. Double-clicking the red icon in any of these locations opens the main.c file in
the Editor, with the focus at (or near) the line suspected of containing the error.

4. Replace the semicolon after gridInit.

5. Save and close the file.

2.4.4 Rebuilding the Project

This time, right-click the ball folder at the top of the project tree and select
Rebuild Project. The project compiles with no errors.

2.5 Tutorial: Using the Editor’s Code Development Features

The Wind River Workbench editor provides code completion, parameter hints,
and bracket matching that can help you develop your code.

2.5.1 Using Code Completion to Add Symbols to Your File

Code completion automatically suggests methods, properties and events as you
enter code.

To use code completion, begin typing in the Editor. Right-click in the Editor and
select Source > Content Assist. You can also use CTRL+SPACE to display a
pop-up list containing valid choices based on the letters you have typed so far.

For example, in ball’s main.c:

1. Position your cursor inside the function main() to the right of the first {
character and press ENTER. Note that the cursor automatically indents
beneath the brace.

2. Begin typing grid and invoke code completion: g, r, CTRL+SPACE.

NOTE: You can change indentation, brace style, and other code formatting
options by selecting Window > Preferences > Workbench > Editors >
Wind River > Workbench Editor > C/C++ Code Formatter.

Wind River Workbench
User’s Guide, 2.4

24

A dialog appears with suggestions, and as you continue to type the i and the
d, your choices narrow:

Select gridAddBall() and press ENTER to add the function to the file.

2.5.2 Using Parameter Hints

Parameter hints describe what data types a function accepts. When you add a
function using code completion, or when you enter a function name and an open
parenthesis, the Workbench Editor automatically displays any available
parameter hints.

2 Wind River Workbench Tutorials
2.6 Tutorial: Tracking Items of Interest in Your Files

25

2

You can also request parameter hints as you enter your code by right-clicking in
the Editor and selecting Source > Parameter Hints, or by using the
CTRL+SHIFT+SPACE keyboard shortcut.

2.5.3 Using Bracket Matching to Clarify Syntax

Bracket matching helps you read and troubleshoot complex syntax by highlighting
related parentheses, square brackets, and braces.

If you position your cursor before an open bracket or after a closing bracket, a
rectangle will enclose the corresponding bracket to make it easier to find. You can
jump between the opening and closing brackets by pressing CTRL+SHIFT+P.
Bracket matching operates on the following characters:

(), [], { }, " ", /* */, < > (C/C++ only)

2.6 Tutorial: Tracking Items of Interest in Your Files

Adding a bookmark to a source file is similar to placing a bookmark in a book: it
allows you to find an item you are interested in at a later time by looking in the
Bookmarks view. Open the Bookmarks view by selecting Window > Show View
> Bookmarks.

Wind River Workbench
User’s Guide, 2.4

26

You can create a bookmark on a particular line of code within a file, or you can
bookmark the file itself.

2.6.1 Creating a Bookmark on a Source Line in a File

1. To create a bookmark on a line of code in your file, right-click in the Editor
gutter to the left of the item you want to keep track of, then select
Add Bookmark.

2. In the Add Bookmark dialog, enter a meaningful comment to help you
identify it later, then click OK. A small bookmark icon appears in the Editor
gutter, and a marker, or annotation, appears in the overview ruler at the right
edge of the Editor showing your bookmark relative to its position in the file.
An entry also appears in the Bookmarks view.

Hovering over the bookmark icon shows you the text you entered, and
clicking the annotation on the right will return the Editor’s focus to this
position if you scroll to a different line in the file.

2.6.2 Creating a Bookmark for an Entire File

1. To create a bookmark for a file, right-click it in the Project Navigator and select
Add Bookmark.

2. In the Add Bookmark dialog, enter a meaningful comment to help you
identify it later, then click OK.

3. The file will not look any different in the Project Navigator, but the comment
you typed, the filename, and the folder appear in the Bookmarks view.

2.6.3 Locating and Viewing Your Bookmarks

1. To see the bookmarks in all your projects, open the Bookmarks view by
selecting Window > Show View > Bookmarks.

2. To open the file that contains a particular bookmark, double-click the
bookmark (or right-click it and select Go To). The file opens in the Editor with
the bookmark location highlighted.

This chapter has been a brief introduction to basic operations with perspectives,
views, and editors, and simple debugging capabilities. The rest of this guide

2 Wind River Workbench Tutorials
2.6 Tutorial: Tracking Items of Interest in Your Files

27

2

provides more in depth information about these and other features of Wind River
Workbench.

Wind River Workbench
User’s Guide, 2.4

28

29

 3
Setting Up Your Hardware

3.1 Introduction 29

3.2 Configuring Your Cross-Development System 33

3.3 Setting Up a Boot Mechanism 41

3.4 Booting VxWorks 43

3.5 Configuring Host-Target Communication for Workbench 54

3.6 Troubleshooting VxWorks Problems 60

3.1 Introduction

This chapter explains how to configure your host and target, including how to
download a VxWorks image and boot your target.

For a discussion of common configuration and setup problems and tips for how to
solve them, see 26.5 Troubleshooting VxWorks Configuration Problems, p.341. For
definitions of terminology that may be unfamiliar to you, see B. Glossary.

You do not need much of this chapter if all you want to do is connect to a target
that is already set up on your network. If this is the case, read 3.2 Configuring Your
Cross-Development System, p.33 and then proceed with 3.4 Booting VxWorks, p.43.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

30

3.1.1 Overview of Host and Target Configuration Tasks

Host Configuration Tasks

You will need to complete these configuration tasks once per host:

■ Install Wind River Workbench.

■ Configure TCP/IP for your host.

■ Configure a method for transferring a VxWorks image to your target, such as
FTP on Windows and Linux or rsh on Solaris.

Target Configuration Tasks

You will need to complete these configuration tasks once for each new target:

■ Install the VxWorks boot loader for your target (see the Wind River Workbench
On-Chip Debugging Guide for details).

■ Set up one or more physical connections between your target and host.

■ Define a Workbench target server to connect to the new target.

Normal Operation

You will need to repeat these tasks each time you want to re-initialize your target
during development:

■ Boot VxWorks on the target. VxWorks includes a target agent, the interface
between VxWorks and all other Wind River Workbench tools, by default.

■ Launch or restart a Workbench target server on the host.

3.1.2 Understanding Target Servers and Target Agents

Wind River Workbench host tools such as shells and debuggers communicate with
the target system through a target server. A target server can be configured with a

NOTE: Paths to Workbench directories and files are prefixed by installDir in this
guide. Substitute the actual path to your Workbench installation directory.

3 Setting Up Your Hardware
3.1 Introduction

31

3

variety of back ends, which provide for various modes of communication with the
target agent. On the target side, VxWorks can be configured and built with a variety
of target agent communication interfaces.

Your choice of target server back end and target agent communication interface is
based on the mode of communication that you establish between the host and
target (network, serial, JTAG, and so on). The target server must be configured with
a back end that matches the target agent interface with which VxWorks has been
configured and built. See Figure 3-1 for a detailed diagram of host-target
communications.

Figure 3-1 Wind River Workbench Host-Target Communication

Shell Debugger
Other

Browser Tools

Non-WDB
Agent

VxWorks

WTX
PROTOCOL

AGENTS

WDB TARGET AGENT
COMMUNICATION
INTERFACES

TARGET SERVER
BACK ENDS

HOST

TARGET (board or simulator)

Target Server

Serial
Comm

Interface

Network
Comm

Interface

WDB
Serial

Non-WDB
Back End

WDB
Target
Agent

Pipe
Comm

Interface

WDB
Pipe

WDB
RPC

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

32

Target Agent Modes

All of the standard target server back ends included with Workbench connect to
the target through the target agent. Thus, in order to understand the features of
each back end, you must understand the modes in which the target agent can
execute. These modes are called user mode, system mode, and dual mode.

■ In user mode, the agent runs as a VxWorks task. Debugging is performed on a
per-task basis: you can isolate the task or tasks of interest without affecting the
rest of the target system.

■ In system mode, the agent runs externally from VxWorks, almost like a ROM
monitor. This allows you to debug an application as if it and VxWorks were a
single thread of execution. In this mode, when the target run-time encounters
a breakpoint, VxWorks and the application are stopped and interrupts are
locked. One of the biggest advantages of this mode is that you can single-step
through ISRs; on the other hand, it is more difficult to manipulate individual
tasks. Another drawback is that this mode is more intrusive; it adds significant
interrupt latency to the system, because the agent runs with interrupts locked
when it takes control (for example, after a breakpoint).

■ In dual mode, two agents are configured into the run-time simultaneously: a
user-mode agent, and a system-mode agent. Only one of these agents is active
at a time; switching between the two can be controlled from either the
Workbench debugger (see 25.5 Using Debug Modes, p.313) or the host shell (see
Wind River Workbench Command Line User’s Guide: Using the Host Shell).

In order to support a system-mode or dual-mode agent, the target communication
path must work in polled mode (because the external agent needs to communicate
to the host even when the system is suspended). Thus, the choice of
communication path can affect what debugging modes are available.

Communication Paths

The most common VxWorks communication path—both for server-agent
communications during development, and for applications—is TCP/IP
networking over Ethernet. That connection method provides a very high
bandwidth, as well as all the advantages of a network connection.

Nevertheless, there are situations where you may wish to use a non-network
connection, such as a serial line or a ROM-emulator connection. For example, if
you have a memory-constrained application that does not require networking, you
may wish to remove the VxWorks network code from the target system during

3 Setting Up Your Hardware
3.2 Configuring Your Cross-Development System

33

3

development. Also, if you wish to perform system-mode debugging, you need a
communication path that can work in polled mode.

Note that the target server back end connection is not always the same as the
connection used to load the VxWorks image into target memory. For example, you
can boot VxWorks over Ethernet, but use a serial line connection to exploit a
polled-mode serial driver for system-mode debugging.

You can also use a non-default method of getting the run-time system itself into
your target board. For example, you might burn your VxWorks run-time system
directly into target ROM, as described in the VxWorks Programmer’s Guide:
Configuration and Build. Alternatively, you can use a ROM emulator to quickly
download new VxWorks images to the target’s ROM sockets. Another possibility
is to boot from a disk locally attached to the target; see the VxWorks Programmer’s
Guide: Local File Systems. Individual Board Support Packages (BSPs) may provide
other alternatives, such as flash memory; see the reference information for your
BSP.

For a tutorial that explains how to use Wind River ICE or Wind River Probe to load
the run-time system onto your target, see Wind River ICE for Wind River Workbench
Hardware Reference or Wind River Probe for Wind River Workbench Hardware
Reference.

3.2 Configuring Your Cross-Development System

Before VxWorks can boot an executable image obtained from the host, the network
software on the host must be correctly configured (see Configuring Host Software,
p.33), your target must be connected and powered up (see Verifying Serial Setup and
Power, p.37), and the boot loader must be loaded onto your target.

3.2.1 Configuring Host Software

For your target to communicate with the Workbench host tools, you need to have
a Wind River registry, TCP/IP, and FTP running on your host.

The following sections describe these procedures in more detail.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

34

Establishing the VxWorks Target Name and IP Address

You can configure the server that provides Domain Name Service (DNS) so that
your computer uses that server to translate system names to network IP addresses.
Consult your operating system documentation on how to configure your system
to take advantage of DNS.

If you do not have a domain name server at your site, you can specify how to map
machine names to IP addresses in a file called hosts
(C:\Windows\system32\drivers\etc\hosts on Windows, /etc/hosts on Linux
and Solaris) which records the names and IP network addresses of systems
accessible on the network from the local system (otherwise, you would have to
identify targets by IP address).

Each line consists of an IP address and the name (or names) of the system at that
address.

For example, suppose your host system is called mars and has Internet address
90.0.0.1, and you want to name your VxWorks target phobos and assign it address
90.0.0.50. The hosts file must then contain the following lines:

90.0.0.1 mars
90.0.0.50 phobos

This configuration is represented in Figure 3-7.

Configuring FTP on Windows

To use the default VxWorks configuration and boot VxWorks over the network,
you must have an FTP server running on the host where the VxWorks system
image is stored, and the FTP server must have a user ID and password defined that
your VxWorks target can use to identify itself.

Workbench includes an FTP server application, WFTPD. Start this FTP server from
the Windows Start menu by selecting
Programs > Wind River > VxWorks 6.0 > FTP Server.

Before an FTP client can connect to WFTPD, you must complete the following
steps:

1. Open the WFTPD window and select Security > Users/rights (Figure 3-2).

! CAUTION: If you are in a networked environment, do not pick arbitrary IP
addresses for your host and target as they could be assigned to someone else.
Contact with your system administrator for available IP addresses.

3 Setting Up Your Hardware
3.2 Configuring Your Cross-Development System

35

3

2. WFTPD displays the User / Rights Security Dialog box shown in Figure 3-3.
Click the New User button; another dialog box (also shown in Figure 3-3)
appears where you can enter whatever arbitrary name you wish as the user ID
for the VxWorks boot ROM. Be sure to use this same name when you assign
the user (u) VxWorks boot parameter described in 3.4.4 Description of Boot
Parameters, p.47.

3. After you specify the user name and click OK, WFTPD displays a third dialog
box where you can specify a password (Figure 3-4). Use any memorable
arbitrary string, and be sure to use this same string when you assign the
ftp password (pw) VxWorks boot parameter described in 3.4.4 Description of
Boot Parameters, p.47.

Because the password does not display as you type it, you must type it twice
to be sure the correct password is recorded.

Figure 3-2 WFTPD Security Menu

Figure 3-3 Adding a New User for WFTPD

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

36

4. After defining the new user ID and password, be sure to fill in the
Home Directory text box (Figure 3-5). The VxWorks boot loader does not
require this information, but WFTPD refuses to connect to a client unless you
specify a home directory. Any directory will be fine, as long as you permit
sufficient disk access for the VxWorks boot loader to read the boot image on
your Windows disk.

5. Close the User / Rights Security Dialog box by clicking Done.

6. To enable logging of FTP activities, select Logging > Log Options and select
the types of activities you want to log. The log file will be saved in the home
directory you specified above.

When you have finished configuring your FTP settings, leave the FTP server
running. It must be running on your host when your target tries to access the
vxWorks image.

Figure 3-4 WFTPD Password Dialog Box

NOTE: Your password must not be an empty string.

Figure 3-5 WFTPD Home Directory

NOTE: You can run the FTP server as a restricted user, but you cannot add new
users and passwords if you are a restricted user. A non-restricted user must add
the new users and passwords for you.

3 Setting Up Your Hardware
3.2 Configuring Your Cross-Development System

37

3

Becoming Familiar with the Wind River Registry

The Wind River target server registry is a service that keeps track of running target
servers. The registry must be running for Workbench tools to communicate with
VxWorks targets. Workbench development tools communicate with the target
server using TCP/IP, which in turn communicates with the VxWorks target over
the selected communication method (such as serial, Ethernet, or TMD). The
registry is always required, independent of the link between the target server and
the VxWorks target.

Workbench starts the default registry automatically, though if required you can
connect to a registry running on a networked host instead (see 19.6 Connect to the
Target, p.242 for details about connecting to other registries).

You can tell that the Wind River registry is running on your host system if:

■ The registry icon is displayed in the Windows system tray.

■ Running the ps command on Linux or Solaris shows wtxregd.ex in the jobs list.

To shut down the registry:

■ Right-click the registry icon in the Windows system tray and select Shutdown.

■ Type killall wtxregd.ex in a Solaris terminal window.

■ Type wrenv.linux -p workbench-2.3 wtxregd stop in a Linux terminal
window.

For detailed information about the operation of the Workbench registry, and its
command options, see the online reference entry for wtxregd
(Help > Help Contents > Wind River Documentation > References > Wind Riv
er Workbench Host Tools API Reference).

3.2.2 Verifying Serial Setup and Power

Hardware settings are specific to your target and host. This section describes in
general terms the types of hardware connections you must make to follow the
instructions in this book, but be aware that you may need to make adjustments to
accommodate your specific cross-development system.

Configuring your target hardware may involve the following tasks:

■ Protecting your equipment against electrostatic discharge.

■ Setting switches and jumpers on the target CPU board.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

38

■ Connecting a serial cable and/or an Ethernet cable, if the target supports
networking.

■ Connecting a power supply.

Perform the following general procedures as appropriate for your particular target
hardware. For details, see the target reference for your BSP (such as
installDir/vxworks-6.1/target/config/bspname/target.ref) and the documentation
provided by your target system’s manufacturer.

Protecting Equipment from Electrostatic Discharge (ESD)

You should always discharge the static electricity that may have collected on your
body before you touch integrated circuit boards, including targets and network
interface cards (NICs).

Electrostatic discharge precautions include:

■ touching the metal enclosure of a plugged-in piece of electrical equipment
(such as a PC or a power supply in a metal case)

■ placing your equipment on, or standing on, an anti-static mat

■ wearing an ESD wrist strap

Setting Board Switches and Jumpers

Many CPU and Ethernet controller boards still have configuration options that are
selected by hardware jumpers, although this is less common than in the past. These
jumpers must be set correctly before VxWorks can boot successfully.

You can determine the correct jumper configuration for your target CPU from the
information provided in the target information reference for your BSP, and in the
target system’s documentation.

NOTE: If you are using a Wind River ICE or Wind River Probe emulator to connect
to your target, see the Wind River ICE for Wind River Workbench Hardware Reference
or Wind River Probe for Wind River Workbench Hardware Reference for information
about how to connect to your target.

! CAUTION: Failure to take proper ESD precautions can degrade target hardware
over time, leading to intermittent errors or hardware failure.

3 Setting Up Your Hardware
3.2 Configuring Your Cross-Development System

39

3

Connecting a Serial Cable and Configuring the Terminal View

Most targets include at least one on-board serial port. Wind River Workbench
includes a Terminal view that you can use to open a serial connection from within
Workbench, just as you would with any other terminal emulation program such as
hyperterminal, minicom, or telnet.

To configure the Terminal view:

1. Stop any other program already using the serial port.

2. If it is not already running, start Workbench.

3. If it is not already visible, open the Terminal view (select
Window > Show View > Terminal).

4. To get a better view of what is happening in the Terminal view, double click
on the tab at the top of the view. The view will expand to fill the Workbench
window.

5. If the default settings shown at the top of the view are correct for your board,
click the green Connect icon.

If the settings need to be adjusted, click the square Settings button to open the
Terminal Settings dialog.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

40

6. Configure the terminal settings as appropriate for your system:

Connection Type
Select Serial.

On Linux, if you are not running your Linux host as a root user, make sure
the permissions are set correctly for you to access the serial port (if you do
not have permissions set correctly, only the NET option is available under
Connection Type).

To set them, issue one of the following commands (depending on which
port you plan to use):

$ chmod 666 /dev/ttyS0
$ chmod 666 /dev/ttyS1

Port
Set the port to the port you are using. Defaults are COM1 on Windows,
ttyS0 on Linux, and /dev/cua/a on Solaris.

Baud Rate
Configure the baud rate to match the speed of your connection.

Data Bits
Default on all platforms is 8.

Stop Bits
Default on all platforms is 1.

Parity
Default on all platforms is None.

3 Setting Up Your Hardware
3.3 Setting Up a Boot Mechanism

41

3

Flow In
Default on all platforms is None.

Flow Out
Default on all platforms is None.

7. Click OK to open a serial connection to your target.

8. To disconnect from your target, click Disconnect.
To reopen the connection with the existing settings, click Connect.

After initially configuring the boot parameters and getting started with VxWorks,
you may wish to configure VxWorks to boot automatically without a terminal.
Refer to the target system hardware documentation for proper connection of the
RS-232 signals.

Connecting a Cable for the Ethernet Connection

Always make sure you use the correct cable:

■ when connecting your board directly to your host, use a crossover cable

■ when connecting your board to a LAN, use a non-crossover cable

Connecting A Power Supply

For standalone targets, use the power supply recommended by the board
manufacturer.

3.3 Setting Up a Boot Mechanism

Workbench is shipped with the following VxWorks images, compiled both with
the Wind River Compiler and with the GNU compiler:

vxWorks

! CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.38) whenever working with integrated circuit
boards, including targets and NICs.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

42

vxWorks_rom
vxWorks_romCompress
vxWorks_romResident

In every case, you will need to create your own boot medium.Your board will
require one of the following media:

ROM

Most boards boot from ROMs.

For cases where boot ROMs are used to boot VxWorks, install the appropriate
set of boot ROMs on your target board(s). When installing boot ROMs, be
careful to:

■ Install each device only in the socket indicated on the label.

■ Note the correct orientation of pin 1 for each device.

■ Use anti-static precautions whenever working with integrated circuit
devices. For more information, see Protecting Equipment from Electrostatic
Discharge (ESD), p.38.

Floppy Disk

Some BSPs for systems that include floppy drives use boot diskettes instead of
a boot ROM. For example, Pentium systems usually boot from diskette.

Flash Memory

For boards that support flash memory, the BSP may be designed to write the
boot program there. In such cases, an auxiliary program to write the boot
program into flash memory is supplied by the board vendor.

For specific information on a particular booting method, see
Help > Help Contents > Wind River Documentation > Guides > Operating Sy
stem > VxWorks BSP Developer's Guide. Instructions for making a floppy disk
for booting a Pentium target are in the target.ref file for the BSP.

You may also wish to replace a boot ROM, even if it is available, with a ROM
emulator. This is particularly desirable if your target has no Ethernet capability,
because the ROM emulator can be used to provide connectivity at near-Ethernet
speeds. Contact Wind River for information about support for ROM emulators.

3 Setting Up Your Hardware
3.4 Booting VxWorks

43

3

3.4 Booting VxWorks

Once you have configured your host software and target hardware, you are ready
to boot VxWorks.

With your target connected to your host and a serial connection open in the
Terminal view, click Connect (see Connecting a Serial Cable and Configuring the
Terminal View, p.39).

3.4.1 Default Boot Process

When you boot VxWorks with the default boot program (from a ROM, a diskette,
or another medium), you must use the VxWorks command line to provide the boot
program with information that allows it to find the VxWorks image on the host
and load it onto the target. The default boot program is designed for a networked
target, and needs to have the correct host and target network addresses, the full
path and name of the file to be booted, the user name, and so on.

Unless your target CPU has non-volatile RAM (NV-RAM), you will eventually
find it useful to build a new version of the boot loader that includes all parameters
required for booting a VxWorks image. In the course of developing an application,
you will also build bootable applications

When you power on the target hardware (and each time you reset it), the target
system executes the boot program from ROM; during the boot process, the target
uses its serial port to communicate with your terminal or workstation. The boot
program first displays a banner page, and then starts a seven-second countdown,
visible on the screen as shown in Figure 3-6.

NOTE: If you are using a VxWorks image configured for a network connection (the
default), you must have an FTP server running on the Windows host where the
VxWorks system image is stored. See Configuring FTP on Windows, p.34 for more
information.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

44

Unless you press any key on the keyboard within that seven-second period, the
boot loader will attempt to proceed with a default configuration, and will not be
able to boot the target with VxWorks.

3.4.2 Entering New Boot Parameters

To interrupt the boot process and provide the correct boot parameters, first power
on (or reset) the target; then stop the boot sequence by pressing any key during the
seven-second countdown.

The boot program displays the VxWorks boot prompt:

[VxWorks Boot]:

To display the current (default) boot parameters, type p at the boot prompt:

[VxWorks Boot]: p

A display similar to the following appears; the meaning of each of these
parameters is described in 3.4.4 Description of Boot Parameters, p.47.

Figure 3-6 Boot Program Banner Display

3 Setting Up Your Hardware
3.4 Booting VxWorks

45

3

boot device : ln
unit number : 0
processor number : 0
host name : mars
file name : c:\temp\vxWorks1

inet on ethernet (e) : 90.0.0.50:ffffff00
inet on backplane (b) :
host inet (h) : 90.0.0.1
gateway inet (g) :
user (u) : fred
ftp password (pw)(blank=use rsh) :secret
flags (f) : 0x0
target name (tn) : phobos
startup script (s) :
other (o) :

This example corresponds to the configuration shown in Figure 3-7. The p
command does not actually display the lines with blank fields, although this
example shows them for completeness.

To change the boot parameters, type c at the boot prompt:

[VxWorks Boot]: c

In response, the boot program prompts you for each parameter. If a particular field
has the correct value already, press ENTER. To clear a field, enter a period (.),

1. Pre-built VxWorks images are available in
installDir\vxworks-6.2\target\proj\bsp-compiler\default, but in this example the vxWorks
file has been copied to c:\temp.

Figure 3-7 Boot Configuration Example

TARGET

phobos

HOST

mars

90.0.0.50:ffffff0090.0.0.1

c:\temp\vxWorks

user: fred

Ethernet

90.0.0.x subnet

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

46

then press ENTER. To go back to change the previous parameter, enter a dash (-),
then press ENTER. If you want to quit before completing all parameters, type
CTRL+D.

Network information must be entered to match your particular cross-development
system configuration. The Internet addresses must match those in the hosts file on
your system (or those known to your Domain Name Server), as described in
Establishing the VxWorks Target Name and IP Address, p.34.

If your target has non-volatile RAM (NV-RAM), the boot parameters are stored
there and retained even if power is turned off. For each subsequent power-on or
system reset, the boot program uses these stored parameters for the automatic boot
configuration.

3.4.3 Boot Program Commands

The VxWorks boot program provides a limited set of commands. To see a list of
available commands, type either h or ? at the boot prompt, followed by ENTER:

[VxWorks Boot]: ?

Table 3-1 describes each of the VxWorks boot commands and their arguments.

Table 3-1 VxWorks Boot Commands

Command Description

h Help command—print a list of available boot commands.

? Same as h.

@ Boot (load and execute file) using the current boot
parameters.

p Print the current boot parameter values.

c Change the boot parameter values.

l Load the file using current boot parameters, but without
executing.

g adrs Go to (execute at) hex address adrs.

d adrs[, n] Display n words of memory starting at hex address adrs. If n
is omitted, the default is 64.

3 Setting Up Your Hardware
3.4 Booting VxWorks

47

3

3.4.4 Description of Boot Parameters

Each of the boot parameters is described below, with reference to the example in
3.4.2 Entering New Boot Parameters, p.44. The letters in parentheses after some
parameters indicate how to specify the parameters in the command line boot
procedure described in 3.4.6 Alternate Boot Methods, p.52.

boot device
The type of device to boot from. This must be one of the drivers included in the
boot ROMs (for example, enp for a CMC controller). Due to limited space in
the boot ROMs, only a few drivers can be included. A list of included drivers
is displayed at the console (type ? or h).

m adrs Modify memory at location adrs (hex). The system prompts
for modifications to memory, starting at the specified
address. It prints each address, and the current 16-bit value
at that address, in turn. You can respond in one of several
ways:

ENTER: Do not change that address, but continue
prompting at the next address.

number: Set the 16-bit contents to number.

. (dot): Do not change that address, and quit.

f adrs, nbytes, value Fill nbytes of memory, starting at adrs with value.

t adrs1, adrs2, nbytes Copy nbytes of memory, starting at adrs1, to adrs2.

s [0 | 1] Turn the CPU system controller ON (1) or OFF (0) (only on
boards where the system controller can be enabled by
software).

e Display a synopsis of the last occurring VxWorks exception.

v Display BSP and boot ROM version.

N Set Ethernet address.

Table 3-1 VxWorks Boot Commands (cont’d)

Command Description

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

48

unit number
The unit number of the boot device, starting at zero.

processor number
A unique numerical target identifier for systems with multiple targets on a
backplane. The backplane master must have its processor number set to zero.
For boards not connected to a backplane, a value of zero is typically used but
is not required.

host name
The name of the host machine to boot from. This is the name by which the host
is known to VxWorks; it need not be the name used by the host itself. (The host
name is mars in the example of 3.4.2 Entering New Boot Parameters, p.44.)

file name
The full pathname of the VxWorks image to be booted (c:\temp\vxWorks in
the example). This pathname is also reported to the host when you start a
target server, so that it can locate the host-resident image of VxWorks. The
pathname is limited to a 160 byte string, including the null terminator.2

inet on ethernet (e)
The Internet Protocol (IP) address of a target system Ethernet interface, as well
as the subnet mask used for that interface. The address consists of the IP
address, in dot decimal format, followed by a colon, followed by the mask in
hex format (here, 90.0.0.50:ffffff00). For more information about working with
IP addresses, see Establishing the VxWorks Target Name and IP Address, p.34.

inet on backplane (b)
The Internet address of a target system with a backplane interface (blank in the
example).

host inet (h)
The Internet address of the host to boot from (90.0.0.1 in the example).

gateway inet (g)
The Internet address of a gateway node if the host is not on the same network
as the target (blank in the example).

user (u)
The user ID that VxWorks uses to access the host for the purpose of boot
loading the file specified by the filename boot parameter (fred in the

2. If the same pathname is not suitable for both host and target—for example, if you boot from
a disk attached only to the target—you can specify the host path separately to the target
server, using the -c filename option in the Advanced Target Server Options field of the
New Target Server Connection dialog.

3 Setting Up Your Hardware
3.4 Booting VxWorks

49

3

example); use the user name you created in Configuring FTP on Windows, p.34.
That user must have permission to read the VxWorks boot-image file.

On a Windows host, the user must have FTP access to that host. On a UNIX
host, the user must have FTP or rsh access. The ftp password boot parameter
described below controls how the boot loader accesses the host. For rsh, the
user must be granted access by adding the user ID to the host's /etc/host.equiv
file, or more typically to the user's .rhosts file (~userName/.rhosts).

ftp password (pw)
The user password used by the boot loader to access the host using FTP for the
purpose of boot loading the file specified by the filename boot parameter. Use
the password you created in Configuring FTP on Windows, p.34.

flags (f)
Configuration options specified as a numeric value that is the sum of the
values of selected option bits defined below. (This field is zero in the example
because no special boot options were selected.)

target name (tn)
The name of the target system to be added to the host table (here, phobos).

NOTE: This field is not required by the boot program, but you must supply it
to boot over the network from a Windows host. Without it, the boot ROM
attempts to load the run-time system image using a protocol based on the
UNIX rsh utility, which is not available for Windows hosts. So an FTP
password is required, but only for host access during boot loading.

0x01 = Do not enable the system controller, even if the processor number is 0.
(This option is board specific; refer to your target documentation.)

0x02 = Load all VxWorks symbols, instead of just globals.
0x04 = Do not auto-boot.
0x08 = Auto-boot fast (short countdown).
0x20 = Disable login security.
0x40 = Use BOOTP to get boot parameters.
0x80 = Use TFTP to get boot image.
0x100 = Use proxy ARP.
0x200 = Use WDB agent.
0x400 = Set system to debug mode for the error detection and reporting facility

(depending on whether you are working on kernel modules or user
applications, for more information see the VxWorks Kernel Programmer’s
Guide: Error Detection and Reporting or the VxWorks Application
Programmer’s Guide: Error Detection and Reporting).

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

50

startup script (s)
If the kernel shell is included in the downloaded image, this parameter allows
you to pass to it the path and filename of a startup script to execute after the
system boots. A startup script file can contain only the shell’s C interpreter
commands. This parameter can also be used to specify process-based
applications to run automatically at boot time, if VxWorks has been configured
with the appropriate components. See VxWorks Application Programmer’s
Guide: Applications and Processes and Target Tools.

other (o)
This parameter is generally unused and available for applications (blank in the
example). It can be used when booting from a local SCSI disk to specify a
network interface to be included.

3.4.5 Booting With New Parameters

After entering the boot parameters, initiate booting by typing the @ command:

[VxWorks Boot]: @

3 Setting Up Your Hardware
3.4 Booting VxWorks

51

3

Figure 3-8 shows a typical VxWorks boot display. The VxWorks boot program
prints the boot parameters, and the downloading process begins.

The following information is displayed during the boot process:

■ The boot program first initializes its network interfaces.

■ After the system is completely loaded, the boot program displays the entry
address and transfers control to the loaded VxWorks system.

■ When VxWorks starts up, it begins just as the boot ROM did, by initializing its
network interfaces; the network-initialization messages appear again,
sometimes accompanied by other messages about optional VxWorks facilities.

■ After this point, VxWorks is up and ready to attach to the Wind River
Workbench tools.

Figure 3-8 VxWorks Booting Display

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

52

■ The boot display may be useful for troubleshooting. The following hints refer
to Figure 3-8. For more troubleshooting ideas, see 26.5 Troubleshooting
VxWorks Configuration Problems, p.341.

– If Attaching network interface is displayed without the corresponding
done, verify that the system controller is configured properly and the
network interface card is properly jumpered. This error may also indicate
a problem with the network driver in the newly loaded VxWorks image.

– If Loading... is displayed for more than 30-45 seconds without the size of
the VxWorks image appearing, this may indicate problems with the
Ethernet cable or connection, or an error in the network configuration (for
example, a bad host or gateway Internet address).

– If the line Starting at is printed and there is no further indication of
activity from VxWorks, this generally indicates there is a problem with the
boot image.

3.4.6 Alternate Boot Methods

To boot VxWorks, you can also use the command line, take advantage of
non-volatile RAM, or create new boot programs for your target.

Command Line Parameters

Instead of being prompted for each of the boot parameters, you can supply the
boot program with all the parameters on a single line at the boot prompt
([VxWorks Boot]:) beginning with a dollar sign character (“$”). For example:

$ln(0,0)mars:c:\temp\vxWorks e=90.0.0.50 h=90.0.0.1 u=fred pw=…

The order of the assigned fields (those containing equal signs) is not important.
Omit any assigned fields that are irrelevant. The codes for the assigned fields
correspond to the letter codes shown in parentheses by the p command. For a full
description of the format, see the reference entry for bootParseLib.

This method can be useful if your workstation has programmable function keys.
You can program a function key with a command line appropriate to your
configuration.

Non-volatile RAM (NV-RAM)

As noted previously, if your target CPU has non-volatile RAM (NV-RAM), all the
values you enter in the boot parameters are retained in the NV-RAM. In this case,

3 Setting Up Your Hardware
3.4 Booting VxWorks

53

3

you can let the boot program auto-boot without having a terminal program
connected to the target system.

Customized Boot Programs

See the VxWorks Kernel Programmer’s Guide for instructions on creating a new boot
program for your boot media, with parameters customized for your site. With this
method, you no longer need to alter boot parameters before booting.

BSPs Requiring TFTP on the Host

Some Motorola boards that use Bug ROMs and place boot code in flash require the
TFTP protocol on the host in order to burn a new VxWorks image into flash.
Workbench ships with a version of TFTP. See your target system documentation
on how to burn flash for these boards.

3.4.7 Rebooting VxWorks

When VxWorks is running, there are several ways you can reboot it. Rebooting by
any of these means restarts the attached target server on the host as well:

■ Entering CTRL+X in the Terminal view (other Windows terminal emulators
do not pass CTRL+X to the target, because of its standard Windows meaning.)

■ Invoking reboot() from the host shell.

■ Pressing the reset button on the target system.

■ Turning the target’s power off and on.

When you reboot VxWorks in any of these ways, the auto-boot sequence begins
again from the countdown.

! CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.38) whenever working with integrated circuit
boards, including targets and NICs.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

54

3.5 Configuring Host-Target Communication for Workbench

If you are developing applications, an Ethernet connection is the easiest to set up
and use, since most VxWorks targets already use the network (for example, to
boot), so no additional target set-up is required. Furthermore, a network interface
is typically a board’s fastest physical communication channel.

If you need a JTAG or other emulator connection, see the Wind River ICE for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference for information about making emulator connections
to your target.

The next few sections describe the setup of Ethernet, serial line, and TMD
connections within Workbench.

3.5.1 Ethernet Connections

When VxWorks is configured and built with a network interface for the target
agent (the default configuration), the target server can connect to the target agent
using the default wdbrpc back end.

The target agent can receive requests over any device for which a VxWorks
network interface driver is installed. The typical case is to use the device from
which the target was booted; however, any device can be used by specifying its IP
address to the target server.

Connecting to the Target Server

You can connect the target server to the agent by following these steps:

1. Click the Create a new target connection icon in the Target Manager toolbar.

NOTE: If you experience problems when using Workbench tools with a hardware
platform with a new Ethernet driver/chipset, it is highly recommended that you
use the WDB agent over a different communications link (such as serial or the
JTAG Transparent Mode Driver) isolate if the driver is the source of the problem.

3 Setting Up Your Hardware
3.5 Configuring Host-Target Communication for Workbench

55

3

The Connection Type dialog appears.

2. Select Wind River Target Server Connection for VxWorks then click Next.
The Target Server Connection dialog appears.

NOTE: You will see both VxWorks and Linux connection types only if you have
licensed both products.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

56

3. Select the wdbrpc back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.34).

4. In the Advanced Target Server Options section, select the Verbose target
server output.

Your command line should look like this:

tgtsvr -V -R C:/installDir/workspace -RW ipaddress

5. Click Next through the next two screens, then click Finish. Your new target
server connection definition will appear in the Target Manager connection list,
along with the simulator connection definition you created in 2.3.5 Creating a
Connection Definition to the VxWorks simulator, p.17.

3 Setting Up Your Hardware
3.5 Configuring Host-Target Communication for Workbench

57

3

The Immediately connect to target if possible box is selected by default, so if
your target booted successfully in Booting With New Parameters, p.50, the
Target Manager will attempt to connect to your target.

6. If everything is set up properly, you will see [connected] after the target server
connection. If you have problems connecting, see Troubleshooting VxWorks
Configuration Problems, p.341.

3.5.2 Serial-Line Connections

A minimal cross-development configuration is one in which the standalone target
is connected to the host development system by a single serial line. For a
configuration of this sort, use a combination of a boot mechanism that does not
require a network and an alternative Workbench communications back end.

Workbench can operate over a raw serial connection between the host and target
systems, and can operate on non-networked systems, but this type of connection
is very slow and may not be practical for real-world debugging.

When you connect the host and target exclusively over serial lines, you must:

■ Configure and build a boot program to download over the serial connection,
or build an image that boots directly from on-board Flash/ROM memory.

■ Reconfigure and rebuild VxWorks with a target agent configuration for a
serial connection.

■ Configure and start a target server for a serial connection.

A raw serial connection has some advantages over an IP connection. The raw serial
connection allows you to scale down the VxWorks system (even during
development) for memory-constrained applications that do not require
networking: you can remove the VxWorks network code from the target system.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

58

When working over a serial link, use the fastest possible line speed. The
Workbench tools—especially the debugger—make it easy to set up system
snapshots that are periodically refreshed. Refreshing such snapshots requires
continuing traffic between host and target. On a serial connection, the line speed
can be a bottleneck in this situation. If your Workbench tools seem unresponsive
over a serial connection, try turning off periodic updates in the browser, or else
closing any debugger displays you can spare.

Configuring the Target Agent For Serial Connection

To configure the target agent for a raw serial communication connection,
reconfigure and rebuild VxWorks with a serial communication interface for the
target agent (see the VxWorks Programmer’s Guide for details).

Configuring the Boot Program for Serial Connection

When you connect the host and target exclusively over serial lines, you must
configure and build a boot program for the serial connection because the default
boot configuration uses an FTP download from the host.

Testing the Connection

Be sure to use the right kind of cable to connect your host and target. Use a simple
Tx/Rx/GND serial cable because the host serial port is configured not to use
handshaking. Many targets require a null-modem cable; consult the target
system’s documentation. Configure your host system serial port for a full-duplex
(no local echo), 8-bit connection with one stop bit and no parity bit. The line speed
must match whatever is configured into your target agent.

Before trying to attach the target server for the first time, test that the serial
connection to the target is good. To help verify the connection, the target agent
sends the following message over the serial line when it boots (with
WDB_COMM_SERIAL):

WDB READY

To test the connection, attach a terminal emulator to the target-agent serial port,
then reset the target (see Connecting a Serial Cable and Configuring the Terminal View,
p.39). If the WDB READY message does not appear, or if it is garbled, check the
configuration of the serial port you are using on your host.

3 Setting Up Your Hardware
3.5 Configuring Host-Target Communication for Workbench

59

3

As a further debugging aid, you can also configure the serial-mode target agent to
echo all characters it receives over the serial line. This is not the default
configuration, because as a side effect it stops the boot process until a target server
is attached. If you need this configuration in order to set up your host serial port,
edit installDir\vxworks-6.1\target\config\comps\src\wdbSerial.c.

Look for the following lines:

#ifdef INCLUDE_WDB_TTY_TEST
{
int waitChar = 0;

if (WDB_TTY_ECHO)
waitChar = 0333;

#ifdef INCLUDE_KERNEL
/* test in polled mode if the kernel hasn't started */

if (taskIdCurrent == 0)
wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar);
else
wdbSioTest (pSioChan, SIO_MODE_INT, waitChar);

#else /* INCLUDE_KERNEL */
wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar);

#endif /* INCLUDE_KERNEL */
}

#endif /* INCLUDE_WDB_TTY_TEST */

In each call to wdbSioTest(), change waitChar to 0300.

With this configuration, attach any terminal emulator on the host to the COM port
connected to the target to verify the serial connection. When the serial-line settings
are correct, whatever you type to the target is echoed as you type it.

Connecting to the Target Server

After successfully testing the serial connection, you can connect the target server
to the agent by following steps similar to those in Connecting to the Target Server,
p.54:

1. Close the serial port that you opened for testing (if you do not close the port,
it will be busy when the target server tries to use it).

NOTE: This configuration change also prevents the target from completing its boot
process until a target server attaches to it. Thus, it is best to change the
wdbSioTest() calls back to the default as soon as you verify that the serial line is
set up correctly.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

60

2. Click the Create a new target connection icon in the Target Manager toolbar.
The Connection Type dialog appears.

3. Select Wind River Target Server Connection then click Next. The Target
Server Connection dialog appears.

4. Select the wdbserial back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.34).

5. In the Advanced Target Server Options section, select Verbose target
server output, then specify the communications port with -d, and also specify
the line speed to match the speed configured into your target. Your command
line should look like this:

tgtsvr -V -d comport -bps speed -B wdbserial ipaddress

6. Click Next through the next two screens, then click Finish. Your new target
server connection definition will appear in the Target Manager connection list.

7. Select the target server definition you just created, then click the Connect icon.
If everything is set up properly, you will see [connected] after the target server
connection. If you have problems connecting, see Troubleshooting VxWorks
Configuration Problems, p.341.

3.6 Troubleshooting VxWorks Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. Read 26.5 Troubleshooting VxWorks Configuration Problems, p.341
before contacting Wind River customer support. Often, you can locate the problem
just by rechecking the installation steps and your hardware configuration.

61

PAR T II

Projects

4 Projects Overview .. 63

5 VxWorks Image Projects 75

6 Boot Loader Project ... 89

7 ROMFS File System Projects 93

8 VxWorks Real-time Process Projects 97

9 VxWorks Shared Library Projects 105

10 VxWorks Downloadable Kernel Module Projects 113

11 VxWorks User-Defined Projects 121

12 Native Application Projects 125

13 Working in the Project Navigator 131

14 Advanced Project Scenarios 143

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

62

63

 4
Projects Overview

4.1 Introduction 63

4.2 Workspace/Project Location 64

4.3 Creating New Projects 64

4.4 Overview of Preconfigured Project Types 66

4.5 Projects and Project Structures 70

4.1 Introduction

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Navigator lets you, among
other things, visually organize projects into structures that reflect their inner
dependencies, and therefore the order in which they are compiled and linked.

Pre-configured templates for various project types allow you to create or import
projects using simple wizards that need only minimal input.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

64

4.2 Workspace/Project Location

The Wind River Workbench cannot know where your source files are located, so it
initially suggests a default workspace directory within the installation directory.
However, this is not a requirement, or even necessarily desirable. If you use a
workspace directory outside of the Workbench installation tree this ensures that
the integrity of your projects is preserved after product upgrades or installation
modifications.

Normally, you would set your workspace directory at the root of your existing
source code tree and create your Workbench projects there. For multiple, unrelated
source code trees, you can use multiple workspaces.

4.3 Creating New Projects

Although you can create projects anywhere, you would generally create them in
your workspace directory (see 4.2 Workspace/Project Location, p.64, above). If you
follow this recommendation, there will generally be no need to navigate out of the
workspace when you create projects. Note that if you do create projects outside the
workspace, you must have write permission at the external location because
Workbench project administration files are written to this location.

To create a new project, select File > New > Project to open the New Project
wizard. It will help you create one of the pre-configured project types. You can also
select the specific type of project you want to create from File > New > ProjectType.
For more information about these projects, see Overview of Preconfigured Project
Types, p.66.

To create one of the demonstration sample projects, select File > New > Example
to open the New Example wizard. Each comes with instructions explaining the
behavior of the program.

Whichever menu command you choose, a wizard will guide you through the
process of creating the specific type of project you select. Note that most settings
in the New Project wizard can be inspected and modified at any time after project
creation in the Project Properties, see 16.2 Accessing Build Properties, p.175

4 Projects Overview
4.3 Creating New Projects

65

4

For step-by-step descriptions of how to create projects of each type, see the
chapters:

■ 5. VxWorks Image Projects
■ 6. Boot Loader Project
■ 7. ROMFS File System Projects
■ 8. VxWorks Real-time Process Projects
■ 9. VxWorks Shared Library Projects
■ 10. VxWorks Downloadable Kernel Module Projects
■ 11. VxWorks User-Defined Projects
■ 12. Native Application Projects

4.3.1 Subsequent Modification of Project Creation Wizard Settings

All project creation wizard settings can be modified in the Project Properties once
the project exists. To access the Project Properties from the Project Navigator,
right-click the icon of the project you want to modify and select Properties.

Project structural settings (sub- and superproject context of the project you are
creating) can be most easily modified in the Project Navigator by
dragging-and-dropping project folders into or outside other folders.

4.3.2 Projects and Application Code

All application code is managed by projects of one type or another. You can import
an existing Workbench-compatible project as a whole (see Importing Projects,
p.132) or you can add new or existing source code files to your projects (see
Importing Application Code, p.133).

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

66

4.4 Overview of Preconfigured Project Types

Different types of projects are used for different purposes. Workbench supports a
number of such project types, each of which will be discussed in more detail in
later chapters. This section contains a brief overview of the available project types.

In the Project Navigator, you can identify the project type by its icon.

4.4.1 Workbench Sample Projects

A good place to start exploring the sample projects is 2. Wind River Workbench
Tutorials. The Guide uses sample projects to walk you through many aspects of
Workbench and shows you some of the project types introduced below.

4.4.2 VxWorks Image Project

Use a VxWorks Image project to configure (customize/scale) and build a VxWorks
kernel image to boot your target. By adding a VxWorks File System project and

Table 4-1 Project Type Icons

Icon Project Type

VxWorks Image

Board Support Package

Downloadable Kernel Module

Real-time Process

Shared Library

User-Defined

VxWorks File System

Native Application

NOTE: This manual does not discuss Middleware Component projects, as they are
only functional if you have licensed the Wind River Platforms product.

4 Projects Overview
4.4 Overview of Preconfigured Project Types

67

4

kernel modules, applications, libraries and data files, you can link a complete
system into a single image.

A new VxWorks Image project can be based either on an existing project of the
same type, or on a Board Support Package. For more information, please see 5.7 Notes
on Board Support Packages (BSPs), p.86.

Please refer to 5. VxWorks Image Projects for more information on working with this
type of project.

4.4.3 VxWorks Board Support Package Project

Use a VxWorks Board Support Package project to create a VxWorks boot loader (also
referred to as the VxWorks boot ROM) to boot load a target with the VxWorks
kernel.

Boot loaders are used in a development environment to load a VxWorks image
that is stored on a host system, where VxWorks can be quickly modified and
rebuilt. Boot loaders are also used in production systems where both the boot
loader and operating system image are stored on a disk.

Boot loaders are not required for standalone VxWorks systems that are stored in
ROM.

4.4.4 VxWorks Downloadable Kernel Module Projects

Use Downloadable Kernel Module projects to manage and build modules that will
exist in the kernel space. You can separately build the modules, run, and debug
them on a target running VxWorks, loading, unloading, and reloading on the fly.
Once your development work is complete, the modules can be statically linked
into the kernel, or they can use a file system if one is present (see 4.4.7 VxWorks File
System Projects, p.69). Figure 4-1 illustrates a situation without a file system on the
target.

Kernel-mode development is the traditional VxWorks method of development; all
the tasks you spawn run in an unprotected environment, and all have full access
to the hardware in the system.

A Downloadable Kernel Module that is linked into the kernel is a bootable
application that starts when the target is booted.

Please refer to 10. VxWorks Downloadable Kernel Module Projects for more
information on working with this type of project.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

68

4.4.5 Real-time Process Projects

Use Real-time Process projects to manage and build executables that will exist
outside the kernel space. You can separately build, run, and debug the executable.

At run-time, the executable file is downloaded to a separate process address space
to run as an independent process. A Real-time Process binary can be stored on a
target-side file system such as ROMFS, see 7. ROMFS File System Projects.

Please refer to 8. VxWorks Real-time Process Projects, 17.6 Executables that
Dynamically Link to Shared Libraries, p.207, and 18. RTPs and Shared Libraries from
Host to Target for more information on working with this type of project.

Figure 4-2 shows how executables, when loaded into a Real-time Process, run as a
separate entity from the kernel.

Figure 4-1 Downloadable Kernel Modules: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.out

Makefile Kernel

HOST TARGET

modules Kernel
including
statically
linked
modules

TARGET

Cross-development Final Product

Target
Server

4 Projects Overview
4.4 Overview of Preconfigured Project Types

69

4

4.4.6 VxWorks Shared Library Projects

Use VxWorks Shared Library projects for libraries that are dynamically linked to
VxWorks Real-time Process projects at run-time. Such a shared library will need to
be stored, like the Real-time Process project, on a target-side file system, which can
be created using 4.4.7 VxWorks File System Projects, p.69. You can also use VxWorks
Shared Library projects to create subprojects that are statically linked into other
project types at build time.

Please refer to 9. VxWorks Shared Library Projects, 17.6 Executables that Dynamically
Link to Shared Libraries, p.207, and 18. RTPs and Shared Libraries from Host to Target
for more information on working with this type of project.

4.4.7 VxWorks File System Projects

Use a VxWorks File System project as a subproject of any other project type that
requires target-side file system functionality.

So, for example, you may not need a file system project for Downloadable Kernel
Module projects (which can be linked to the VxWorks kernel directly, see
10. VxWorks Downloadable Kernel Module Projects for details), but you will need to
create one for other project types.

This project type is designed for bundling applications and other files, of any type,
with a VxWorks system image in a ROMFS file system. No storage media is
required beyond that used for the VxWorks boot image. Therefore, no other file

Figure 4-2 Real-time Processes: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.vxe
Makefile Kernel

HOST TARGET

RTP

Cross-development Final Product

Target
Server

Kernel
[+modules]

TARGET

RTP

File System

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

70

system is required to store files; systems can be fully functional without recourse
to local or NFS drives, RSH or FTP protocols, and so on. Note that the name
ROMFS has nothing to do with ROM media. It stands for Read Only Memory File
System.

Please refer to 7. ROMFS File System Projects for more information on working with
this type of project.

4.4.8 Native Application Projects

Use a Native Application project for C/C++ applications developed for your host
environment. Wind River Workbench provides build and static analysis support
for native GNU 2.9x, GNU 3.x, and Microsoft development utilities (assembler,
compiler, linker, archiver). There is no debugger integration for such projects in
Workbench, so you have to use the appropriate native tools for debugging.

4.5 Projects and Project Structures

All individual projects of whatever type are self-contained units that have no
inherent relationship with any other projects. The system as such is initially
completely flat and unstructured. You can, however, construct hierarchies of

Figure 4-3 VxWorks File System: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.vxe
Makefile Kernel

HOST TARGET

RTP

Cross-development Final Product

Target
Server

TARGET

 File System

RTP +
Shared Libs
(*.so) *.*

Kernel
[+modules]

4 Projects Overview
4.5 Projects and Project Structures

71

4

project references within Workbench. These hierarchies will reflect inter-project
dependencies and therefore also the build order.

When you attempt to create such hierarchies of references, this is validated by
Workbench; that is, if a certain project type does not make sense as a subproject of
some other, or even the same, project type, such a reference will not be permitted.

4.5.1 Adding Subprojects to a Project

There are several ways to create a subproject/superproject structure in
Workbench:

■ In the New Project wizard, use the Project Structure dialog to specify a
superproject and subprojects. This method works only when a project is first
created and only if a valid existing superproject is selected in the Project
Navigator when the New Project wizard is invoked.

■ Drag-and-drop nodes in the Project Navigator. This is the easiest way to set up
a structure among existing projects. Select the project that you want to make
into a subproject and drag it onto its new parent (superproject).

■ Use the Add as Project Reference dialog. In the Project Navigator, select the
project that you want to make into a subproject and choose
Project > Add as Project Reference (or right-click the project node and choose
Add as Project Reference). In the dialog, you will see a list of valid
superprojects; you can select more than one.

■ Use the Project References page in the Properties dialog. In the Project
Navigator, select the project that you want to make into a superproject and
choose Project > Properties (or right-click the project node and choose
Properties). Then select Project References. In the dialog, you will see a list of
projects; select the ones that you want to make into subprojects.

Subproject nodes appear as a subnodes of their parents (superprojects); see
Figure 4-4 and Figure 4-5.

Workbench validates subproject/superproject relationships based on project type
and target operating system. It does not allow you to create certain combinations.
For example, a Real-time Process project cannot be a direct subproject of a
VxWorks Image project (but it can be added to a File System project). In general, a
user-defined project can be a subproject or superproject of any other project with
a compatible target operating system.

For additional information about project structure, see 14.4 Complex Project
Structures, p.146.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

72

Removing Subprojects

To undo a subproject/superproject relationship, use one of these methods:

■ In the Project Navigator, select the subproject and choose
Project > Remove Project Reference (or right-click the subproject and choose
Remove Project Reference).

■ In the Project Navigator, select the superproject and choose
Project > Properties (or right-click the superproject and choose Properties).
Then select Project References and uncheck the subprojects that you want to
disassociate from their current parent.

4.5.2 Project Structures and Host File System Directory Structure

A tree of directories has only one Workbench project at the top, all subdirectories
will automatically be included in this project. Do not attempt to create project
hierarchies by creating projects for subdirectories in a tree. This will result in
overlapping projects, which is not permissible.

Figure 4-4 illustrates an ideal host file system directory structure. This flat system,
on the left, maps to the project structure displayed on the right, which also
represents the ideal (recommended) basic project structure (assuming you need all
the project types displayed).

The illustrated project structure is achieved as follows:

1. Create a project for each of the directories on the left.

2. In the Project Navigator, drag and drop the individual projects into place.

Figure 4-4 Workspace/Directory Structure and Project Structure

Physical Logical

4 Projects Overview
4.5 Projects and Project Structures

73

4

4.5.3 Project Structures and the Build System

As you can see in Figure 4-4 above, project structures are logical, not physical,
hierarchies. These hierarchies define and reflect the inner dependencies between
projects, and therefore also the order in which they have to be built.

Figure 4-5 illustrates the build order in this project structure. The build starts at the
top of the structure, recursively checks dependencies in each branch, and builds all
out of date objects and targets at each leaf, until it finishes at the top of the tree.

Assuming that everything in Figure 4-5 needs to be built, the build order will be:

1. DKM _1

2. SL

3. RTP_1

4. (SL already built in 2 above.)

5. RTP_2

6. FS

7. VIP_1

NOTE: All references in this section to build and the build system assume that your
projects use Workbench build support. That is, your user-defined projects are not
automatically included in these descriptions, though it is possible to integrate
custom projects into such a system.

Figure 4-5 Build Order in Project Structures

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

74

4.5.4 Project Structures and Sharing Subprojects

Project structures can share subprojects. That is, a single physical project can be
referenced by (dragged and dropped into) any number of logical project
structures.

The products of any update or build of a subproject, or element thereof, will be
available to project structures that reference that subproject.

4.5.5 Customizing Build Settings for Shared Subprojects

A single file system folder can be imported into multiple logical project structures,
appearing as a subproject of each one. In each case, you can assign a different build
specification (known as a build spec) depending on what is required by each project.

A folder can also be assigned several different build specs within the same project.

Later, when you set a particular active build spec for the project as a whole, the sub
folder that is assigned the same build spec will be included in the build, while
others assigned different build specs will be excluded. See 17.5 Architecture-Specific
Implementation of Functions, p.206 for an example.

75

 5
VxWorks Image Projects

5.1 Introduction 75

5.2 Importing a VxWorks Image Project 76

5.3 Creating a VxWorks Image Project 77

5.4 VxWorks Image Projects in the Project Navigator 80

5.5 Configuring Kernel Components 84

5.6 Adding Application Projects to the VxWorks Image Project 85

5.7 Notes on Board Support Packages (BSPs) 86

5.1 Introduction

Use a VxWorks Image project (VIP) to configure, customize, scale, and build a
VxWorks kernel image to boot your target. A VIP can be a complete application
and can also contain projects of other types. For example, you can add
Downloadable Kernel Modules or, through an intermediary ROMFS File System,
Shared Libraries and Real-time Processes to your VIP.

A new VxWorks Image project can be based on an existing VIP (which can be
imported into your workspace; see Importing a VxWorks Image Project, p.76) or on
a Board Support Package (see 5.7 Notes on Board Support Packages (BSPs), p.86).

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

76

5.2 Importing a VxWorks Image Project

One situation where you would want to import a VxWorks Image project is if you
are using the vxprj command-line project facility to build a custom board support
package (see the VxWorks Command-Line User’s Guide: Working with Projects and
Components and the vxprj API reference entry for more information).

You can then import the custom-built BSP into Workbench as follows:

1. Right-click the Project Navigator and choose Import.

2. Select Existing VxWorks Image Project into Workspace, then click Next.

3. Browse to the location of the custom-built BSP (a *.wpj file), click Finish.

5.2.1 Migrating a VxWorks Image Project

In Workbench 2.2 and 2.3, the .wrmakefile template used to generate the Makefiles
for the VIP project contained all functionality on how to build VIP projects.

In Workbench 2.4, the VIP-specific instructions moved to a dedicated
vxWorks.makefile, which now contains the necessary functionality to build the
VIP. The .wrmakefile now only covers generic managed build process instructions
like recursion, etc.

So when migrating existing VIP projects to Workbench 2.4, you must update the
makefile template manually.

■ If you updated your Workbench installation to version 2.4 and want to
continue using VxWorks 6.1, copy over the newly installed (version 2.4)
.wrmakefile and vxWorks.makefile to your existing VIP project to cause the
project to work properly with the new build system. The simplest way to get
these files is to create a new VIP (using the defaults), copy over the two files,
and delete the VIP again.

■ If you also updated your VxWorks installation to version 6.2, then you must
not only copy over the above two files but also run tcMigrate to migrate your
VIP project from VxWorks 6.1 to 6.2.

For more information about migrating to a new version of VxWorks, see the
tcMigrate help entry (by typing tcMigrate into the help system Search field)
and the Wind River Workbench Migration Guide: Workbench Projects.

NOTE: If you made any manual modifications to your previous .wrmakefile
file, you must manually migrate those to the new version of the file.

5 VxWorks Image Projects
5.3 Creating a VxWorks Image Project

77

5

5.3 Creating a VxWorks Image Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a VxWorks Image project, proceed as follows.

1. Choose File > New > VxWorks Image Project.

The New VxWorks Image Project wizard appears. If applicable, you are
asked to select a target operating system. Select a VxWorks version from the
drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If Create project in workspace is selected, the project is created in the current
workspace. If Create project at external location is selected, you can navigate
to a directory outside the workspace. See also 4.2 Workspace/Project Location,
p.64.

When you are ready, click Next.

3. The next page of the wizard asks what the project is based on.

– You are asked whether you would like to base your project on
An existing VxWorks Image project, or on A board support package
(BSP).

If you have already configured a VxWorks Image project that closely
matches your current needs, you can base your project on that. Otherwise
you can either select a supplied BSP from the list, or navigate to a third
party or other custom BSP (see also 5.7 Notes on Board Support Packages
(BSPs), p.86).

The list of known BSPs will depend on the BSPs you have installed
(including the simulator).

Project creation will be faster using an existing VxWorks Image project
since the project facility does not have to regenerate configuration
information from BSP configuration files. The files are simply copied.

– If you select A board support package, you are asked to select a
Tool chain. A tool chain is the suite of tools (compiler, linker, and so on)
that will be used to build projects. This is part of the build spec that
configures how things are built. The available list of tool chains depends
on what you have installed.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

78

When you are ready, click Next.

4. You are asked to select networking options for the kernel.

■ Select Use IPv6 enabled kernel libraries to include IPv6 support.

■ Select Use System Viewer free kernel libraries to exclude Wind River
System Viewer support. This option builds the project without System
Viewer instrumentation, provided the kernel has previously been
compiled with OPT=-fr or OPT=-inet6_fr specified. (Instrumentation-free
kernel libraries are not supplied with the product.) For information on
building the VxWorks kernel, see the source-code installation and build
instructions in your getting started guide. For information about the
System Viewer, see the Wind River System Viewer User’s Guide.

■ Select Use source mode build to build from source, rather than from
libraries, whenever possible. This compiles only those parts of the system
that are needed by that specific project configuration, greatly increasing its
ability to scale VxWorks down to smaller sizes. Source builds also enable
the system to perform better, because only the needed source is compiled.

If the component configuration does not allow a build from source, then
the project facility will build from libraries as usual.

When you are ready, click Next.

5. You are asked if you want to select a kernel configuration Profile. A Profile is
a preconfigured collection of kernel components that attempts to match given
needs. Selecting a profile can save you quite a bit of manual configuration, but
it is not required.

PROFILE_MINIMAL_KERNEL—Minimal VxWorks Kernel Profile
This profile provides the lowest level at which a VxWorks system can
operate. It consists of the micro-kernel, and basic CPU and BSP support.
This profile is meant to provide a very small VxWorks systems that can
support multitasking and interrupt management at a very minimum, but
semaphores and watchdogs are also supported by default. (See the

NOTE: If you intend to select one of the VxWorks scalability profiles, your
toolchain must be based on the Wind River Compiler (diab).

NOTE: In this release, only the following BSPs allow configurations that are
buildable from source: Integrator1136jfs, wrSbcPowerQuiccII, wrPpmc74xx,
Bcm1250_cpu0_mips64, Bcm1250_cpu1_mips64, Bcm1250eCpu0_mips64,
Bcm1250eCpu1_mips64.

5 VxWorks Image Projects
5.3 Creating a VxWorks Image Project

79

5

VxWorks Profiles for a Scaling the Operating System section in VxWorks Kernel
Programmer’s Guide: Kernel.)

PROFILE_BASIC_KERNEL—Basic VxWorks Kernel Profile
This profile builds on the minimal kernel profile, adding support for
message queues, task hooks, and memory allocation and deallocation.
Applications based on this profile can be more dynamic and feature rich
than the minimal kernel. (See the VxWorks Profiles for a Scaling the
Operating System section in VxWorks Kernel Programmer’s Guide: Kernel.)

PROFILE_BASIC_OS—Basic VxWorks OS Profile
This profile provides a small operating system on which higher level
constructs and facilities can be built. It supports an I/O system, file
descriptors, and related ANSI routines. It also supports task and
environment variables, signals, pipes, coprocessor management, and a
ROMFS file system. (See the VxWorks Profiles for a Scaling the Operating
System section in VxWorks Kernel Programmer’s Guide: Kernel)

PROFILE_COMPATIBLE—VxWorks 5.5 Compatible Profile
This profile provides the minimal configuration that is compatible with
VxWorks 5.5.

PROFILE_DEVELOPMENT—VxWorks Kernel Development Profile
This profile provides a VxWorks kernel that includes development and
debugging components.

PROFILE_ENHANCED_NET—Enhanced Network Profile
This profile adds to the default profile certain components appropriate for
typical managed network client host devices. The primary components
added are the DHCP client and DNS resolver, the Telnet server (shell not
included), and several command-line-style configuration utilities.

When you are ready, click Finish. The new VxWorks Image project will appear
at the root level in the Project Navigator.

Please refer to the VxWorks Kernel Programmer’s Guide: Kernel and the help page
for vxprj::profile for more information about profiles.

! CAUTION: The OS scale profiles (PROFILE_MINIMAL_KERNEL,
PROFILE_BASIC_KERNEL, and PROFILE_BASIC_OS) are built from
source code, so you must install VxWorks source to use them. For this release,
the profiles can only be built with the Wind River Compiler. In addition, the
profiles are only available for the BSPs listed in the Note on page 78.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

80

5.4 VxWorks Image Projects in the Project Navigator

After a VxWorks Image project has been created (see 5.3 Creating a VxWorks Image
Project, p.77), a number of nodes appear in the Project Navigator. This section
describes these nodes as they appear immediately after project creation, as well as
some that only appear after the projects are built using a specific build
specification (referred to here, and in the user interface as build spec).

For general notes about manipulating nodes, for example, moving, copying,
filtering, and so forth, please see 13. Working in the Project Navigator.

5.4.1 Global Project Nodes

5.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build spec.

The default VIP target is a RAM-based image. If you want to create an image of
another type, select a different target node when you build the project. See Creating
New Build Targets, p.81 for more information.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

Kernel Configuration
Immediately below the project node of a VxWorks Image project, there
is the Kernel Configuration node. Double-click the
Kernel Configuration node to open the Kernel Editor. Please refer to
5.5 Configuring Kernel Components, p.84, for information on using this
editor.

NOTE: What follows is a typical list of build specs. The build specs initially
available for a project are determined by the board support package. The VxWorks
simulator BSP (see 5.7.1 Using the Simulator BSP, p.86) does not supply ROM build
specs.

5 VxWorks Image Projects
5.4 VxWorks Image Projects in the Project Navigator

81

5

Creating New Build Targets

To add a build target to a project, select the project and choose
File > New > Build Target (or right-click on the project and choose
New > Build Target). Type a name for the new build target and click Finish.

For VxWorks Image projects, build-target names should have the form
vxWorks[type][format], where type can be empty (the default RAM-based image),
_rom, _romCompress, or _romResident, and format can be empty (the default ELF
image), .bin, or .hex. Examples:

vxWorks
vxWorks.hex

default
This represents the target built using the default build spec and appears
immediately after the project is created. It is a RAM-based image,
usually loaded into memory by a VxWorks boot loader. This is the
default development image and the only one that is available if you
specify a simulator as your target “board”. It is also available in formats
such as vxWorks.bin and vxWorks.hex. The .hex options are variants of
the main options with Motorola S-Record output. The .bin options are
variants of the main options with binary output.

default_rom
This is a ROM-based image that copies itself to RAM before executing.
This image generally has a slower startup time, but a faster execution
time than default_romResident. It is also available in .bin and .hex
formats.

default_romCompress
A compressed ROM image that copies itself to RAM and decompresses
before executing. It takes longer to boot than default_rom but takes up
less space than other ROM-based images (nearly half). The run-time
execution is the same speed as default_rom. It is also available in .bin
and .hex formats.

default_romResident
A ROM-resident image. Only the data segment is copied to RAM on
startup. It has the fastest startup time and uses the smallest amount of
RAM. Typically, however, it runs slower than the other ROM images
because ROM access is slower. It is also available in .bin and .hex
formats.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

82

vxWorks_rom
vxWorks_romResident.hex
vxWorks_romCompress.bin

Each target name corresponds to one of the build specs described above. Target
names are case-sensitive and must be spelled correctly to invoke the intended
predefined build specs.

5.4.3 Build Output Folders

When you create the project, a node called vxWorks (default) is added to the
project tree. It will hold the build output of the default target (created by setting
the active build spec to default). Nodes are created for each target as you build
them. The names of the nodes match those of the targets and will, once built, hold
the corresponding target’s build output.

Other build output folders will be created if you use other build specs. These will
have the same names as the build spec used (see 5.4.2 Project Build Specs and Target
Nodes, p.80).

5.4.4 Makefile Nodes

Three Makefiles are created in the project folder. One is a template that can also be
used for entering custom make rules. The others are dynamically regenerated from
build spec data at each build.

.wrmakefile
A template used by Wind River Workbench to generate the project’s
Makefile. Add user-specific build-targets and make rules in this file.
These will then be automatically dumped into the Makefile.

Makefile.mk
Called from Makefile. Connects the Workbench project to the VxWorks
build system. Includes a list of components and build parameters. Do
not edit.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

5 VxWorks Image Projects
5.4 VxWorks Image Projects in the Project Navigator

83

5

5.4.5 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a VxWorks Image project is created.

Application Initialization Stubs

Two of the files that are copied to the project at creation time are stubs for entering
calls to your application code:

Other Project Files

Normally, you need not be concerned with the remaining project files. However,
here a brief summary of the remaining VxWorks Image project files displayed in
the Project Navigator:

usrAppInit.c
A stub for adding DKM application initialization routines.

usrRtpAppInit.c
A stub for adding RTP application initialization routines.

projectName.wpj
Contains information about the project used for generating the project
makefile, as well as project source files such as prjConfig.c.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

linkSyms.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that includes code from the VxWorks
archive by creating references to the appropriate symbols. It contains
symbols for components that do not have initialization routines.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

84

5.5 Configuring Kernel Components

The Wind River Workbench distribution includes VxWorks kernel images located
in installDir/vxworks-version/target/config. A kernel image is a binary module that
can be booted and run on a target system. The kernel image consists of system
object modules linked into a single non-locatable object module with no
unresolved external references. In most cases, you will find the supplied kernel
image adequate for initial development. However, later in the cycle you may want
to create a custom VxWorks kernel image.

The VxWorks kernel is a flexible, scalable operating system with numerous
facilities that can be tuned, and included or excluded, depending on the
requirements of your application and the stage of the development cycle. For
example, various networking and file system components may be required for one
application and not another; the Kernel Editor provides a simple means for
including or excluding such components. In addition, it may be useful to build
VxWorks with various target tools (such as the target-resident shell) during
development, and then exclude them from the production application.

For more information about kernel components, please refer to the VxWorks Kernel
Programmer’s Guide: Kernel.

prjConfig.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that contains initialization code for
components included in the current configuration of VxWorks.

prjComps.h
A dynamically generated configuration file (therefore not to be checked
in) that contains the preprocessor definitions (macros) used to include
VxWorks components.

prjParams.h
A dynamically generated configuration file (therefore not to be checked
in) that contains component parameters.

5 VxWorks Image Projects
5.6 Adding Application Projects to the VxWorks Image Project

85

5

5.5.1 The Kernel Editor

To configure the kernel of a VxWorks Image project, in the Project Navigator,
double-click the Kernel Configuration node immediately under the VxWorks
Image project root node. This opens the Kernel Editor.

The Kernel Editor consists of three tabs (select at the bottom edge of the view).

■ The Overview tab provides a read-only summary of the configuration that is
updated by changes you make on the other two tabs.

■ The Bundles tab allows you to add or remove entire bundles of components
that you can fine-tune to your needs in the Components tab.

■ The Components tab displays a tree of bundles and, at the leaf nodes of
expanded bundles, individual components and their parameters.

For more information about the Kernel Editor, see Wind River Workbench User
Interface Reference: Kernel Editor View.

5.6 Adding Application Projects to the VxWorks Image Project

Once you have created application projects, populated these with code, and
successfully built them, you will want to add these to the VxWorks Image project.
You may also want to add a ROMFS file system (see 7. ROMFS File System Projects).

Step 1: Link the application projects to the VxWorks Image project.

Some projects, including downloadable kernel modules and user-defined projects,
can be managed as subprojects of a VxWorks Image project. If your application
projects are not already set up as subprojects of a VIP, see 4.5.1 Adding Subprojects
to a Project, p.71 for information on how to do this. Building VIPs with application
subprojects helps assure correct linking and dependency-checking.

RTP and shared-library projects cannot be direct subprojects of a VIP, but they can
be subprojects of a File System project that is in turn a subproject of a VIP.

Step 2: Add the application initialization routines to the VxWorks Image project.

When VxWorks boots, it initializes all operating system components (as needed),
and then passes control to the user’s application for initialization. To add
application initialization calls to VxWorks do the following:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

86

■ For DKM projects, double-click userAppInit.c to open the file for editing, and
add the necessary calls to the usrAppInit() function.

■ For RTP projects, double-click userRtpAppInit.c to open the file for editing,
and add the necessary calls to the usrRtpAppInit() function.

Step 3: Configure the VxWorks Image project VxWorks kernel.

VxWorks must be configured to support the calls your application makes to it, or
you will not be able to link your image. If your BSP provides a “bare-bones”
VxWorks configuration, you may wish to use the Kernel Editor’s Auto Scale
facility to detect and add most of the VxWorks functionality you require.
Auto Scale will compile your code, analyze the symbols in your object modules,
map them to components, and offer to include those components. There may be
some components that Auto Scale does not detect. If you Auto Scale, build, and
still get link errors, you will need to add the additional components from the
Kernel Editor (for more information about auto scale and the kernel editor, see the
Wind River Workbench User Interface Reference: Kernel Editor View).

5.7 Notes on Board Support Packages (BSPs)

A Board Support Package (BSP) consists primarily of the hardware-specific
VxWorks code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

You can base a VxWorks Image project on the VxWorks simulator BSP, a Wind
River BSP supplied with Workbench, or a third-party BSP; or you can create your
own custom BSP.

5.7.1 Using the Simulator BSP

You can base your VxWorks Image project on the VxWorks simulator BSP if you
want to develop a custom BSP and application code for your product in parallel,
or if your target hardware is not yet ready. The simulator BSP contains default
VxWorks functionality sufficient for supporting most applications.

5 VxWorks Image Projects
5.7 Notes on Board Support Packages (BSPs)

87

5

5.7.2 Using a Wind River or Third-Party BSP

Wind River Workbench BSP

If your BSP was installed with Workbench 2.3, you can create a VxWorks Image
project from it directly (see 5.3 Creating a VxWorks Image Project, p.77).

Tornado 2.x BSP or SNiFF+ 4.1 and Newer BSP

For information on migrating a Tornado 2.x-compliant BSP or a SNiFF+ 4.1 (or
newer) BSP to Workbench, see the Wind River Workbench Migration Guide.

5.7.3 Using a Custom BSP for Custom Hardware

Creating a BSP

If you need to create your own BSP, please refer to the VxWorks BSP Developer’s
Guide. If you wish to develop the BSP and the application code in parallel, you may
want to begin application development on the VxWorks Simulator. See 5.7.1 Using
the Simulator BSP, p.86.

Using a Pre-Existing BSP with the Wind River Workbench Project Facility

If you already have a custom BSP that is Tornado 2.x compliant, please see the
VxWorks Migration Guide for information on migrating to Workbench.

If you already have a custom, non-compliant BSP, you will need to modify it to
conform to the guidelines outlined in the VxWorks BSP Developer’s Guide in order
to use it with the Workbench project facility. Once you have modified it, verify that
it builds properly before creating a project for it.

NOTE: If you do not make your BSP Workbench compliant, Workbench will not be
able to provide project-based support for customizing, configuring, or building it.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

88

Using a BSP Outside the Wind River Workbench

You may still use a non-compliant BSP by managing its configuration manually.
For information on using manual methods, see the Wind River Workbench Command
Line User’s Guide. You can still create downloadable projects to hold your
application code and download them to a target booted with a non-compliant BSP.

89

 6
Boot Loader Project

6.1 Introduction 89

6.2 Creating a Boot Loader Project 90

6.3 Boot Loader Projects in the Project Navigator 91

6.1 Introduction

Use a VxWorks Boot Loader project to create a VxWorks boot loader (also referred to as
the VxWorks boot ROM) to boot-load a target with the VxWorks kernel.

Boot loaders are used in a development environment to load a VxWorks image
that is stored on a host system, where VxWorks can be quickly modified and
rebuilt. Boot loaders are also used in production systems where both the boot
loader and operating system image are stored on a disk.

Because Boot Loader projects provide rudimentary board support (boot loading),
they can also be used for loading standalone Downloadable Kernel Module
Applications without a full-blown VxWorks kernel.

Boot loaders are not required for standalone VxWorks systems that are stored in
ROM, nor is it possible to create a boot loader for an image meant to be run on the
VxWorks simulator.

Please refer to the VxWorks Kernel Programmer’s Guide: Kernel for more information
on boot loaders.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

90

6.2 Creating a Boot Loader Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a Boot Loader project, proceed as follows.

1. Choose File > New > VxWorks Boot Loader Project.

The New VxWorks Boot Loader Project wizard appears. If applicable, you
are asked to select a target operating system. Select a VxWorks version from
the drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If Create project in workspace is selected, the project is created in the current
workspace. If Create project at external location is selected, you can navigate
to a directory outside the workspace. See also 4.2 Workspace/Project Location,
p.64.

When you are ready, click Next.

3. The next page of the wizard asks you to set:

– The Board support package for which you want to create a boot loader.

– The Boot loader image Style and Format.

Boot loader images come in the following styles: Compressed,
Uncompressed, ROM-Resident, and ROM-Resident At High Address.
These are functionally the same but have different memory requirements
and execution times. After the project has been created, you can change
the Style by right-clicking the project and selecting Set Active Build Spec.

The VxWorks Kernel Programmer’s Guide: Kernel chapter provides detailed
information on Style and Format. BSP documentation specifies which
types are available for a specific target.

When you are ready, click Finish. The new Boot Loader project will
appear at the root level in the Project Navigator.

6 Boot Loader Project
6.3 Boot Loader Projects in the Project Navigator

91

6

6.3 Boot Loader Projects in the Project Navigator

After a Boot Loader has been created, a number of nodes appear in the Project
Navigator. This section describes these nodes as they appear immediately after
project creation.

For general notes about manipulating nodes, for example, moving, copying,
filtering, etc., please see 13. Working in the Project Navigator.

6.3.1 Global Project Nodes

6.3.2 Project Build Specs and Target Nodes

Each Boot Loader project has a single IDE-managed build target whose name has
the form bsp (buildSpec)—for example, simpc (bootloader_res). To switch build
specs, right-click and choose Set Active Build Spec.

Build-spec names have the form bootloader[style][format], where style can be
empty (the default compressed image), _uncmp (uncompressed), _res
(ROM-resident), or _res_high (ROM-resident at high address), and format can be
empty (the default ELF image), .bin (binary output), or .hex (Motorola S-Record).
Examples:

bootloader
bootloader.bin
bootloader_res_high
bootloader_uncmp.hex

You can create new build targets with user-defined make rules by choosing
File > New > Build Target or right-clicking on the project and choosing
New > Build Target.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

92

6.3.3 Makefile Nodes

6.3.4 Other Project Files

Normally, you need not be concerned with the remaining project files. However,
here a brief summary of the remaining VxWorks Boot Loader project files
displayed in the Project Navigator:

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

93

 7
ROMFS File System Projects

7.1 Introduction 93

7.2 Creating a ROMFS File System Project 94

7.3 ROMFS File System Projects in the Project Navigator 95

7.1 Introduction

Use a ROMFS File System project as a subproject of a VxWorks Image project that
requires ROMFS. The ROMFS file system provides a means for bundling RTP
applications and shared libraries with the VxWorks system image. At runtime,
these files can be accessed in the VxWorks /romfs directory (and any
subdirectories you create).

To use other file systems—such as dosFs—in your applications, configure
VxWorks with the appropriate components.

For more information about ROMFS and other file systems, see the VxWorks Kernel
Programmer’s Guide: Local File Systems or the VxWorks Application Programmer’s
Guide: Local File Systems; and the VxWorks Application Programmer’s Guide:
Applications and Processes.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

94

7.2 Creating a ROMFS File System Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a VxWorks File System project, proceed as follows.

1. Choose File > New > VxWorks FileSystem Project.

The New VxWorks Downloadable Kernel Module Project wizard appears.
If applicable, you are asked to select a target operating system. Select a
VxWorks version from the drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If Create project in workspace is selected, the project is created in the current
workspace. If Create project at external location is selected, you can navigate
to a directory outside the workspace. See also 4.2 Workspace/Project Location,
p.64.

When you are ready, click Next.

3. You are asked to define the project structure (the superproject and subproject
context) for the project you are creating. This is an optional step; it is not
necessary to select a superproject or subprojects.

The Superproject check box refers to VxWorks Image project (VIP) that is
currently highlighted in the Project Navigator. If you do not see this check box,
or if the check box is grayed, no valid project is highlighted in the Project
Navigator. If you select the check box, the project you are creating will be a
subproject of the indicated VIP.

The check boxes below list the remaining projects in the workspace that can be
added to the current project as subprojects.

When you are ready, click Finish. The VxWorks File System is created and
appears in the Project Navigator, either at the root level or linked under a
VxWorks Image project, depending on your selection above.

7 ROMFS File System Projects
7.3 ROMFS File System Projects in the Project Navigator

95

7

7.3 ROMFS File System Projects in the Project Navigator

After a ROMFS file system project has been created (see 7.2 Creating a ROMFS File
System Project, p.94) a number of nodes appear in the Project Navigator. This
section describes these nodes as they appear immediately after project creation.
For general notes about manipulating nodes, for example, moving, copying,
filtering, etc., please see 13. Working in the Project Navigator.

7.3.1 Global Project Nodes

7.3.2 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a VxWorks File System project is created. Normally, you need not be concerned
with these files. However, here is a brief summary of the VxWorks File System
project files displayed in the Project Navigator:

ProjectName
The icon at the root of the VxWorks File System project tree identifies the
type of project; the icon’s label is the name you gave the project when
you created it.

VxWorks File System Contents
Immediately below the project node, there is the
VxWorks File System Contents node. Double-click the
VxWorks File System Contents to open the File System Contents
Editor. Please refer to 7.3.3 Configuring the ROMFS File System, p.96, for
information on using this editor.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

96

7.3.3 Configuring the ROMFS File System

To add files or create subdirectories, in the Project Navigator, double-click the
VxWorks File System Contents node immediately under the VxWorks File
System root node of the project. This opens the File System Contents Editor.

Two panels, one for the host and one for the target, allow you to add and remove
files. You can also create or delete subdirectories in the Target Contents panel.

The panel at the bottom of the view displays a summary of properties for the
selected element in the Target Contents (right) panel.

Make sure that you add the correct binary or data files. Click the file names in the
Target Contents pane and verify the path in the Host path field in the bottom
panel. This can be useful, for example, to check that:

■ You have used the correct version of a versioned shared library.

■ You have taken files from the correct build-spec output folder.

97

 8
VxWorks Real-time Process

Projects

8.1 Introduction 97

8.2 Creating a VxWorks Real-time Process Project 98

8.3 VxWorks Real-time Processes in the Project Navigator 100

8.4 Application Code for a VxWorks Real-time Process Project 103

8.5 Linking to VxWorks and Using Shared Libraries 103

8.1 Introduction

Using VxWorks Real-time Process (RTP) projects to manage and build modules that
will exist outside of the kernel space, you can separately build, run, and debug the
VxWorks Real-time Process executable.

At run-time, the executable file is downloaded to a separate address space to run
as an independent process. The binary produced from a VxWorks Real-time
Process project will need to be stored on a target-side file system, see 7. ROMFS File
System Projects.

VxWorks Real-time Process projects provide a protected, process-based,
user-mode environment for developing applications. In this mode, applications
are developed as VxWorks executables. An application has a well-defined start
address. When the executable is loaded, memory is allocated by the system for the
executable, execution begins at the known start address, and all tasks in the

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

98

process run within the same memory-protected address space. When the
application terminates, all the resources associated with it are freed back to the
system.

8.2 Creating a VxWorks Real-time Process Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a VxWorks Real-time Process project proceed as follows.

1. Choose File > New > VxWorks Real Time Process Project.

The New VxWorks Real Time Process Project wizard appears. If you have
multiple versions of VxWorks installed, you are asked to select a target
operating system. If applicable; that is, if you see this wizard page at all, select
a VxWorks version from the drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If you choose Create project in workspace (default) the project will be created
under the current workspace directory. If you choose to
Create project at external location, you can navigate to a location outside the
workspace (see also 4.2 Workspace/Project Location, p.64 and 4.3 Creating New
Projects, p.64).

After project creation, the project name will appear in the Project Navigator
(see 8.3 VxWorks Real-time Processes in the Project Navigator, p.100). To see the
project location, right-click on the project and select Properties, then select the
Info node of the Properties dialog.

When you are ready, click Next.

3. You are asked to define the project structure (the super- and subproject
context) for the project you are creating.

The text beside the Link to superproject check box refers to whatever project
is currently highlighted in the Project Navigator (if you do not see this check
box, no valid project is highlighted). If you select the check box, this will be the
superproject of the project you are currently creating.

8 VxWorks Real-time Process Projects
8.2 Creating a VxWorks Real-time Process Project

99

8

The check boxes in the Referenced subprojects list represent the remaining
projects in the workspace that can be validly referenced as subprojects by the
project you are currently creating.

After project creation, you can change the project structure in the Project
Navigator using drag-and-drop.

When you are ready, click Next.

4. You are asked to specify the Build Defaults source either from an existing
template or an existing project. If you select Use Default, preconfigured
default templates are used.

You can inspect and, if necessary modify, the default settings for new projects
of each project type from Window > Preferences > Build Properties (see
16.2.1 Project Build Properties and Preferences Build Properties, p.175).

When you are ready, click Next.

5. A VxWorks Real-time Process project is a predefined project type that uses
Workbench Build support, so you can only select either this, or no build
support at all. If you are creating a project because you want to browse symbol
information only and you are not interested in building it, you could also
disable build support.

The Build command specifies the make tool command line.

Build output passing: If the project is a subproject in a tree, its own objects
(implicit targets) as well as the explicit targets of its subprojects, can be passed
on to be linked into the build targets of projects that are further up in the
hierarchy.

When you are ready, click Next.

6. Build Specs: The list of available build specs will always be available. By
checkmarking individual specs, you enable them for the current project, which
means that you will, in normal day to day work, only see relevant (enabled)
specs in the user interface, rather than the whole list. Additional specs can be
enabled/disabled at any time after the project has been created.

The Debug Mode checkbox specifies wether or not the build output includes
debug information or not.

NOTE: All settings in the following wizard pages are build related. You can
therefore verify/modify them after project creation in the Build Properties node of
the project’s Properties, see 16. Build Properties and the Build Console.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

100

7. Build Target: The Build target name is the same as the project name by
default. If you delete the contents of the field no target will be created.

Build tool: For a VxWorks Real-time Process project you can select:

■ Linker: This is the default selection. The linker produces a a
BuildTargetName.vxe file. This single, partially linked and munched
(integrated with code to call C++ static constructors and destructors)
object is intended for downloading.

The Linker output product cannot be passed up to superprojects,
although the current project’s own, unlinked object files can, as can any
output products received from projects further down in the hierarchy (see
step 5. above).

■ Librarian: This is the default selection if you specified that the project is to
be linked into a project structure as a subproject. The Librarian produces
an archive TargetName.a file.

The Librarian output product can be passed up to superprojects, as can
the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy (see step 5.
above).

8. When you are ready, you can review your settings using the Back button or
click Finish.

The VxWorks Real-time Process project is created and appears in the Project
Navigator, either at the root level, or linked into a project tree, depending on
your selection in step 3. above.

8.3 VxWorks Real-time Processes in the Project Navigator

After a VxWorks Real-time Process has been created, a number of nodes appear in
the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Navigator.

8 VxWorks Real-time Process Projects
8.3 VxWorks Real-time Processes in the Project Navigator

101

8

8.3.1 Global Project Nodes

8.3.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The RTP build targets depend on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a) target and a
TargetName.out target immediately after project creation. Which of these will be
visible depends on the build tool you selected. Also, the presence or absence of the
green upward arrow on the target icon (to indicate whether the target is passed up
the hierarchy) will be determined by your project settings.

8.3.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

TargetName.vxe (BuildSpecName[_DEBUG])
This single, partially linked and munched (integrated with code to call
C++ static constructors and destructors) object, produced by the Linker
build tool is intended for downloading.

TargetName.a (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool that has to be statically
linked into an executable.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

102

8.3.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the DKM project files displayed in the Project
Navigator:

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification that on which the target node is
based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

8 VxWorks Real-time Process Projects
8.4 Application Code for a VxWorks Real-time Process Project

103

8

8.4 Application Code for a VxWorks Real-time Process Project

After project creation you have the infrastructure for a VxWorks Real-time Process
project, but often no actual application code. If you are writing code from the
beginning, you can add new files to a project. If you already have source code files,
you will want to import these to the project. For more information please refer to
13.3.1 Importing Resources, p.132, and 13.3.2 Adding New Files to Projects, p.133.

8.5 Linking to VxWorks and Using Shared Libraries

In order to have your VxWorks Real-time Process project binary initialized once
the kernel has booted, you will need to:

■ Create a VxWorks Image project, see 5.3 Creating a VxWorks Image Project, p.77.

■ Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.85 and 5.5 Configuring Kernel
Components, p.84.

■ Create a target file system before the target is disconnected from the host
system, see 7.2 Creating a ROMFS File System Project, p.94.

■ If you want to dynamically link to shared libraries, the VxWorks Real-time
Process project needs to be appropriately configured, see 17.6 Executables that
Dynamically Link to Shared Libraries, p.207, and 18. RTPs and Shared Libraries
from Host to Target.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

104

105

 9
VxWorks Shared Library

Projects

9.1 Introduction 105

9.2 Creating a VxWorks Shared Library Project 106

9.3 Shared Libraries in the Project Navigator 108

9.4 Source Code for the Shared Library 109

9.5 Making Shared Libraries Available to Applications 110

9.1 Introduction

Use VxWorks Shared Library projects for libraries that are dynamically linked to
VxWorks Real-time Process projects at run-time. Such a shared library will need to
be stored, like the Real-time Process project, on a target-side file system (see
7. ROMFS File System Projects). You can also use VxWorks Shared Library projects
to create subprojects that are statically linked into other project types at build time.

Please refer to 9. VxWorks Shared Library Projects, 17.6 Executables that Dynamically
Link to Shared Libraries, p.207, and 18. RTPs and Shared Libraries from Host to Target
for more information on working with this type of project.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

106

9.2 Creating a VxWorks Shared Library Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a VxWorks Shared Library project, proceed as follows.

1. Choose File > New > VxWorks Shared Library Project.

The New VxWorks Shared Library Project wizard appears. If you have
multiple versions of VxWorks installed, you are asked to select a target
operating system. If applicable; that is, if you see this wizard page at all, select
a VxWorks version from the drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If you choose Create project in workspace (default) the project will be created
under the current workspace directory. If you choose to
Create project at external location, you can navigate to a location outside the
workspace (see also 4.2 Workspace/Project Location, p.64 and 4.3 Creating New
Projects, p.64).

After project creation, the project name will appear in the Project Navigator
(see 9.3 Shared Libraries in the Project Navigator, p.108). To see the project
location, right-click on the project and select Properties, then select the Info
node of the Properties dialog.

When you are ready, click Next.

3. You are asked to define the project structure (the super- and subproject
context) for the project you are creating.

The text beside the Superproject check box refers to whatever project is
currently highlighted in the Project Navigator (if you do not see this check box,
no valid project is highlighted). If you select the check box, the new VxWorks
Shared Library project will be created as a subproject of the highlighted
project, and will be built as part of it.

The check boxes in the Referenced subprojects list represent the remaining
projects in the workspace that can be validly referenced as subprojects by the
project you are currently creating.

After project creation, you can change the project structure in the Project
Navigator using drag-and-drop.

When you are ready, click Next.

9 VxWorks Shared Library Projects
9.2 Creating a VxWorks Shared Library Project

107

9

4. You are asked to specify the Build Defaults source either from an existing
template or an existing project. If you select Use Default, preconfigured
default templates are used.

You can inspect and, if necessary modify, the default settings for new projects
of each project type from Window > Preferences > Build Properties (see
16.2.1 Project Build Properties and Preferences Build Properties, p.175).

When you are ready, click Next.

5. A VxWorks Shared Library project is a predefined project type that uses
Workbench Build support, so you can only select either this, or no build
support at all. If you are creating a project because you want to browse symbol
information only and you are not interested in building it, you could also
disable build support.

Build command: specifies the make tool command line.

Build output passing: if the project is a subproject in a tree, its own unlinked
objects, as well as the explicit targets of its subprojects, can be passed on to be
linked into the build targets of projects that are further up in the hierarchy.

When you are ready, click Next.

6. Build Specs: the list of available build specs is always accessible in the Project
Properties. By selecting individual specs, you enable them for the current
project, which means that you will only see relevant specs rather than a whole
long list. Additional specs can be enabled/disabled at any time after the
project has been created.

The Debug Mode checkbox specifies wether or not the build output includes
debug information or not.

7. Build Target: Build target name is the same as the project name by default. If
you delete the contents of the field no target will be created.

The Build tool can be the Shared Library Linker or a custom user-defined
tool.

The Shared Library Linker produces a BuildTargetName.so target that is
dynamically linked to at run-time.

NOTE: All settings in the following wizard pages are build related. You can
therefore verify/modify them after project creation in the Build Properties node of
the project’s Properties, see 16. Build Properties and the Build Console.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

108

The output product of the Shared Library Linker will normally be passed up
to superprojects. If you do not pass the library target up to its superprojects,
references in the superprojects’ application code cannot be resolved at compile
time. If you specified that the VxWorks Shared Library project you are
currently creating links to a superproject (see step 3 above), the check box will
be selected by default.

8. When you are ready, you can review your settings using the Back button or
click Finish.

The VxWorks Shared Library project is created and appears in the Project
Navigator, either at the root level, or linked into a project tree, depending on
your selection in step 3. above.

9.3 Shared Libraries in the Project Navigator

After a VxWorks Shared Library project has been created, a number of nodes
appear in the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, and so on, please see 13. Working in the
Project Navigator.

9.3.1 Global Project Nodes

9.3.2 Target Node

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

TargetName.so (BuildSpecName[_DEBUG])
A VxWorks Shared Library produced by the Shared Library Linker
that is dynamically linked at run-time.

9 VxWorks Shared Library Projects
9.4 Source Code for the Shared Library

109

9

9.3.3 Makefile Nodes

At project generation time a template that can also be used for entering custom
make rules is copied to the project.

9.3.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the Shared Library project files displayed in the
Project Navigator:

9.4 Source Code for the Shared Library

After project creation you have the infrastructure for a Shared Library project, but
often no actual library source code. If you are writing code from the beginning, you
can add new files to a project. If you already have source code files, you will want
to import these to the project. For more information refer to 13.3.1 Importing
Resources, p.132, and 13.3.2 Adding New Files to Projects, p.133.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

110

9.5 Making Shared Libraries Available to Applications

To make shared libraries accessible to your applications at run-time, you have to
make sure of a few configuration details, both on the library side and on the
application side. You also need a file system project to store the library on the
target (see 7. ROMFS File System Projects).

9.5.1 Configuring the Shared Library Project

■ Make sure the shared library is a subproject of all applications that need to
access it. If the library is used by many applications, create projects for each
application and make the library a subproject of each (see 13. Working in the
Project Navigator for information on how to do this).

■ Make sure the library target is passed to superprojects. You can do this during
project creation (see step 7 under 9.2 Creating a VxWorks Shared Library Project,
p.106), or subsequently in the Project Properties as follows:

– In the Project Navigator, highlight the shared library project folder you are
interested in and right-click Project Properties.

(If the project folder is a subnode under several different superprojects, it
does not matter which you choose because these nodes are only logical
representations of one and the same project.)

– In Project Properties, select Build Properties node, then the Build Tools
tab. On the Build Tools tab, be sure the
Generated build target can be passed check box is selected.

If the output of the library build is not passed up to superprojects,
references from the superproject to the library subproject cannot be
resolved at build-time.

Click OK to close the Project Properties.

9.5.2 Configuring the Application Projects

Most shared library projects are created as subprojects of one or more application
projects. Although a superproject knows the location of its subprojects, it does not
know that a particular subproject is a shared library, so the application project’s
linker has to be configured to accommodate dynamic access to shared libraries. For

9 VxWorks Shared Library Projects
9.5 Making Shared Libraries Available to Applications

111

9

more information, please see 17.6 Executables that Dynamically Link to Shared
Libraries, p.207, and 18. RTPs and Shared Libraries from Host to Target.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

112

113

 10
VxWorks Downloadable Kernel

Module Projects

10.1 Introduction 113

10.2 Creating a VxWorks Downloadable Kernel Module Project 114

10.3 Downloadable Kernel Modules in the Project Navigator 116

10.4 Application Code for a VxWorks DKM Project 118

10.1 Introduction

Use VxWorks Downloadable Kernel Module (DKM) projects to manage and build
modules that will exist in the kernel space. You can separately build the modules,
then run and debug them on a target running VxWorks, loading, unloading, and
reloading on the fly.

Once your development work is complete, the modules can be statically linked
into the kernel or use a file system if one is present.

Kernel-mode development is the traditional VxWorks method of development. All
the tasks you spawn run in an unprotected environment and all have full access to
the hardware in the system.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

114

10.2 Creating a VxWorks Downloadable Kernel Module Project

To create a VxWorks Downloadable Kernel Module project, proceed as follows.

1. Choose File > New > VxWorks Downloadable Kernel Module Project.

The New VxWorks Downloadable Kernel Module Project wizard appears.
If applicable, you are asked to select a target operating system. Select a
VxWorks version from the drop-down list and click Next.

2. You are asked to enter a Project name and Location.

If you choose Create project in workspace (default) the project will be created
under the current workspace root directory. If you choose to
Create project at external location, you can navigate to a location outside the
workspace (see also 4.2 Workspace/Project Location, p.64 and 4.3 Creating New
Projects, p.64).

After project creation, the project name will appear in the Project Navigator
(see 10.3 Downloadable Kernel Modules in the Project Navigator, p.116). To see the
project location, right-click on the project and select Properties, then select the
Info node of the Properties dialog.

When you are ready, click Next.

3. You are asked to define the project structure (the superproject and subproject
context) for the project you are creating.

The text beside the Link to superproject check box refers to whatever project
is currently highlighted in the Project Navigator (if you do not see this check
box, no valid project is highlighted). If you select the check box, this will be the
superproject of the project you are currently creating.

The check boxes in the Referenced subprojects list represent the remaining
projects in the workspace that can be validly referenced as subprojects by the
project you are currently creating.

After project creation, you can change the project structure in the Project
Navigator using drag-and-drop.

When you are ready, click Next.

4. You are asked to specify the Build Defaults source either from an existing
template or an existing project. If you select Use Default, preconfigured
default templates are used.

10 VxWorks Downloadable Kernel Module Projects
10.2 Creating a VxWorks Downloadable Kernel Module Project

115

10

You can inspect and, if necessary modify, the default settings for new projects
of each project type from Window > Preferences > Build Properties (see
16.2.1 Project Build Properties and Preferences Build Properties, p.175).

When you are ready, click Next.

5. Build Support options: A VxWorks Downloadable Kernel Module project is a
predefined project type that uses Workbench build support, so in most cases
you will want to select Managed build to use makefiles generated by the IDE.
If you are creating a project because you want to browse symbol information
only and you are not interested in building it, you could also disable build
support by selecting Disabled (and enable it later, if needed). The
User-defined build option is not available for VxWorks Downloadable Kernel
Module projects.

The Build command specifies the make tool command line.

Build output passing: If the project is a subproject in a tree, its own objects
(implicit targets) as well as well as the explicit targets of its subprojects can be
passed on to be linked into the build targets of projects that are further up in
the hierarchy.

When you are ready, click Next.

6. Build Specs: The list of available build specs will always be available. By
checkmarking individual specs, you enable them for the current project, which
means that you will, in normal day to day work, only see relevant (enabled)
specs in the user interface, rather than the whole list. Additional specs can be
enabled/disabled at any time after the project has been created.

When you are ready, click Next.

7. Build Target: The Build target name is the same as the project name by
default. If you delete the contents of the field no target will be created.
However, a default target named PartialImage.pl will always be built and
passed to the superproject.

Build tool: For a VxWorks Downloadable Kernel Module project you can
select:

– Linker: This is the default selection if you did not specify that the project
is to be linked into a project structure as a subproject. The linker produces

NOTE: All settings in the following wizard pages are build related. These can
therefore all be verified or modified after project creation in the Build Properties
node of the project’s Properties, see 16. Build Properties and the Build Console.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

116

a BuildTargetName.out file. This single, partially linked and munched
(integrated with code to call C++ static constructors and destructors)
object is intended for downloading.

The Linker output product cannot be passed up to superprojects,
although the current project’s own, unlinked object files can, as can any
output products received from projects further down in the hierarchy (see
step 5. above).

– Librarian: This is the default selection if you specified that the project is to
be linked into a project structure as a subproject. The Librarian produces
an archive TargetName.a file.

The Librarian output product can be passed up to superprojects, as can
the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy (see step 5.
above).

– Partial Image Linker: The Partial Image Linker produces a TargetName.pl
file. This single, partially linked, but not munched (not integrated with
code to call C++ static constructors and destructors) object is for subproject
support only; it is not intended for download.

The Partial Image Linker output product can be passed up to
superprojects, as can current project’s own, unlinked object files, as well as
any output products received from projects further down in the hierarchy
(see step 5. above).

8. When you are ready, you can review your settings using the Back button, or
click Finish.

The VxWorks Downloadable Kernel Module is created and appears in the
Project Navigator, either at the root level or linked into a project tree,
depending on you selection in step 3. above.

10.3 Downloadable Kernel Modules in the Project Navigator

After a VxWorks Downloadable Kernel Module has been created, a number of
nodes appear in the Project Navigator. This section describes these nodes as they
appear immediately after project creation. For general notes about manipulating

10 VxWorks Downloadable Kernel Module Projects
10.3 Downloadable Kernel Modules in the Project Navigator

117

10

nodes, for example, moving, copying, filtering, and so forth. Please see 13. Working
in the Project Navigator.

10.3.1 Global Project Nodes

10.3.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The VxWorks Downloadable Kernel Module project software targets depend on
the options you selected during project creation. Specifically, you will not have
both an archive (TargetName.a) target and a TargetName.out target immediately
after project creating. Which, if any, of these will be visible depends on the build
tool you selected. Also, the presence or absence of the green upward arrow on the
target icon (to indicate whether the target is passed up the hierarchy) will be
determined by your creation settings.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

PartialImage.pl
This default target is always built for VxWorks Downloadable Kernel
Module project. This single, partially linked, but not munched object is
for subproject support only; it is not intended for download. By default,
the build target is passed to the next level (hence the green upward
arrow on the icon).

TargetName.out (BuildSpecName[_DEBUG])
This single, partially linked and munched object, produced by the
Linker build tool is intended for downloading.

TargetName.a (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool that has to be statically
linked into an executable.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

118

10.3.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

10.3.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the VxWorks Downloadable Kernel Module
project files displayed in the Project Navigator:

10.4 Application Code for a VxWorks DKM Project

After project creation, you have the infrastructure for a VxWorks Downloadable
Kernel Module project, but often no actual application code. If you are writing
code from the beginning, you can add new files to a project. If you already have
source code files, you will want to import these to the project. For more

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, and so on.

10 VxWorks Downloadable Kernel Module Projects
10.4 Application Code for a VxWorks DKM Project

119

10

information please refer to 13.3.1 Importing Resources, p.132, and 13.3.2 Adding New
Files to Projects, p.133.

You can link your VxWorks Downloadable Kernel Module with the operating
system and have it start automatically at boot time. To do this:

1. Create a VxWorks Image project. See 5.3 Creating a VxWorks Image Project, p.77.

2. Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.85 and 5.5 Configuring Kernel
Components, p.84.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

120

121

 11
VxWorks User-Defined

Projects

11.1 Introduction 121

11.2 Creating a User-Defined Project 122

11.3 Creating an Application for VxWorks 124

11.1 Introduction

VxWorks User-Defined Projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface provides support for the following:

■ You can configure the build command used to launch your build utility; this
allows you to start builds from the Workbench GUI. You can also configure
different rules for building, rebuilding and cleaning the project.

■ You can create build targets in the Project Navigator that reflect rules in your
makefiles; this allows you to select and build any of your make rules directly
from the Project Navigator.

■ Build output is captured to the Build Console.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

122

11.2 Creating a User-Defined Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

When you create a User-Defined project, Workbench checks the root location of the
project’s resources for the existence of a file named Makefile (or, if you specified
a different filename in the New Project wizard’s Build Command field using the
-f make option, which can include a relative or absolute path to a subdirectory,
Workbench checks for the file you specified). If it does not exist, Workbench
creates a skeleton Makefile with a default all rule and a clean. This allows you to
use the Build Project, Rebuild Project, and Clean Project menu commands, as
well as preventing the generation of build errors. You are responsible for
maintaining this Makefile, and you can write any other rules into this file at any
time.

If you base your User-Defined project on an existing project, the Makefile (or
whatever filename specified in the build command) of that project will be taken
and copied to the new project. If you change the name of the makefile used by the
build command in the New Project wizard’s Build Command field using the -f
make option, the file will be renamed accordingly. In this case the file, if it already
exists in the new project’s location, will be overwritten.

11.2.1 Linking to External Files

If you have a large source tree of existing files that you do not want to copy into
your workspace, a User-Defined project allows you to link to the directory where
the sources are located.

1. Create a User-Defined project by selecting File > New > VxWorks
User-Defined Project. The New User-Defined Project wizard appears.

2. Select your target operating system, then click Next.

3. Type a name for your project.

4. Decide where to create your project, then click Next.

■ Leave Create project in workspace selected if you want the project to be
created under the current workspace directory (typical for projects created

NOTE: If you specify an absolute path for a makefile in the New Project wizard’s
Build Command field using the -f make option, no Makefile will be generated at
any time.

11 VxWorks User-Defined Projects
11.2 Creating a User-Defined Project

123

11

from scratch with no existing sources, or for projects where existing
sources will be imported into them later on—see Adding Application Code
to Projects, p.132—or for projects where you do not have write permission
to the location of your source files1).

■ Select Create project at external location, click Browse, then navigate to a
different location if you want the project to be created outside the
workspace (typical for projects being set up for already existing sources—
removing the need to import or link to them later on—or for projects being
version-controlled, where sources are located outside the workspace).

5. On the next few screens, adjust the settings if necessary, then click Finish. Your
project appears in the Project Navigator.

If you created your project in the directory where your source files are located, you
can use your project immediately.

If you created your project in your workspace, then you need to create a link to
your source files.

1. Right-click on the project, then select New > Folder. The New Folder dialog
appears.

2. Choose the parent folder (your project) then type a name for the new folder.

3. Click the Advanced button at the bottom of the dialog, then click Link to
folder in the file system. Browse to the directory containing your sources,
then click OK.

Your project now contains a folder that links to your source files in their original
location. You may repeat this process to create links to as many source directories
as you need.

1. If you do not have write permission to the file system location where you want to create any
project of any type, you either need to get it temporarily to be able to add the project files to
that directory, or you have to import the sources into your project if you want a managed
build, or you could create a folder in a User-Defined project and link it to your sources.

NOTE: This process is different from importing sources into your project. When
you import files, they are copied into the project’s directory in your workspace.
When you link to files, you see them in the Project Navigator but they remain in
their original location.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

124

11.3 Creating an Application for VxWorks

In order to have your application initialized once the kernel has booted, you will
need to:

■ Create a VxWorks Image project, see 5.3 Creating a VxWorks Image Project, p.77.

■ Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.85 and 5.5 Configuring Kernel
Components, p.84.

■ Before the target is disconnected from the host system, create a target-side file
system, see 7.2 Creating a ROMFS File System Project, p.94.

125

 12
Native Application Projects

12.1 Introduction 125

12.2 Creating a Native Application Project 126

12.3 Native Applications in the Project Navigator 128

12.4 Application Code for a Native Application Project 130

12.1 Introduction

Use a Native Application project for C/C++ applications developed for your host
environment. Workbench provides build and static analysis support for native
GNU 2.9x, GNU 3.x, and Microsoft development utilities (assembler, compiler,
linker, archiver) though these utilities are not distributed with Workbench. There
is no debugger integration for native application projects in Workbench, so you
have to use the appropriate native tools for debugging as well.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

126

12.2 Creating a Native Application Project

Before creating the project, please take a look at the general comments on projects
and project creation in 4. Projects Overview.

To create a Native Application project, proceed as follows.

1. Choose File > New > Native Application Project.

The New Native Application Project wizard appears. If you have multiple
versions of VxWorks installed, you are asked to select a target operating
system. If you see this field, select a VxWorks version from the drop-down list
and click Next.

2. Enter a Project name and Location.

If you choose Create project in workspace (default) the project will be created
under the current workspace directory. If you choose to
Create project at external location, you can navigate to a location outside the
workspace (see also 4.2 Workspace/Project Location, p.64 and 4.3 Creating New
Projects, p.64).

The project appears in the Project Navigator (see 12.3 Native Applications in the
Project Navigator, p.128). To see the project location, right-click on the project
and select Properties, then select the Info node of the Properties dialog.

When you are ready, click Next.

3. If you have created other projects, you are asked to define the project structure
(the super- and subproject context) for the project you are creating.

The text beside the Link to superproject check box refers to whatever project
is currently highlighted in the Project Navigator (if you do not see this check
box, no valid project is highlighted). If you select the check box, this will be the
superproject of the project you are currently creating.

The check boxes in the Referenced subprojects list represent the remaining
projects in the workspace that can be validly referenced as subprojects by the
project you are currently creating.

After project creation, you can change the project structure in the Project
Navigator using drag-and-drop.

When you are ready, click Next.

12 Native Application Projects
12.2 Creating a Native Application Project

127

12

4. A Native Application project is a predefined project type that uses Workbench
Build support, so you can only select either this, or no build support at all. If
you are creating a project because you want to browse symbol information
only and you are not interested in building it, you could also disable build
support.

The Build command specifies the make tool command line.

Build output passing: If the project is a subproject in a tree, its own objects
(implicit targets) as well as the explicit targets of its subprojects, can be passed
on to be linked into the build targets of projects that are further up in the
hierarchy.

When you are ready, click Next.

5. Build Specs: The list of available build specs will always be available. By
checkmarking individual specs, you enable them for the current project, which
means that you will, in normal day to day work, only see relevant (enabled)
specs in the user interface, rather than the whole list.

If you are working on a Windows application, you would normally enable the
msvc_native build spec, and disable the gnu-native build specs. If you are
working on a Linux or Solaris native application, you would normally enable
the GNU tool version you are using, and disable all others.

The Debug Mode checkbox specifies wether or not the build output includes
debug information.

When you are ready, click Next.

6. Build Target: The Build target name is the same as the project name by
default. You can change the name if necessary, but if you delete the contents
of the field, no target will be created.

Build tool: For a Native Application project you can select:

■ Linker: This is the default selection. The linker produces a a
BuildTargetName(.exe for Windows native projects) executable file.

The Linker output product cannot be passed up to superprojects,
although the current project’s own, unlinked object files can, as can any
output products received from projects further down in the hierarchy (see
step 4. above).

NOTE: All settings in the following wizard pages are build related. You can
therefore verify/modify them after project creation in the Build Properties node of
the project’s Properties, see 16. Build Properties and the Build Console.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

128

■ Librarian: This is the default selection if you specified that the project is to
be linked into a project structure as a subproject. The Librarian produces a
TargetName.a (or .lib for Windows native projects) archive file.

The Librarian output product can be passed up to superprojects, as can
the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy (see step 4.
above).

7. When you are ready, you can review your settings using the Back button or
click Finish.

The Native Application project is created and appears in the Project Navigator,
either at the root level, or linked into a project tree, depending on your
selection in step 3. above.

12.3 Native Applications in the Project Navigator

After a Native Application project has been created, a number of nodes appear in
the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Navigator.

12.3.1 Global Project Nodes

12.3.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The build target depends on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a for a gnu build spec,
or TargetName.lib for a msvc build spec) target and a TargetName(.exe for a msvc

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

12 Native Application Projects
12.3 Native Applications in the Project Navigator

129

12

build spec) target immediately after project creation. Which of these will be visible
depends on the build tool you selected. Also, the presence or absence of the green
upward arrow on the target icon (to indicate whether the target is passed up the
hierarchy) will be determined by your project settings.

12.3.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

TargetName[.exe] (BuildSpecName[_DEBUG])
An executable.

TargetName.a|.lib (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification that on which the target node is
based.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

130

12.3.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the DKM project files displayed in the Project
Navigator:

12.4 Application Code for a Native Application Project

After project creation you have the infrastructure for a Native Application project,
but often no actual application code. If you are writing code from the beginning,
you can add new files to a project. If you already have source code files, you will
want to import these to the project. For more information please refer to
13.3.1 Importing Resources, p.132, and 13.3.2 Adding New Files to Projects, p.133.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

131

 13
Working in the Project

Navigator

13.1 Introduction 131

13.2 Creating Projects 132

13.3 Adding Application Code to Projects 132

13.4 Opening and Closing Projects 134

13.5 Scoping and Navigation 135

13.6 Moving, Copying, and Deleting Resources and Nodes 136

13.7 Project Navigator Quick Reference 140

13.1 Introduction

The Project Navigator is your main graphical interface for working with projects.
You use the Project Navigator to create, open, close, modify, and build projects.
You also use it to add or import application code, to import, or customize build
specifications, and to access your version control system.

Various filters, sorting mechanisms, and viewing options help to make project
management and navigation more efficient. Use the arrow at the top-right of the
Project Navigator to open a drop-down menu of these options.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

132

13.2 Creating Projects

Creating projects is discussed in general under 4.3 Creating New Projects, p.64.
Specific descriptions for creating individual project types are provided in the other
chapters in Part II. Projects.

13.3 Adding Application Code to Projects

After creating a project, you have the infrastructure for a given project type, but no
actual application code. If you already have source code files, you will want to
import these to the project.

13.3.1 Importing Resources

You can import various types of existing resources to (newly created) projects by
choosing File > Import.

Importing Projects

To import entire projects, choose File > Import. In the Import dialog, you can,
among other things:

■ Import an Existing VxWorks 6.0 Image Project into Workspace.

You would use this to import a VxWorks image (a *.wpj file) created using the
vxprj command line utility (see the VxWorks Command-Line User’s Guide and
the VxWorks Kernel Programmer’s Guide for more information.)

This creates references to the selected *.wpj file in the current workspace. No
files are copied.

■ Import Existing Project from another Workbench Workspace.

This creates references to the selected project in the current workspace. No
files are copied.

■ Checkout Projects from CVS.

This copies the selected project files from a CVS repository to your Workspace.

13 Working in the Project Navigator
13.3 Adding Application Code to Projects

133

13

■ Import an Existing SNiFF+ Project (as of 4.1) to the current Workspace. Files
are optionally copied (recommended) or referenced. The SNiFF+ project has to
be mapped to a Workbench project type. For more information, please refer to
the Workbench Migration Guide.

■ Import an Existing Tornado 2.x Project to the current Workspace. Files are
copied to the current workspace. The Tornado project has to be mapped to a
Workbench project type. For more information, please refer to the Workbench
Migration Guide.

■ Import an Existing Wind Power IDE 1.0 Project to the current workspace.
Files are copied to the current workspace. The Wind Power IDE 1.0 project has
to be mapped to a Workbench project type. For more information, please refer
to the Workbench Migration Guide.

■ Import a Team Project Set that was previously defined and exported.

A team project set is a list of project names and locations that have been
exported (choose File > Export) to a project set file (*.psf). Projects are
recreated in the current workspace according to this list and project content is
copied to the current workspace.

Importing Application Code

To import application code (or any other type of file) into a project, highlight it and
select File > Import > File system.

In the Import dialog, you can import files or directories from anywhere on your
file system, filtering by subdirectory and file type.

Importing Build Settings

To import build settings, choose File > Import > Build Settings.

Import build settings either from an existing project or from the default for the
selected type of project.

13.3.2 Adding New Files to Projects

To add a new file to a project, choose File > New > File.

You are asked to Enter or select the parent folder, and to supply Filename.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

134

For a description of the Advanced button, and what it reveals, press F1 and select
New file wizard.

13.4 Opening and Closing Projects

You can open or close a project by selecting it in the tree and choosing
Project > Open (if it is currently closed), or Project > Close (if it is currently open).
You can also use the corresponding commands on the Project Navigator’s
right-click context menu.

13.4.1 Closing a Project

■ The icon changes to its closed state (by default grayed) and the tree collapses.

■ All project member files that are open in the editor are closed.

■ All subprojects that are linked exclusively to the closed project are closed as
well. However, subprojects that are shared among multiple projects remain
open as long as a parent project is still open, but can be closed explicitly at any
time.

■ In general, closed projects are excluded from all actions such as symbol
information queries, and from workspace or project structure builds (that is, if
a parent project of a closed subproject gets built).

■ It is not possible to manipulate closed projects. You cannot add, delete, move,
or rename resources, nor can you modify properties. The only possible
modification is to delete the project itself.

■ Closed projects require less memory.

13 Working in the Project Navigator
13.5 Scoping and Navigation

135

13

13.5 Scoping and Navigation

There are a number of strategies and Workbench features that can help you
manage the projects in your workspace, whether you are working with multiple
projects related to a single software system, or multiple unrelated software
systems.

■ Close projects

If you expect to be working in a different context (under a different root
project) for a while, you can select the root project you are leaving, and
right-click Close Project.

If you close your root projects when you stop working on them, you will see
just the symbols and resources for the project on which you are currently
working (see also 13.4.1 Closing a Project, p.134).

■ Go into a project

If you want to see, for example, the contents of only one software system in the
Project Navigator, select its root project node and right-click Go Into. You can
then use the navigation arrows at the top of the Project Navigator to go back
out of the project you are in, or to navigate history views.

■ Open a project in a new window

If you expect to be switching back and forth between software systems (or
other contexts) at short intervals, and you do not want to change your current
configuration of open editors and layout of other views, you can open the
other software system’s root project in a new window (right-click
Open in New Window). This essentially does the same as Go Into (see
Go Into a Project), except that a new window is opened, thereby leaving your
current Workbench layout intact.

■ Open a new window

You can open a new window by choosing Window > New Window. This
opens a new window to the same workspace, leaving your current Workbench
window layout intact while you work on some other context in the new
window.

■ Use Working Sets

Using working sets lets you set the scope for all sorts of queries. You can, for
example, create working sets for each of your different software systems, or
any constellation of projects, and then scope the displayed Project Navigator

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

136

content (and other query requests) using the pull-down at the top-right of the
Project Navigator.

To create a Working Set, from the drop-down menu, choose
Select Working Set. In the dialog that appears, click New, then, in the next
dialog, specify the Resource type.

In the next dialog select, for example, a software-system root project and give
the working set a name. When you click Finish, your new working set will
appear in the Select Working Set dialog’s list of available working sets.

After the first time you select a working set in the Select Working Set dialog,
the working set is inserted into the Project Navigator’s drop-down menu, so
that you can directly access it from there.

■ Use the Navigate Menu

For day-to-day work, there is generally no absolute need to see the contents of
your software systems as presented in the Project Navigator.

Using the Navigate > Open Resource (to navigate files) and
Navigate > Open Symbol (to jump straight to a symbol definition) may often
prove to be the most convenient and efficient way to navigate within, or
among, systems.

13.6 Moving, Copying, and Deleting Resources and Nodes

The resources you see in the Project Navigator are normally displayed in their
logical, as opposed to physical, configuration (see 4.5 Projects and Project Structures,
p.70). Depending on the type of resource (file, project folder) or purely logical
element (target node) you are manipulating, different things will happen. The
following section briefly summarizes what is meant by resource types and logical
nodes.

13.6.1 Resources and Logical Nodes

Resources is a collective term for the projects, folders, and files that exist in
Workbench.

There are three basic types of resources:

13 Working in the Project Navigator
13.6 Moving, Copying, and Deleting Resources and Nodes

137

13

■ Files

Equivalent to files as you see them in the file system.

■ Folders

Equivalent to directories on a file system. In Workbench, folders are contained
in projects or other folders. Folders can contain files and other folders.

■ Projects

Contain folders and files. Projects are used for builds, version management,
sharing, and resource organization. Like folders, projects map to directories in
the file system. When you create a project, you specify a location for it in the
file system.

When a project is open, the structure of the project can be changed and you
will see the contents. A discussion of closed projects is provided under
13.4.1 Closing a Project, p.134.

Logical nodes is a collective term for nodes in the Project Navigator that provide
structural information or access points for project-specific tools.

■ Subprojects

A project is a resource in the root position. A project that references a
superproject is, however, a logical entity; it is a reference only, not necessarily
(or even normally) a physical subdirectory of the superproject’s directory in
the file system.

■ Build Target Nodes

These are purely logical nodes to associate the project’s build output with the
project.

■ Tool Access Nodes

These allow access to project-specific configuration tools. VxWorks File
System Projects have a node that opens a tool for mapping host-side project
contents to target file system contents. VxWorks Image Projects have a node
that opens the Kernel Editor for configuring the VxWorks kernel.

13.6.2 Manipulating Files

Individual files, for example source code files, can be copied, moved, or deleted.
These are physical manipulations. For example, if you hold down CTRL while you

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

138

drag-and-drop a source file from one project to another, you will create a physical
copy, and editing one copy will have no effect on the other.

13.6.3 Manipulating Project Nodes

Although copying, moving, or deleting project nodes are undertaken with the
same commands you would use for normal files, the results are somewhat
different because a project folder is a semi-logical entity. That is, a project is a
normal resource in the root position. A project that is referenced as a subnode is,
however, a logical entity; it is a reference only, not a physical instance.

If you copy/paste (or hold down CTRL while you drag-and-drop) a project folder
node to a new location in the project editor (for example, under some other project
node to be used as a subproject there) all that happens is that a reference to one and
the same project is inserted. This means that if you modify the properties of one
instance of the subproject node, all other instances (which are really only
references) are also modified. One such property would be, for example, the
project name. If you rename the project node in one context, it will also be renamed
in all other contexts.

Moving and (Un-)Referencing Project Nodes

If you drag-and-drop a project folder, you are making a logical, structural change.
However, if you select a project folder node and right-click Move, you will be
asked to enter (browse for) a new file system location. All the files associated with
the current project will then be physically moved to the location you select,
without any visible change in the Project Navigator (you can verify the new
location in the Project Properties).

When you drag-and-drop a project node, you are actually performing the
equivalent of right-click Add as Reference or, if you have selected a subproject,
also right-click Remove Reference. These commands open a dialog allowing you
to either have the currently selected project reference other projects as a subproject,
or, in the Remove Reference dialog, to remove the currently selected project from
its structural (logical) context as a subproject, in which case it will be moved to the
root level as a standalone project in the Project Navigator.

13 Working in the Project Navigator
13.6 Moving, Copying, and Deleting Resources and Nodes

139

13

Deleting Project Nodes

Note that you cannot delete subprojects. To delete a subproject, which might
potentially be linked into any number of other project structures, you first have to
either unlink (right-click Unlink) all instances of the subproject, or get a flat view
of your workspace. To do this, open the drop-down list at the top-right of the
Project Navigator’s toolbar and choose Hide > Project Structure. This hides the
logical project organization and provides a flat view with a single instance of the
(sub)project that you can then delete.

When you delete a project you are asked whether or not you want to delete the
contents. If you choose not to delete the contents, the only thing that happens is
that the project (and all its files) are no longer visible in the workspace; there are
no file system changes.

13.6.4 Manipulating Target Nodes

Target nodes cannot be copied or moved. These are purely logical nodes that make
no sense anywhere except in the projects for which they were created. If you copy
or move entire projects, however, the target nodes and generated build-targets
beneath them are also copied.

Deleting Target Nodes

Deleting a target node also removes the convenience node that represents the
generated, physically existing build-target. However, the physically existing
build-target (if built) is not deleted from the disk.

The convenience node referred to above, lets you see at a glance whether the target
has been built or not, even if you have uncluttered your view in the Project
Navigator by hiding build resources (in the drop-down menu at the top-right
choose Hide > Build Resources) and/or collapsing the actual target node. If you
have collapsed the node, the + sign will indicate that the build-target exists).

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

140

13.7 Project Navigator Quick Reference

Icons In the Project Navigator

Icon Description

VxWorks Image project

VxWorks Board Support Package project

Downloadable Kernel Module project

Real-time Process project

Shared Library project

User-Defined project

(User-Defined) subproject. Arrow indicates that this is a
reference in a logical tree, not a physical subdirectory.

Open Kernel Configuration Editor

Open File System Editor

Build target (logical)

Passed build target (logical)

ADA file

Assembly language file

C or C++ file

Makefile

Makefile rule (build-target) for a user-defined build

wpj project file (VxWorks image)

13 Working in the Project Navigator
13.7 Project Navigator Quick Reference

141

13

Icons in the Project Build Properties View

This view, accessible from the Project Navigator’s local drop-down menu, shows
a summary of the build properties of the selected project.

 Build support enabled

 Build support disabled

 Build target is passed

 Build target is not passed

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

142

143

 14
Advanced Project Scenarios

14.1 Introduction 143

14.2 Resource Locations 144

14.3 Multiple, Unrelated Software Systems 145

14.4 Complex Project Structures 146

14.1 Introduction

The scenarios developed in this chapter suggest how you could use the Wind River
Workbench to manage various constellations of projects and project types. Because
Workbench provides a variety of possibilities for achieving different ends, the
scenarios are neither prescriptive, nor comprehensive. All we can do here is offer
some suggestions.

The scenarios do not look at the edit/compile/debug cycle; the emphasis is on
project organization and handling. The discussion looks at:

■ resource locations

■ strategies for working with multiple, unrelated software systems

■ complexities within a single software system, including project structure
design, development, and finalization steps

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

144

14.2 Resource Locations

One complexity that you might be faced with, especially in team development
situations, is that you might have to use file system resources (files and directories)
that are outside your workspace.

As long as file system resources are located in the default location (your own
workspace), for example because you have checked them out from your version
control system, there is nothing to discuss.

When you create projects in Workbench, project-specific administrative files are
stored at the file system location of the resources used by the project. This means
that, if these resources are outside your workspace, you may not have write
permission there and that the necessary files therefore cannot be created.

This may be an issue, for example, also with respect to centrally maintained header
files and third party libraries. In such cases you have the following options:

■ Have your administrator, who does have write permission, create the project
(see Creating Projects for External Headers, p.157) and import the project as
follows:

– In the Project Navigator, right-click Import.

– In the Import wizard, select Existing Project into Workspace and click
Next.

– Browse to the directory where the project was created and click OK, then
Finish.

This is the recommended way to proceed in cases where not everyone is
allowed to write to resource directories. This way all team members always
access both the same, most up to date source files and the same project, thereby
ensuring consistency across the entire team without any synchronization
overhead. Note that, if you have multiple workspaces, you would have to
import the project to each workspace.

Furthermore, if the external resources are not just header files; that is, if they
are buildable, build support must be either disabled for the imported project
(if existing build-output is externally available), or build output of the
imported projects must be redirected somewhere that users have write
permission (see 16.8 Build Paths, p.190). Write permission will also be required
for the .wrproject file in the project directory and the .wrfolder files in each
folder, for modifications (added/removed resources) and for maintaining
changes in build properties.

14 Advanced Project Scenarios
14.3 Multiple, Unrelated Software Systems

145

14

■ The other option is to copy the resources to somewhere that you do have write
permission.

This option is not recommended because of the synchronizations problems
that are bound to arise sooner or later. Consider this a last resort.

14.3 Multiple, Unrelated Software Systems

The assumption is that you work on multiple, unrelated software systems in
parallel. Each of these systems will normally (but not necessarily) consist of any
number of subprojects organized into project structures; that is, each system will
normally be arranged as a tree under a single superproject. However, ignoring the
internal organization of your software systems for the moment (this is discussed
under Complex Project Structures, p.146), first look at the software systems as a
whole.

During the course of any working day you might spend time working in different
software systems that have nothing to do with each other (other than the fact that
you happen to be working in them). You will presumably want to be able to focus
as fully as possible, with as little distraction as possible, on the software system
you are working on at any given time. If you have to switch from one system to the
other fairly frequently, the switch should be easy and rapid.

14.3.1 Using Different Workspaces for Different Systems

Using different workspaces for unrelated software systems lets you keep these
systems completely separate, without seeing any sign of the currently
non-relevant context anywhere.

However, when you switch from one workspace to another (choose
File > Switch Workspace), you are actually closing your current Workbench
instance and reopening a new instance that uses the selected new workspace. This
takes time, but offers the advantage that the new workspace opens exactly as you
left it when you last closed it.

This option, because of the time overhead involved in switching, is probably most
feasible if you have only a few separate software systems, and if you spend
extended periods of time in one or other context without interruption.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

146

However, if you have, a system that you work on most of the time, and several
other systems where you have to frequently do relatively minor maintenance
work, you might find it more convenient to use a single workspace for all, or many
of, your projects.

Naturally, there is no reason why you should not have both multiple workspaces
as outlined here, and, within one or more of these, also maintain multiple,
unrelated software systems in the same workspace as discussed below.

14.3.2 Using the Same Workspace for Different Software Systems

Using the same workspace for any number of unrelated software systems does not
stop you from keeping these systems completely separate. The only sign of each
currently non-relevant system can be a single icon (or not even that if you Go Into
a project - see 13.5 Scoping and Navigation, p.135). This means that all software
systems are immediately visible and accessible, without being unduly obtrusive.
Furthermore, switching from one software system to another is much faster than
using different workspaces as described above. On the other hand, if you are
working on multiple, very large software systems, general performance might
become an issue that would suggest using separate workspaces.

Some of the ways that will help you handle multiple software systems in the same
workspace are introduced under 13.5 Scoping and Navigation, p.135

14.4 Complex Project Structures

This section develops a simple infrastructure as a possible approach to a
high-level, internal organization of an individual software system.

14 Advanced Project Scenarios
14.4 Complex Project Structures

147

14

14.4.1 Project Assumptions

The following discussion attempts to align how Workbench project structures and
project types can support a software system that includes the following
requirements.

■ There is a kernel

In the design phase, you need not think too much about the kernel. It is
sufficient to know that there will be one at some point.

Use a simulator for initial development and testing.

■ The output product must be a single flashable image

This image will contain the kernel as well as all the run-time components
(binaries from Real-time Process Projects, libraries, data files, and so on). A
target-side file system is therefore required; this will be implemented using
Wind River ROMFS technology by setting up a File System project.

However, in the design phase, you do not need not worry about this; it is
sufficient to know that there will be a File System project at some point.

■ The software system will have to be ported to different boards

Although the kernel as such is not initially of primary importance, the
assumption that you will have to port the system at some stage may be a
design consideration. If you are developing and testing on a simulator (see
above), there will be porting to do anyway.

■ There is middleware

■ One or more modules are needed as abstraction layers that wrap around the
kernel

Use Downloadable Kernel Module Projects for these.

■ There are application modules

These have to be process-based and they have to run in their own
memory-protected address space.

Use Real-time Process Projects for these.

■ There are shared libraries

These are potentially used by any or all of the application modules.

Use Shared Library Projects for these.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

148

■ There is legacy code

Use User-Defined Projects and/or Real-time Process Projects and/or
Downloadable Kernel Module Projects.

User-Defined Projects are appropriate in situations where you would rather
not tamper with how the application is built. In other situations, you can wrap
your legacy projects in one of the standard project types supported by
Workbench.

■ There are external headers

These are centrally maintained and are potentially used by any or all of the
software system’s modules.

Use a User-Defined project (without build support) for these.

■ Building a complete product image must be simple

14.4.2 Infrastructure Design, p.148, tries to meet all the above requirements and
provide a push-button build of the full product image, including all its
components, for multiple architectures.

14.4.2 Infrastructure Design

Based on the Project Assumptions, p.147, the following describes how you could go
about building an infrastructure for such a software system.

The infrastructure described here is not a requirement for project management in
Workbench. It can however be convenient to create such an infrastructure to
facilitate porting a software system to other boards, as well as to allow building an
entire product image, even for multiple boards, all at once. Furthermore, such an
infrastructure does not need to be in place from the start; it can be folded over a
project system at any stage of development.

NOTE: The screenshots in the following have been filtered in various ways to hide
everything that is not related to project structure. If you follow the procedures
described, you will see this same structure, as well as a number of additional files,
folders, target nodes, and so on.

14 Advanced Project Scenarios
14.4 Complex Project Structures

149

14

Create Container Projects

This infrastructure uses empty container projects at the superproject level as well
as at subproject levels. The type of container used in each case will depend on the
type of content the container will later accommodate.

In the current context, the term container project is therefore used to denote a project
of any type that does not, however, itself contain any source code files; all
application source files will be in subprojects referenced by the empty container
project.

Step 1: Create a container project.

Creating a container project as the topmost superproject the software system is an
organizational artifact to provide a convenient way of keeping everything
together, and thereby also cleanly separating the software system from other
software systems you might work on in the same workspace.

The only other real functionality the superproject container project needs to
provide is that it has to be buildable. Although the project itself contains no source
code files, you will want to able to start the build at the top of your future project
tree to recursively build the whole structure.

The default User-Defined project provided by Workbench is exactly what you
need for a topmost container project.

To create a new User-Defined project, in the Project Navigator, right-click
New > User-Defined Project.

In the wizard that appears, in the Project name field, enter: playpen_sim (this is
an arbitrary name for a fictitious software system; the suffix _sim reflects that this
system will be built for the simulator) and click Finish. (You can ignore the Next
button and the other Wizard pages because the defaults are fine.)

This creates a default User-Defined project; that is, one that supports a
user-defined build based on existing makefiles. Since this is a just a container
project without any (user-defined) makefiles, Workbench will create a Makefile
with a default all rule and a clean. This allows you to use the Build Project,
Rebuild Project, and Clean Project menu commands, as well as preventing the
generation of irritating build errors. If you want, you can write any other rules into
this file at any time. See also 11. VxWorks User-Defined Projects.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

150

Step 2: Create container projects for each project type and for external headers.

Recall that Project Assumptions, p.147, stated requirements for Downloadable
Kernel Modules, Real-time Process Projects, Shared Library Projects, and
User-Defined projects.

Creating empty projects for each of these project types facilitates porting from the
simulator to a board, and from one board to another. This is because, in a tree of
projects of the same type, all subprojects are built using the same build spec as that
used by the topmost project. This applies to all project types except User-Defined
projects (there is no way to predict how these are built).

So, for example, by creating an empty Real-time Process project type container
project and later populating this container with real Real-time Process project type
subprojects, then you only need to use a different build spec for the container when
it comes to porting the system to a different board (more about this later).

Note that Real-time Process projects and Shared Library projects actually use the
same build specs, so, technically speaking, you could lump these two project types
together under one container and save yourself a couple of steps. However, the
orderly separation of project types appears a little cleaner and is therefore adopted
here.

The naming convention used for these containers indicates the project type that
will be stored within (actually only reference) these containers, plus a suffix that
indicates the software system they belong to and the board they will be built for
(_playpen_sim).

To create the empty container project types, proceed as follows:

■ To create a new container Downloadable Kernel Module project, in the Project
Navigator, right-click New > Downloadable Kernel Module Project.

In the wizard that appears, in the Project name field, enter:
DKMs_playpen_sim and click Finish.

■ To create a new container Real-time Process project, in the Project Navigator,
right-click New > Real Time Process Project.

NOTE: You can ignore the Next button and click Finish on the first page in each of
the wizards because the defaults are fine for the moment.

NOTE: Project references can only be created if the projects are based on the same
Platform. Platform here refers to the settings in Window > Preferences > General
> Target Operating Systems.

14 Advanced Project Scenarios
14.4 Complex Project Structures

151

14

In the wizard that appears, in the Project name field, enter:
RTPs_playpen_sim and click Finish.

■ To create a new container Shared Library project, in the Project Navigator,
right-click New > Shared Library Project.

In the wizard that appears, in the Project name field, enter:
LIBs_playpen_sim and click Finish.

■ To create a new container User-Defined project, in the Project Navigator,
right-click New > User Defined Project.

In the wizard that appears, in the Project name field, enter:
UDPs_playpen_sim and click Finish.

■ To create a new container User-Defined project (without build support) to
accommodate the external, centrally maintained header files mentioned in
Project Assumptions, p.147, in the Project Navigator, right-click
New > User-Defined Project.

In the wizard that appears, in the Project name field, enter: headers_playpen
(notice that we have not appended the suffix _sim; this is because this project
does not use a build spec, see below) and keep clicking Next until you get to
the wizard’s Build Support page.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

152

In the wizard’s Build Support page, select the Disabled option and click
Finish.

In the Project Navigator you should now see the flat list of container projects
(collapsed) shown in Figure 14-2.

Figure 14-1 Disable Build Support for Header Projects

Figure 14-2 Container Projects

14 Advanced Project Scenarios
14.4 Complex Project Structures

153

14

Step 3: Drop all container projects onto the topmost container project.

The topmost container project must be referenced by all other container projects;
in other words, all other container projects must by subprojects of playpen_sim.

In the Project Navigator, select all projects except playpen_sim and drag-and-drop
them into playpen_sim.

Figure 14-3 illustrates the infrastructure created in the above steps. Notice the
referencing arrows at the left of the subproject icons.

14.4.3 Development

Once you have set up the infrastructure for your first board (or simulator), you will
populate the container projects with real projects, ones that actually contain source
files.

Figure 14-3 Container Projects Referenced by the Topmost Container

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

154

In order to later facilitate porting the software system to other boards you would,
organize these, at least initially, so that:

■ All Real-time Process projects are subprojects of RTPs_playpen_sim.

■ All Downloadable Kernel Module projects are subprojects of
DKMs_playpen_sim.

■ All Shared Library projects are subprojects of LIBs_playpen_sim.

■ All projects for external headers are in headers_playpen.

■ All User-Defined projects (except the ones in headers_playpen, where build
support is disabled) are subprojects of UDPs_playpen_sim.

Referencing Containers

There are a number of ways you can associate projects with other projects as
subprojects. Above, during the creation of the container project infrastructure,
drag-and-drop, was used. Another method is to right-click Add Reference. You
can also create the reference during project creation as demonstrated in the
example below.

Example 14-1 Creating and a Project and Referencing its Container

Assumption: you are creating a Real-time Process project. This, according to the
conventions outlined above, will be a subproject of RTPs_playpen_sim. The
quickest way to achieve this is:

1. In the Project Navigator, select RTPs_playpen_sim.

This is the Real-time Process project you are currently creating should
reference as a subproject.

2. Right-click New > Real Time Process Project.

3. In the wizard, enter a Project name (we shall use rtp_1 in this example) and
click Next.

4. In the wizard’s Project Structure page there is a Superproject check box
labelled Link to project RTPs_playpen_sim. This check box appears because
you selected the RTPs_playpen_sim project in step 1, above.

5. Select Reference RTPs_playpen_sim and continue to create the project as
needed.

14 Advanced Project Scenarios
14.4 Complex Project Structures

155

14

Shared Libraries

The recommended convention, above that “All Shared Library projects are
subprojects of LIBs_playpen_sim.” might seem strange. Shared libraries are
normally subprojects of the projects that use them, so why put shared libraries in
this seemingly disconnected location (LIBs_playpen_sim)?

The libraries are actually even more disconnected than they appear. Remember
that, physically speaking, all the projects in any project structure, no matter how
deep, are topographically flat as shown in Figure 14-5. This figure shows exactly
the same system as Figure 14-6, which displays the logical view you normally see
(you can switch from one representation to the other using the drop-down menu
at the top-right of the Project Navigator Hide > Project Structure).

Figure 14-4 Linking as Subproject during Project Creation

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

156

While it is true that you will normally only have libraries as subprojects of
applications that use them (even if you are developing a library you will probably
have a test application project above the library), it does not matter how often a
library node occurs in a given tree, or even in the entire workspace, it is physically
only one library and will therefore only be built once (see Figure 14-5). In this
sense, it does not matter that the libraries will appear in one extra place,
LIBs_playpen_sim.

Figure 14-6 shows exactly the same system as Figure 14-5. Notice that the Shared
Library project, lib_1, occurs three times: once each under rtp_1 and rtp_2, and
once, seemingly unnecessarily, under LIBs_playpen_sim.

Figure 14-5 Physical View of the System

Figure 14-6 Logical View of the System

14 Advanced Project Scenarios
14.4 Complex Project Structures

157

14

If you adhere to the convention recommended above, that “All Shared Library
projects are subprojects of LIBs_playpen_sim.”, you will have to copy” (for
example, using hold down CTRL while you drag-and-drop) library nodes to
subproject locations under applications that use them. Note again that when you
do this, you are not really copying anything; you are creating references—if
anything, you are copying links (again note the reference arrows on subproject
icons). However, on the upside, whenever you need to add your library projects to
applications, you will know exactly where to find them because they are neatly
collected in their container project, in our example, LIBs_playpen_sim.

The other advantage of adhering to this convention will, as already mentioned,
become apparent when it is time to port the software system to different boards.

External Headers and Projects that Use Them

This section starts by describing how to create projects for external headers on the
assumption that you follow the convention of having projects of the same type
referencing their respective container projects, in our example, headers_playpen.
The discussion continues with an outline of the steps you need to apply to the
projects that use these header projects.

Creating Projects for External Headers

Headers, or any other resources that are external to your workspace, might be a
problem if you do not have write permission. If you do not have write permission,
proceed as described under 14.2 Resource Locations, p.144.

If you have write permission, and it is up to you to create projects for external
headers, you would create User-Defined projects for these. These projects, like
their container project, headers_playpen, will have build support disabled.

To create projects for the external headers:

1. In the Project Navigator, right-click headers_playpen and select
New > User-Defined Project.

2. On the first wizard page, give the project a name (headers_1 in the example),
clear the Default check box and browse to the root directory that contains the
files you need. Click Next.

On the Project Structure page, select Link to project headers_playpen. If you
do not see a check box, or if the label is different, you did not select
headers_playpen in step 1, above. In this case you can manually move the
project when you are finished. Click Next twice.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

158

3. In the wizard’s Build Support page, select Disabled, click Finish.

Generating Include Search Paths for Projects

Once you have created the header project(s), others can import them (see
14.2 Resource Locations, p.144). Whether you create the header projects yourself, or
whether you import them, the include paths of the projects that use the headers
have to be updated. If you are able to import the header projects, the chances are
that you will also be able to import (or use your version control system to
synchronize) the projects that use the headers.

On the other hand, if you are the one who creates the headers project(s), you will
probably also be the one who updates the projects that use them and then makes
these available to others. In this case, or if you create a new project that uses the
headers project from the start, you will generally proceed as follows.

Once your workspace knows the headers (because there is a project for them),
include search paths can be generated.

For each topmost project that uses the headers proceed as follows:

In the Project Navigator, select the project that uses the headers and choose
Project > Generate Include Search Paths.

In the wizard that appears you can configure and generate include search paths for
the project, its subprojects and folders, as well as for multiple build specs.

Note that in the Project Properties dialog, Build Properties node, Build Paths tab,
and the Generate button (for include paths) invoke a similar wizard. This wizard,
only lets you configure include paths for one build spec at a time.

Testing and Debugging

A simulator connection should be sufficient for initial testing and debugging of
your applications. Please refer to 21. New VxWorks Simulator Connections for
information about simulator connections, and to 25. Debugging Projects for
information on debugging.

14.4.4 Finalization

Once things are working on the simulator, and your board and hardware
connections are up and running, it is time to port the software system from the
simulator to the board(s).

14 Advanced Project Scenarios
14.4 Complex Project Structures

159

14

The steps below, especially step 2, where you create four new container (sub)
projects might initially seem tedious. However, you cannot just copy the existing
ones because as you remember, no physical copies are created, only references
(that look like copies) are created.

Creating four empty container projects per architecture does not take long, and
you only do it once. After that, the advantages include:

■ Your projects are clearly and systematically organized.

■ You never need to worry about changing build specs for individual projects.

■ You can build your whole workspace (all the boards you support) at one time,
again without manipulating the build specs.

■ Any resource modifications, adding, removing, editing, at source project level
will be reflected in all the project structures (=boards) simultaneously,
regardless of where you make the modification since these are references, not
copies.

Repeat the following steps for each board you will be supporting.

Step 1: Create VxWorks Image project and File System projects.

1. First, create a VxWorks Image project using the BSP appropriate to your board,
see 5. VxWorks Image Projects.

This will be a top-level project. If you follow the naming conventions used in
this chapter, the project might be named something like playpen_ppc.

2. Then, if you are using Real-time Process projects and/or Shared Library
projects, you will also need to create a File System project, see 7. ROMFS File
System Projects.

This will be a subproject of the VxWorks Image project (playpen_ppc). The file
system will be linked with the VxWorks system image created from the
VxWorks Image project, and will hold the binary and data files of the system’s
run-time components. These are associated with the file system in Step 3
below.

When you build the VxWorks Image project, the File System subproject and
the other associated subprojects will be compiled to binaries and linked to the
kernel. If you update files in the file system, rebuilding it creates a new file
system image, which is then re-linked to the kernel.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

160

Step 2: Create container subprojects for each project type (except headers).

Essentially, you repeat the procedure outlined under Step 2:Create container projects
for each project type and for external headers., p.150, except that:

■ You do not need to create another project for the headers as they do not use a
build spec.

■ Instead of appending the suffix _sim to the project names, you would, in our
example, append _ppc.

■ You have to set the build spec for each container (except the one for
User-Defined projects, which cannot have pre-defined build specs) because
the wizard default (simulator) will no longer apply.

Step-by-step, the procedure is as follows:

1. To create a new container Downloadable Kernel Module project:

a. Right-click in the Project Navigator and select
New > VxWorks Downloadable Kernel Module Project.

b. In the wizard that appears, in the Project name field, enter:
DKMs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

c. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab and click Finish.

14 Advanced Project Scenarios
14.4 Complex Project Structures

161

14

2. To create a new container Real-time Process project, right-click in the Project
Navigator and select New > VxWorks Real Time Process Project.

a. In the wizard that appears, in the Project name field, enter:
RTPs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

b. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab_RTP and click Finish.

3. To create a new container Shared Library project, right-click in the Project
Navigator and select New > VxWorks Shared Library Project.

a. In the wizard that appears, in the Project name field, enter:
LIBs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

b. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPCdiab and click Finish.

Figure 14-7 Select the Build Spec

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

162

4. To create a new container User-Defined project, right-click in the Project
Navigator and select New > User Defined Project.

a. In the wizard that appears, in the Project name field, enter:
UDPs_playpen_ppc and click Finish.

By definition, there can be no predefined build specs for User-Defined
projects. Workbench does not manage the build; it is up to you to know
what needs to be done with them to complete the porting.

Step 3: Drop all new container projects onto the File System project.

The File System project is a subproject of the VxWorks Image project (see Step 1).
The new containers you have just created, as well as the headers_playpen project,
should, in turn, be subprojects of this VxWorks File System project.

■ Select all the container projects you have just created and drop them onto the
FileSystem_playpen_ppc project you created under Step 1.

■ Select the headers_playpen subproject under playpen_sim and while holding
down CTRL, drag-and-drop it onto the FileSystem_playpen_ppc project. It
should now appear under both playpen_sim and FileSystem_playpen_ppc.

The infrastructure for the new board is now complete (see Figure 14-8).

Next, you have to create references to the source code projects.

Figure 14-8 Project Organization for Two Boards

14 Advanced Project Scenarios
14.4 Complex Project Structures

163

14

Step 4: Referencing source code subprojects.

Insert references from the source code subprojects from each per-type container
subproject under playpen_sim to the corresponding container under
playpen_ppc.

That is, while holding down CTRL, drag-and-drop it to create the references from
all source code subprojects under:

■ DKMs_playpen_sim to DKMs_playpen_ppc

■ LIBs_playpen_sim to LIBs_playpen_ppc

■ RTPs_playpen_sim to RTPs_playpen_ppc

■ UDPs_playpen_sim to UDPs_playpen_ppc

Step 5: Configure the VxWorks Image project and File System projects.

You will need to configure the VxWorks Image project (add initialization routines
and configure components) and the VxWorks File System project.

For more information on this subject, see 5. VxWorks Image Projects, 7. ROMFS File
System Projects, and the VxWorks Kernel Programmer’s Guide.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

164

165

PART II I

Development

15 Navigating and Editing 167

16 Build Properties and the Build Console 173

17 Building: Use Cases ... 199

18 RTPs and Shared Libraries from Host to Target 219

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

166

167

 15
 Navigating and Editing

15.1 Introduction 167

15.2 Wind River Workbench Context Navigation 168

15.3 The Editor 171

15.4 Search and Replace: The Retriever 171

15.5 Static Analysis 172

15.1 Introduction

Workbench navigation views allow seamless cross-file navigation based on
symbol information. For example, if you know the name of a function, you can
navigate to that function without worrying about which file it is in. You can do this
either from an editing context, or starting from the The Symbol Browser, p.168. On
the other hand, if you prefer navigating within and between files, you can use the
The File Navigator, p.169.

Static analysis is the parsing and analysis of source code symbol information. This
information is used to provide code editing assistance features such as
multi-language syntax highlighting, code completion, parameter hints,
definition/declaration navigation for files within your projects.

Apart from the things you see directly in the Editor, static analysis also provides
the data for code comprehension and navigation features such as include

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

168

browsing, call trees, as well as resolving includes to provide the compiler with
include search paths.

15.2 Wind River Workbench Context Navigation

Various filters are available on each tool’s local toolbar. Hover the mouse over the
buttons to see a tooltip describing what these buttons do. At the top-right, a
pull-down menu provides additional filters, including working sets (if you have
defined any). An active working set is marked by a bullet next to its name in the
pull-down menu.

Generally, you will want to navigate to symbols, or analyze symbol-related
information from an Editor context. The entry points are:

■ The right-click context menu on a symbol

■ Keyboard shortcuts:

F3 — Jump between associated code, for example, between
definition/declaration or function definition/call (though there is no
navigation from workspace files to external files, i.e. files outside your
projects).

F4 — Open Type Hierarchy (see 15.2.4 Type Hierarchy View, p.170).

CTRL+ALT+H — Open Call Tree (see Wind River Workbench User Interface
Reference: Call Tree View).

CTRL+I — Open Include Browser (see 15.2.5 Include Browser, p.170).

15.2.1 The Symbol Browser

By default, the Symbol Browser is a tab in the left pane of the main window,
together with the Project Navigator.

NOTE: Syntax highlighting is provided for filesystem files that you open in the
Editor, but no other static analysis features are available for files that are outside
your projects.

15 Navigating and Editing
15.2 Wind River Workbench Context Navigation

169

15

Use the Symbol Browser for global navigation. Because the Symbol Browser
presents a flat list of all the symbols in all the open projects in your workspace, you
might want to constrain the list by using Working Sets. You can configure and select
working sets using the Project Navigator’s local pull-down menu.

Text Filtering

The Name Filter field at the top of the view provides match-as-you-type filtering.
The field also supports wild cards: type a question mark (?) to match any single
letter; type an asterisk (*) to match any number of arbitrary letters. Selecting
Hide Matching next to the Name Filter field inverts the filter you entered in the
field, so you see only those entries that do not match your search criteria.

For a guide to the icons in the Symbol Browser, see Wind River Workbench User
Interface Reference: Symbol Browser View.

15.2.2 The Outline View

The Outline view is to the right of the currently active Editor, and shows symbols
in the currently active file.

Use the Outline view to sort, filter, and navigate the symbols in the context of the
file in the currently active Editor, as well as to navigate out of the current file
context by following call and reference relationships.

For a guide to the icons in the Outline view, see Wind River Workbench User Interface
Reference: Outline View.

15.2.3 The File Navigator

If you have never used the File Navigator, you can open it by choosing
Window > Show View > Other. In the dialog that opens, select
Wind River Workbench > File Navigator and click OK. After the first time you
open the File Navigator, a shortcut appears directly under the
Window > Show View menu. By default, the File Navigator appears as a tab at the
left of the Wind River Workbench window, along with the Project Navigator and
the Symbol Browser.

The File Navigator presents a flat list of all the files in the open projects in your
workspace, so you can constrain the list by using Working Sets. You can configure
and select working sets using the File Navigator’s local pull-down menu.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

170

The left column of the File Navigator shows the file name, and is active;
double-clicking on a file name opens the file in the Editor, and right-clicking on a
file allows you to compile the file and build the project, among other tasks. The
right column displays the project path location of the file.

The File Filter field at the top of the view works in the same way as the Name
Filter field in the Symbol Browser, see 15.2.1 The Symbol Browser, p.168.

15.2.4 Type Hierarchy View

Use the Type Hierarchy view to see hierarchical typedef and type-member
information.

To open the Type Hierarchy view:

■ Right-click a symbol in the Editor, Outline, or Symbol Browser view and select
Type Hierarchy view.

■ Click the toolbar button on the main toolbar.

■ Select Navigate > Open Type Hierarchy.

For more information, see the Wind River Workbench User Interface Reference: Type
Hierarchy View.

15.2.5 Include Browser

By default, the Include Browser appears as a tab at the bottom-right.

To open the Include Browser:

■ Right-click a symbol in the Editor, Outline, or Symbol Browser view and select
Open Include Browser.

■ Right-click a file in the File Navigator or the Project Navigator and select
Include Browser.

■ Select Navigate > Open Include Browser.

Use the Include Browser to see which file includes, or is included by, the file you
are examining. Use the buttons on the Include Browser’s local toolbar to toggle
between showing include and included-by relationships. Double-click on an
included file in the Include Browser to open the file in the Editor at the include
statement.

15 Navigating and Editing
15.3 The Editor

171

15

15.3 The Editor

The Editor is your primary view for editing and debugging source code. The
Editor is language-aware, and can parse C, C++, Ada, and Assembler files. Many
Editor features are configurable in the Preferences (see Wind River Workbench User
Interface Reference: Editor).

15.4 Search and Replace: The Retriever

The Retriever is a fast, index-based global text search/replace tool. The scope of a
search can be anything from a single file to all open projects in the workspace. You
can query for normal text strings, or regular expressions. Matches can be filtered
according to location context (for example, show only matches occurring in
comments). Text can be globally or individually replaced, and restored if
necessary. You can create working sets from matched files, and you can save and
reload existing queries.

15.4.1 Intiating Text Retrieval

Text retrieval is context sensitive to text selected in the Editor. If no text is selected
in the Editor, an empty instance of the Retriever opens. If text is selected in the
Editor, the retrieval is immediately initiated according to the criteria currently
defined in the Retriever’s Find tab.

To open the Retriever, or to initiate a context sensitive search, use:

■ the keyboard shortcut CTRL+F2

■ right-click in the Editor and choose Retrieve in Files

■ from the global menu, choose Search > Retrieve in Files

■ Click the Retriever tab in the lower panel of the Workbench window, where
the Retriever appears by default.

For more information, see the Wind River Workbench User Interface Reference:
Retriever.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

172

15.5 Static Analysis

Editing, navigating, and code comprehension rely on static analysis, so it is
important to understand the static analysis settings you can configure in the
Preferences.

For information about global and project-specific preferences, see the Wind River
Workbench User Interface Reference: Static Analysis Preferences.

173

 16
 Build Properties and the Build

Console

16.1 Introduction 174

16.2 Accessing Build Properties 175

16.3 Build Support 177

16.4 Build Targets 178

16.5 Build Specs 181

16.6 Build Tools 184

16.7 Build Macros 188

16.8 Build Paths 190

16.9 Build Properties for VxWorks Image Projects 193

16.10 Folder, File, and Build-Target Properties 194

16.11 Makefiles 194

16.12 Build Console View 197

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

174

16.1 Introduction

Workbench build support allows three types of build management at project,
target, folder, and file level.

1. Fully managed build

– Full build management is available for all project types except the
User-Defined project type.

– Makefiles are generated automatically based on the data you enter at
project creation time or subsequently in the project/folder/file Properties
dialog, Build Properties node.

– Build order is determined by the project and folder hierarchies as
displayed in the Project Navigator.

– Include search paths can be generated for header files that are visible in the
workspace.

– Build output is captured to the Build Console.

2. User-defined build

In the User-Defined project type, it is assumed that you are responsible for
setting up and maintaining your own build system. The user interface
nevertheless provides support for the following:

– You can configure the build command used to launch your build utility;
allowing you to start builds from the Workbench GUI.

– You can create build targets in the Project Navigator that reflect rules in
your makefiles; allowing you to select and build any of your make rules
directly from the Project Navigator.

– Build output is captured to the Build Console.

3. Disabled build

You can disable build support for projects or folders; you would do this in
projects or folders that contain only header files. Disabling the build for such
folders or projects improves performance both during makefile generation as
well as during the build run itself.

16 Build Properties and the Build Console
16.2 Accessing Build Properties

175

16

16.2 Accessing Build Properties

To access the build properties from the Project Navigator, right-click a project,
folder, or file and select Properties.

In the Properties dialog, select the Build Properties node.

Depending on the type of node, including the type of project, you selected in the
Project Navigator, the properties will naturally differ. Figure 16-1 shows the
Build Properties node of a project as it appears when first opened for an RTP
project.

16.2.1 Project Build Properties and Preferences Build Properties

The Preferences (Window > Preferences) also include a Build Properties node.
This node allows you to globally set defaults for all general build properties per
project type. The Preferences Build Properties node has tabs that are practically
identical to the ones in the project-specific Build Properties. The difference is that
Preferences store defaults for creating new projects, whereas the project
Build Properties are applied to an existing project (the one currently selected in
the Project Navigator).

The defaults that can be set in Preferences are used in the project-specific
Build Properties tabs described in the context of the Project Properties (the
functionality is the same, except that, in the Preferences, you have to additionally
select the project type from a list at the top of each tab):

■ 16.3 Build Support, p.177,
■ 16.5 Build Specs, p.181.
■ 16.6 Build Tools, p.184.
■ 16.7 Build Macros, p.188.
■ 16.8 Build Paths, p.190.

NOTE: Build properties for VxWorks Image Projects (VIPs) differ substantially
from the general properties discussed below, although some of the differences are
pointed out along the way; see Build Properties for VxWorks Image Projects, p.193.
Consult the VxWorks Kernel Programmer’s Guide for more information about VIPs.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

176

Multiple Target Operating Systems and Versions

If you installed Workbench for multiple target operating systems and/or versions,
you can set a default target operating system (version) for new projects in the
Preferences, Build Properties. In the Project Properties, Target Operating System
node, you can verify the target operating system (version) of existing projects.

In the Project Navigator (and elsewhere), the target operating system and version
are displayed next to the project name by default. You can toggle the display of this
information in the Preferences, Workbench > Label Decorations node, using the
Target Operating Systems check box.

If you have multiple versions of the same operating system installed, the New
Project Wizard allows you to select which version you want to create a project for.

NOTE: In most cases, it will not be possible to successfully migrate a project from
one target operating system (version) to another simply by switching the selected
Target Operating System and Version.

16 Build Properties and the Build Console
16.3 Build Support

177

16

16.3 Build Support

The settings on this tab of the Build Properties node are common to all
architecture-specific build specs; these are introduced under Build Specs, p.181.

■ The Build Support options are described under 16.1 Introduction, p.174.

■ The Build Command is the command line call to your make utility. This, and
only this build-property, is also available for User-Defined projects, where you
are responsible for the build setup and maintenance.

Once you have built a project from the Project Navigator and the makefiles
have been generated, you can rebuild the project from the command line
(assuming there are no structural changes, such as added/removed resources)
using this command.

■ Build output passing

These check boxes apply if the current project is used as a subproject in a
hierarchical project structure.

– Pass objects to next level

The object files generated by compiling individual source files that belong
to the project are passed up to be linked into executable or library targets
further up in the project hierarchy.

Figure 16-1 Build Support

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

178

– Pass received targets to next level

Executable or library targets that were built further down in the project
hierarchy and have been passed up, are passed up the hierarchy for
further processing.

16.4 Build Targets

The Build Targets tab, as well as the Build Tools (see Build Tools, p.184) and
Build Macros (see Build Macros, p.188) tabs are also available for target nodes you
select in the Project Navigator. This tab also appears in the New Build Target
wizard.

The settings on this tab of the Build Properties node are common to all
architecture-specific build specs; these are introduced under Build Specs, p.181.

16 Build Properties and the Build Console
16.4 Build Targets

179

16

■ Build target

Projects can have multiple targets. You might, for example, want to Copy an
existing project target and then select a different Build tool and/or modify the
Contents and link order (see below).

You can also create New build targets directly from the Project Navigator’s
context menu (select a project node). Whether you create a new target here (in
the Project Properties dialog), or by selecting New > Target from the Project
Navigator’s context menu, you will want to define a Build tool (see below).

Figure 16-2 Build Targets—A Library

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

180

You can also Rename or Delete build targets directly from the Project
Navigator’s context menu (select a target node).

– Renaming a target does no more than apply a new label by changing text
in one of the Workbench maintained project administration files
(.wrproject).

– Deleting a target does no more than remove text relating to the target from
one of the Workbench maintained project administration files
(.wrproject).

■ Build tool

Select the build tool to use for building the target selected in the Build target
drop-down. The list of available tools will depend on the project type. Please
refer to 16.6 Build Tools, p.184 for more information.

■ Build output passing

Whether this is enabled depends on the selection in the Build tool drop-down.
For example, if the Build tool is set to Linker for the target selected in the
Build target drop-down, there will be no next level to pass the current
project’s build-target (an executable) to.

■ Contents and link order

You can specify the contents to include, and the order in which it is linked,
when building the target selected in the Build target drop-down with the tool
specified in the Build tool drop-down.

If the Use default contents and link order check box is selected, all files in the
project tree and all subtargets are used to build the project’s build-target (or
the currently selected build-target, depending on what you selected before
opening the Properties dialog). Any files that are subsequently added to the
project will also be automatically added to the project’s default target if this
check box is selected.

If the Use default contents and link order check box is not selected, you can
customize the current target contents by including or excluding files and
subtargets from anywhere in the project tree. For example, you might want to
selectively pull certain files scattered around your project tree into a library
target.

16 Build Properties and the Build Console
16.5 Build Specs

181

16

16.5 Build Specs

A build spec is a group of build-related settings that lets you build the same project
for different target architectures and/or different tool chains by simply switching
from one build spec to another. Note that the architecture/tool chain associations
are preconfigured examples; you can also create your own build specs (usually
from copies of existing ones, using the Copy button) for any constellation of the
many configurable properties that make up a spec (see also 17.8 A Build Spec for
New Compilers and Other Tools, p.211).

It is important to remember is that the build spec used when you build must match
the target board; that is, it must match the VxWorks Image project that the
application project will be associated with.

Use the Build Specs tab to manage the build specs for your project.

■ You can create a new build spec by clicking New.

■ You can copy an existing build spec by clicking Copy, and then modify it to
suit your needs.

Figure 16-3 Build Specs

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

182

■ You can enable/disable build specs.

You enable a build spec by selecting the check box next to it in the
Available and enabled build specs list; you disable it by clearing the check
box. Convenience buttons to Enable All and Disable All are also provided.

For most project types, the list of available build specs will depend on the BSPs
and tools, for example the Wind River compiler, you have installed. The
naming convention is therefore of the form BOARDNAMEtoolchain.

For VxWorks Image Projects (VIPs), the list of build specs is predefined (see
5.4 VxWorks Image Projects in the Project Navigator, p.80) and depends on
whether a simulator or a real-board BSP is used to create the VIP.

Being able to enable/disable build specs offers the following advantages.

– You can do this at subproject and folder level. That is, you can
enable/disable different build specs for different folders within the same
project structure. 17.5 Architecture-Specific Implementation of Functions,
p.206 illustrates possible benefits of being able to do this.

– The other advantage of disabling build specs is that you will not see them
in contexts where they are not needed. You can, of course, re-enable them
at any time.

■ Default build spec

A default build spec for the current project can be set and stored here. Note
that when you create a project, the wizard suggests an Active Build Spec (see
below). This suggestion is taken from the Preferences, Build Properties node,
and is used only for new projects. The Default build spec you set here, in the
project-specific Build Properties, applies only to the current project, and is
used as described below.

– If you import a project, for example by checking it out from your version
control system, the active build spec is set to this default.

– If you start a build from the command line (see 16.3 Build Support, p.177)
and you do not specify a build spec parameter, this default spec is used.

– You can refer back to this if you change the active build spec to something
other than the one you want to use by default in the situations described
above.

NOTE: If you have build specs that you never use, you can globally disable
them in the Preferences, Build Properties node.

16 Build Properties and the Build Console
16.5 Build Specs

183

16

■ Active Build Spec

The Active build spec is the one that is used when you build the project.
Whatever you set here is also propagated to the following tabs:

■ Build Tools, p.184
■ Build Macros, p.188
■ Build Paths, p.190

Whenever you switch active build specs (see, for example, 17.3 Building
Applications for Different Boards, p.202) in the Project Navigator before you
build a project, you are therefore automatically switching all the settings
defined in the Build spec specific settings on the above tabs.

■ Debug mode

Each of the preconfigured build specs has a release and a debug mode (with
and without debug information). You can set the default and active build
specs to either of these modes using the Debug mode check box.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

184

16.6 Build Tools

A Workbench build tool is a configuration of a tool and its attributes used to build
a software target.

■ Build Tool

Build tools can be configured at project, folder and file level. At file level the
available build tools include, using the names as they appear in the GUI, the
C-Compiler, the C++-Compiler, or the Assembler. At higher (folder or
project) levels, tools can additionally include, for example, the Linker, the
Librarian (generally used by default for subproject targets that are passed up
to higher-level projects), and the Shared Library Linker.

Figure 16-4 Build Tools

16 Build Properties and the Build Console
16.6 Build Tools

185

16

Buttons are provided for New, Rename, Copy, and Delete.

If you want to create new build tools, these will probably often match one of
the preconfigured build tools fairly closely, so the road to creating your own
build tools will more often start by using the Copy button, rather than the New
button to create a completely empty tool.

■ Suffixes

The build tool used for compiling individual files is determined by the input
file’s suffix. A suffix does not need to be the same as the filename’s .extension,
although it usually is. The entries in the Suffixes field can be any trailing string
in the filename that determines which build tool is used to compile files with
the given suffixes. If the field is empty, the tool can be assigned to projects, as
opposed to individual files.

The input format is *.extension; multiple entries are separated by a
semi-colon (;).

■ Build output generation

Build tools distinguish between the implicit target (object) of an individual
file; that is, where there is a one-to-one mapping between a source file and an
output file, and software targets, which are collections of objects and perhaps
other files, such as subtargets that have been passed up from lower levels in
the build hierarchy. You can also specify whether the
Generated build output can be passed to next level.

■ Build spec specific settings

As the title of this group of settings implies, the settings are specific to each
individual build spec; they apply to the spec that is set in the Active build spec
drop-down. These settings, like the others on the Build Tools tab, are all
specific to the tool currently set in the Build tool drop-down list.

The build product file’s Derived suffix also has to be specified so that
Workbench can evaluate the resulting file.

The Command is the configurable command that is used to generate the
necessary make rule for building each target. The command is executed in the
order specified in this field.

The Command references various macros using the syntax $(MacroName).
These macros are defined in 16.7 Build Macros, p.188. To make build-target
specification easier, the Command also references a number of pre-defined
macros using the syntax %MacroName% that are expanded to the appropriate
make syntax.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

186

%DebugModeFlags%
Expanded to the value specified in the Debug mode field when debug
mode is on, and to the value specified in the Non Debug mode field when
debug mode is off. The debug mode is set in the Active Build Spec, p.183,
using the Debug mode, p.183 checkbox. (In the Project Navigator you can
tell whether you are building with/without debug information by the
presence/absence of the _DEBUG suffix on the target node label.)

%ToolFlags%
Expanded to the value specified in the Tool Flags field. Note that options
in the Tool Flags field are used in both debug and non-debug mode
building. Depending on the current Build tool, options will be set either
in the Debug mode field, the Non Debug mode field, or in the Tool Flags
field. For example Linker flags will normally be the same regardless of
whether you are doing a debug or a release build, so any options you want
to pass the linker will usually be set in the Tool Flags field.

Note that GUI support is provided for some tool options. These are
available for all three fields from the buttons next to the fields. The dialog
evoked by these buttons also allows switching between the debug,
non-debug, and common tool flags. The GUI support provided for flags
depends on the current Build tool, the compilers, for example, have many
more pre-configured options than the linker. Please refer to the compiler
documentation for details.

%Includes%
Expanded to the values in the list of Include Directories (see 16.8 Build
Paths, p.190).

%InFile%
Expanded to $<.

%OutFile%
Expanded to $@.

%Objects%
Expanded to $(OBJECTS) $(SUB_OBJECTS) or to the list of objects
derived from the selected contents of the current target (see 16.4 Build
Targets, p.178).

%Libraries%
Expanded to $(SUB_TARGETS_PASSED) or to a relevant list of targets
that were passed up to build the current target.

16 Build Properties and the Build Console
16.6 Build Tools

187

16

The Tool Flags button and the adjacent field are used to fill the %ToolFlags%
macro used by the Command (see %ToolFlags%, p.186). You can either directly
enter options for the selected Build Tool (for example, compiler flags) in the field,
or you can click the button to open a dialog that provides assistance for setting
these options (for example, if you are unfamiliar with the command line syntax
used by the selected Build Tool). Note that these options are used both in debug
and non-debug mode. See 17.2 Adding Compiler Flags, p.200 for an example of how
this field is used.

The Debug mode and Non Debug mode buttons and the adjacent fields are used
to fill the %DebugModeFlags% macro used by the Command (see
%DebugModeFlags%, p.186). You can either directly enter options for the selected
Build Tool (for example, compiler flags) in the field, or you can click the button to
open a dialog that provides assistance for setting these options (for example, if you
are unfamiliar with the command line syntax used by the selected Build Tool).
Which of these fields the %DebugModeFlags% macro expands to depends on
whether the Active Build Spec, p.183, is set to debug mode or not, see Debug mode,
p.183.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

188

16.7 Build Macros

In addition to the options specified for build tools (see 16.6 Build Tools, p.184), you
can also freely define build macros, both globally, in the Build macro definitions
list, or per build spec. Note that you must enter these macros in the build tool
command in the order they are to be executed (see 16.6 Build Tools, p.184). The
macros are referenced using the syntax $(MacroName). Multiple entries are
separated by blanks.

To set additional, architecture-specific compiler flags, use the CC_ARCH_SPEC
build macro to add the required flags to each appropriate build spec in the
Active Build spec list.

Figure 16-5 Build Macros

16 Build Properties and the Build Console
16.7 Build Macros

189

16

Setting the TOOL_PATH Macro

When specifying the path to a different compiler than the default one for your
project, it is critical to specify the final slash (/) in the TOOL_PATH field of the
Build spec specific settings table.

Specifying a New Compiler Version for a Single Project

If you have projects that were created for VxWorks 6.1, the default Wind River
compiler version recognized by these projects is 5.2.3.0. In this release, VxWorks
6.2 ships with Wind River compiler version 5.3.1.

So if you want to use the new compiler with a project that originally recognized
the old version, you must specify the path to the compiler root directory:

$(WIND_HOME)/diab/5.3.1/bsp/bin/

not:

$(WIND_HOME)/diab/5.3.1/bsp/bin

In the Workbench build system, and in a development shell if you have set up an
appropriate build environment1, $(WIND_HOME) defaults to your Workbench
installation directory.

This is the same directory represented by installDir elsewhere in the Workbench
documentation, but in that case it is a convenient way to represent your
installation path, whereas in the build system and on the command line,
$(WIND_HOME) is an actual variable.

If you installed your compilers in a different location, substitute the appropriate
path for $(WIND_HOME).

Specifying a New Compiler Version for All Projects

If you want all your projects to use the new compiler version, it is easier to change
the specified compiler version in the installDir/install.properties file.

In the install.properties file for VxWorks 6.1, you will see a line that represents
your default toolchain-platform version association:

1. For information about setting up a build environment, see the VxWorks Command-Line User’s
Guide: Creating a Development Shell with wrenv.

NOTE: The path to the compiler root directory must be make-compliant, so even
on Windows, you must use forward slashes throughout. Backslashes will be
misinterpreted by make.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

190

vxworks61.eval.04=require diab-5.2.3.0,gnu-3.3.2-vxworks61

Now, if you want to use the new compiler for all your projects, including those
formerly associated with VxWorks 6.1, you must change that line to:

vxworks61.eval.04=require diab-5.3.1.0,gnu-3.3.2-vxworks61

16.8 Build Paths

Build output is usually directed to a subdirectory at your workspace root location.
However, you can also redirect it anywhere on your file system by specifying a
location in the Redirection root directory field. The Redirection directory is a

Figure 16-6 Build Tools

16 Build Properties and the Build Console
16.8 Build Paths

191

16

subdirectory of the Redirection root directory. By Default this directory has the
same name as the Active build spec.

If the build-generated files should not be generated within the source code tree,
and absolute redirection root directory can be used. In a team setting this may be
problematic, as the value of this directory is stored within the .wrproject file, so it
may potentially not be shareable if team members have different hardware setups,
for instance. One user could specify a redirection path that does not exist on other
team member’s machines. To avoid this problem, define environment variables
that every team member can use. For example, you can define a variable called
REDIRECTION_ROOTDIR and specify the absolute redirection root in the
project properties as $REDIRECTION_ROOTDIR. Every team members can now
set the environment variable to fit their needs, while the information stored in the
.wrproject file becomes user/machine independent.

Supported environment variables are:

– The environment in which Workbench was started (specified outside of
Workbench)

– The environment variables defined in the Workbench package
(WIND_HOME, WIND_TOOLS, etc.)

– The environment variables of the target platform of the project (for
instance WIND_BASE for vxworks-6.2)

The environment variables must be specified in UNIX or make notation:

$ENV/additional-path or $(ENV)/additional path

The list of Include paths used by the compiler can be correctly generated for
directories that are visible (that is, they are in projects) and are unambiguous in the
current workspace using the Generate button.

There are different contexts in which include search paths can be manually added:

■ Clicking Generate calls a wizard (see 16.8.1 The Generate Include Search-Paths
Wizard, p.192) that allows you to manually add include search paths that will
be seen in the context of the current Active build spec and the current project.

■ The Add button lets you add include search paths that will be seen in the
context of the current Active build spec and the current project.

NOTE: Make macros that are defined within the project are not supported.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

192

■ The Add to all button lets you add include search paths that will be seen in the
context of enabled build specs (these are visible in the Active build spec
drop-down; see also 16.5 Build Specs, p.181) and the current project.

■ You can use the Up and Down arrows to change the order in which the
directories are searched to fix ambiguities. The list is processed from top to
bottom, and the first find wins.

16.8.1 The Generate Include Search-Paths Wizard

You can call up the Generate Include Search-Paths wizard from a number of
places:

■ the Generate button in the Properties dialog of projects, folders, and files

■ the context menu in the Project Navigator

■ the dialog that appears the first time you build an application or library

The Generate Include Search Paths wizard always sets the include search path in
the context of the current folder, whereby there is no distinction between folder
types (project or normal folders).

The first page of the wizard tells you the current Folder context for which the
include search paths can set.

You can also select whether or not to Ignore non-active includes (code that is not
compiled because of preprocessor directives), and whether or not to
Ignore system includes.

The list under Substitute paths (or path segments) with selected build macros
allows you to select strings that are segments of absolute paths found on your local
machine, to be replaced by macros. This facilitates sharing across different
environments in team development. The list is pulled together from a number of
sources in your current environment, namely:

■ from user and system environment variables

■ from environment variables that are set when you start up the Wind River
Workbench

■ from build macros

If a Path Segment is checked, the corresponding Build Macro will be used in the
include search path, rather than the absolute reference.

16 Build Properties and the Build Console
16.9 Build Properties for VxWorks Image Projects

193

16

Click Resolve on the second page of the wizard to resolve include directives that
were found in files in the current project or folder and add the corresponding
Include Search Paths. Includes can be resolved if they are in open projects in the
workspace. If there are unresolved directives, this is reported in the upper list and
you can Add Folders manually. You can also change the order of the search paths
to fix possible ambiguities.

The third page of the wizard (only available if called before the first build of a
project or from the Project Navigator context menu), allows you to specify the
scope of application, both in terms of folder/project and build specs.

16.9 Build Properties for VxWorks Image Projects

In general, the Build Properties tabs offer fewer options for VxWorks Image
projects than for other project types. The Build Support and Build Target tabs do
not appear at all for VIPs, while a separate tab allows you to specify link order for
object files.

16.9.1 Build Specs for VIPs

Build specs for a VxWorks Image project are determined by the board support
package (BSP) used to create the project. (Simulator BSPs usually offer only one
build spec.) Use the Build Specs tab to enable and disable build specs or set the
active build spec. Disabled (unselected) build specs are still in the project file, but
they don’t appear the Workbench UI. See 16.5 Build Specs, p.181 for more
information.

16.9.2 Build Tools for VIPs

See 16.6 Build Tools, p.184 for more information.

16.9.3 Build Macros for VIPs

Build macros for VxWorks Image projects are set on a per-build-spec basis, not
globally. See 16.7 Build Macros, p.188 for more information.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

194

16.9.4 Build Paths for VIPs

Use this tab to add, delete, or reorder the directories searched by the build tools.
See 16.8 Build Paths, p.190 for more information.

16.9.5 Link Order for VIPs

Specify the order in which object files are linked to create the VxWorks image.

16.10 Folder, File, and Build-Target Properties

Folders, files, and build-targets inherit (reference) project build properties where
these are appropriate and applicable. However, these properties can be
overwritten at the folder/file level. Inherited properties are displayed in blue
typeface, overwritten properties are displayed in black typeface.

Overwritten settings are maintained in the .wrproject and .wrfolder files. These
files should therefore also be version controlled. Note that you can revert to the
inherited settings by clicking the eraser icon next to a field.

16.11 Makefiles

The build system uses the build property settings to generate a self-contained
makefile named Makefile in each project and folder at each build run. This allows
you to build individual folders, projects, and subtrees in a project structure. By
default makefiles are stored in project directories; if an absolute
Redirection Root Directory (see 16.8 Build Paths, p.190) has been specified, they
are stored there, in subdirectories that match the project directory names.

The generated makefile is based on a template makefile named .wrmakefile that
is copied over at project creation time. If you want to use custom make rules, enter
these in .wrmakefile, not in Makefile because this is regenerated for each build.
The template makefile, .wrmakefile, references the generated macros in the

16 Build Properties and the Build Console
16.11 Makefiles

195

16

placeholder %IDE_GENERATED%, so you can add custom rules either before or
after this placeholder. However, there are also other ways of setting custom rules,
see 17.7 User-Defined Build-Targets in the Project Navigator, p.210.

16.11.1 Derived File Build Support

The Yacc Example

Workbench provides a sample project, yacc_example, that includes a makefile
extension showing how you can implement derived file build support. It is based
on yacc (Yet Another Compiler Compiler) which is not contained in the
Workbench or VxWorks installation. To actually do a build of the example you
need to have yacc or a compatible tool (like GNU’s bison) installed on your
system, and you should have extensive knowledge about make.

The makefile, yacc.makefile, demonstrates how a yacc compiler can be integrated
with the managed build and contains information on how this works.

1. Create the example project by selecting New > Project > Example > Native
Sample Project > Yacc Demonstration Program.

2. Right-click the yacc_example project folder, then select New > Build Target.
The New Build Target dialog appears.

3. In the Build target name field, type pre_build.

4. From the Build tool drop-down list, select (User-defined), then click Finish to
create the build target.

5. In the Project Navigator, right-click pre_build and select Build Target. This
will use the makefile extension yacc.makefile to compile the yacc source file
to the corresponding C and header files. The build output appears in the Build
Console.

6. When the build is finished, right-click the yacc_example folder and select
Build Project.

NOTE: It is necessary to execute this build step prior to the project build,
because the files generated by yacc will not be used by the managed build
otherwise. This is due to the fact that the managed build generates the
corresponding makefile before the build is started and all files that are part of
the project at this time are taken into account.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

196

Additional information on how you can extend the managed build is located in
yacc.makefile. It makes use of the extensions provided in the makefile template
.wrmakefile, which can also be adapted to specific needs.

General Approach

To implement derived file support for your own project, create a project-specific
makefile called name_of_your_choice.makefile. This file will automatically be used
by the managed build and its make-rules will be executed on builds.

It is possible to include multiple *.makefile files in the project, but they are
included in alphabetical order. So if multiple build steps must be done in a specific
order, it is suggested that you use one *.makefile and specify the order of the tools
to be called using appropriate make rules.

For example:

1. Execute a lex compiler.

2. Execute a yacc compiler (depending on lex output).

3. Execute a SQL C tool (depending on the yacc output).

Solution: (using the generate_sources make rule)

generate_sources :: do_lex do_yacc do_sql
do_lex:

@...

do_yacc:
@...

do_sql:
@...

or

generate_sources :: $(LEX_GENERATED_SOURCES) $(YACC_GENERATED_SOURCES)
$(SQL_GENERATED_SOURCES)

Add appropriate rules like those shown in the file yacc.makefile.

16 Build Properties and the Build Console
16.12 Build Console View

197

16

16.12 Build Console View

When you launch a build, the Build Console view comes to the foreground to
display each step of the build (you can toggle this by selecting or unselecting
Activate Build Console on building from the Build Console toolbar). The
information displayed in the Build Console includes the full command line, when
the build started and finished, as well as any errors.

If a particular line of output interests you and you do not want it to scroll out of
view, click the Scroll Lock icon. The Build Console continues to accumulate
information, but the display does not refresh until you click Scroll Lock again to
release it.

Double-click an error to navigate to the offending line in the source file.

16.12.1 Saving Build Output

To save your build output to a Build.log file, click the Save icon. Log files are
saved to installDir/host/platform/bin/Build.log by default, but you can save them
anywhere you like.

16.12.2 Build Console Preference Settings

To display the output of each build separately, select
Clear Build Console before new Build Run. This is useful if you save build
output to log files. To display build results sequentially, clear this check box.

Specify the color, text style, and regular expression you want to display for each
type of result in the Build Console view.

To pass all build output through the error parsers before displaying it in the Build
Console view, select Use Diab Error Parser or Use Gnu Error Parser. This will
create links in the Tasks view between any build errors and the line in your source
code containing the errors.

If you do not use the parsers, the errors will still appear in the Tasks view, but you
will not be able to double-click them to navigate to the corresponding line of
source code. You will have to navigate to the errors manually.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

198

199

 17
 Building: Use Cases

17.1 Introduction 199

17.2 Adding Compiler Flags 200

17.3 Building Applications for Different Boards 202

17.4 Creating Library Build-Targets for Testing and Release 203

17.5 Architecture-Specific Implementation of Functions 206

17.6 Executables that Dynamically Link to Shared Libraries 207

17.7 User-Defined Build-Targets in the Project Navigator 210

17.8 A Build Spec for New Compilers and Other Tools 211

17.9 Developing on Remote Hosts 213

17.1 Introduction

This chapter suggests some of the ways you can go about completing various
build-specific tasks in Wind River Workbench.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

200

17.2 Adding Compiler Flags

Let us assume:

1. You are working on a Real-time Process project (referred to in the following as
MyRTP), and you are using the build spec, SIMPENTIUMgnu_RTP.

2. You want to suppress compiler warnings, and you are familiar with the GNU
compiler (used by the given build spec) command line.

3. You later have to change the build spec to SIMPENTIUMdiab_RTP; that is
you have to use the Wind River Compiler tools, with which you are not
familiar, but you still want to suppress compiler warnings.

17.2.1 Add a Compiler Flag by Hand

According to assumption 2, above, you are familiar with the GNU compiler
command line, so you just want to know where to enter the -w option.

1. In the Project Navigator, right-click on the MyRTP project and select
Properties.

2. In the Properties dialog, select the Build Properties node.

3. In the Build Properties node, select the Build Tools tab.

4. In the Build Tools tab:

– Set the Build tool to C-compiler

– The Active build spec will, according to assumption 1, above, already be
set to SIMPENTIUMgnu_RTP.

– In the field next to the Tool Flags button, append a space and -w

The contents of this, the Tool Flags field you have just modified, is
expanded to the %ToolFlags% macro you see in the Command field
above it. Because you entered the -w in the Tool Flags field, rather than the
Debug or Non Debug mode fields, warnings will always be suppressed,
rather than only in either Debug or Non Debug mode.

17 Building: Use Cases
17.2 Adding Compiler Flags

201

17

17.2.2 Add a Compiler Flag with GUI Assistance

According to assumption 3, above, you have to change to the Wind River Compiler
tool chain used by the SIMPENTIUMdiab_RTP build spec, and you are not
familiar with the new command line tool options.

Step 1: Change the Active Build Spec

1. In the Project Navigator, right-click on the MyRTP project, and select
Set Active Build Spec.

If the SIMPENTIUMdiab_RTP build spec is enabled, you will see it listed in
the dialog that appears. In this case, all you would have to do is select
SIMPENTIUMdiab_RTP from the list and click OK.

However, we shall assume SIMPENTIUMdiab_RTP is not enabled, and
therefore not available in the list.

2. In the Project Navigator, right-click on the MyRTP project, and select
Properties.

3. In the Properties dialog, select the Build Specs node.

4. In the Build Specs node, select the SIMPENTIUMdiab_RTP build spec and
set both the Default build spec and the Active build spec to
SIMPENTIUMdiab_RTP.

Leave the Properties dialog open to complete Step 2, below.

Step 2: Use the GUI to Add a Compiler Flag

1. Select the Build Tools tab.

2. In the Build Tools tab:

– Set the Build tool to C-compiler

– The Active build spec will already be set to SIMPENTIUMdiab_RTP
(see 4 above).

– We assumed you are unfamiliar with the Wind River compiler options so,
to open the Wind River Compiler Options dialog, click the Tool Flags
button.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

202

– In the Wind River Compiler Options dialog, click your way down the
navigation tree at the left of the dialog and take a look at the available
options.

When you get to the Compilation > Diagnostics node, select the check
box labelled Suppress all compiler warnings.

Notice that -Xsuppress-warnings now appears in the list of command line
options at the right of the dialog.

Click OK.

3. Back in the Build Tools node of the Properties dialog, you will see that the
option you selected now appears in the field next to the Tool Flags button.

The contents of this, the Tool Flags field, is expanded to the %ToolFlags%
macro you see in the Command field above it.

17.3 Building Applications for Different Boards

Generally, but not necessarily, you would have a VxWorks Image project (VIP) for
each architecture you support. If, however, you are developing applications
and/or libraries only, you might not have VIPs.

If you do have VIPs, you will probably only set the build spec once for the
application subprojects to match the VIP they are under. On the other hand, if you
do not have VIPs, you might switch the build spec to build projects for different
architectures.

The target nodes under projects in the Project Navigator display, in blue, the name
of the currently active build spec.

If, for example, you want to build an application for testing on a simulator, and
then build the same project to run on a real board, you would simply switch build
specs as follows:

1. Right-click the project or the target node and, from the context menu, select
Set Active Build Spec.

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

203

17

2. In the dialog that appears, select the build spec you want to change to and
specify whether or not you want debug information.

When you close the dialog, you will notice that the label of the target node has
changed. If you selected debug mode in the dialog, the build spec name is
suffixed with _DEBUG.

3. Build the project for the new architecture.

17.4 Creating Library Build-Targets for Testing and Release

Assume you have a library that consists of the files source1.c, source2.c, and test.c.
The file test.c implements a main() function and is required exclusively for testing,
and is not to be included in the release version of the library.

One way to handle this is to use different targets that are built with different tools
as described below.

1. Create a Real-time Process project to hold all the files mentioned above. Use
this project type, because you will need to use both the Linker and the
Librarian build tools later.

In the first page of the project creation wizard, name the project, for example,
LIB and click Finish. You will need to do some tweaking in the Project’s
Properties dialog anyway, so you might as well do everything there.

2. Right-click the newly created LIB project, and select Properties. In the
Properties dialog, select the Build Properties node, then the Build Targets
tab.

First create a build-target for the release version of your library.

– Change the Build tool to Librarian.
– Select Pass build target to next level.
– Clear the Use default contents and link order check box.
– Clear the check box next to test.c.
– Click Apply.

Figure 17-1 shows the results.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

204

3. Next, create a target for the test version of the library.

– Click New then enter, for example, LIB_test in the dialog that appears.

Notice that the Build Tool is set to Linker, this is because the Linker is the
default tool for Real-time Process Projects, and that the LIB (your previous
build-target) has been added to the Contents and link order list.

– Clear the Use default contents and link order check box.

– In the Contents and link order list, select only the check boxes next to LIB
and test.c; clear all other check boxes.

Figure 17-2 shows the results.

Figure 17-1 Release Version of the Library

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

205

17

After you close the Properties dialog, there will be two new build-target nodes in
the LIB project. If you build LIB_test, then LIB will automatically also be built if it
is out of date.

Figure 17-2 Test Version of the Library

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

206

17.5 Architecture-Specific Implementation of Functions

You can enable/disable build specs at the project as well as at the folder level. This
allows architecture-specific implementation of functions within same project.

Figure 17-3 shows a simplified project tree with two subprojects, arch 1 and arch2,
that each use code that is specific to different target architectures. This is how
projects could be set up to build a software target that requires the implementation
of a function that is specific to different target boards, where only the active build
spec in the topmost project has to be changed. The inner build spec relationships
are outlined in Table 17-1.

The function int arch_specific (void) is declared in arch.h and the file arch1.c
implements int arch_specific (void) for PENTIUM (the only build spec enabled
for the arch1 project), while the file arch2.c implements int arch_specific (void) for
PPC32 (the only build spec enabled for the arch2 project).

If the active build spec for project is set to PENTIUMdiab_RTP, the subproject
arch1 will be built, and its objects will be passed up to be linked into the project

Figure 17-3 Simple Project Structure for Architecture-Specific Functions

Table 17-1 Project Content and Build Spec Configuration of the Structure in Figure 17-3

Directories/Folders Files Enabled Build Specs

/project main.c, arch.h PENTIUMdiab_RTP and
PPC32diab_RTP

/project/arch1 arch1.c PENTIUMdiab_RTP only

/project/arch2 arch2.c PPC32diab_RTP only

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

207

17

build-target. The arch2 subproject will not be built, and its objects will not be
passed up to be linked into the project build target because the
PENTIUMdiab_RTP build spec is not enabled for arch2.

The same applies if the PPC32diab_RTP is the active build spec for project: the
arch2 subproject will be built, but the arch1 subproject will not.

17.6 Executables that Dynamically Link to Shared Libraries

Only executables produced from RTP projects can dynamically link to shared
libraries. Note that you will need a VxWorks File System project for a ROMFS file
system to hold the library binary on the target. The compiled library must be
located in the host and target side directories you specify as described below.

Step 1: Modify the Real-time Process build-target build properties.

1. Right-click the RTP’s target node and select Properties.

2. In the Properties dialog, select the Build Properties node.

Step 2: Set up the Linker Build Tool for a dynamic executable and target-side run path.

1. Select the Build Tools tab.

2. In the field next to the Tool Flags button, enter the run path (-rpath) to the
directory that will hold the shared library on your target, for example,
-rpath /romfs/lib (romfs is the default root directory of the ROMFS created by
File System projects).

3. Click Tool Flags.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

208

4. In the Linker Options dialog that appears, select
Create a dynamic executable.

You will notice that the option, as used on the command line, appears in the
Selected Options list on the right. After you click OK to close the
Linker Options dialog, you will see the option again in the field next to the
Tool Flags button.

Figure 17-4 Build Options for Dynamic Executables

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

209

17

Step 3: Define Build Macros for the host-side location and library binary.

1. Select the Build Macros tab.

2. In the list of Build spec specific settings, select the LIBS macro and click Edit.

In the dialog that appears, add a space after the existing value (-lstlstd),
followed by the basename of the shared library binary you want to link to, for
example, MyLibrary:

-l:MyLibrary.so

When you close the dialog you should see:

LIBATH -lstlstd -l:MyLibrary.so

3. In the list of Build spec specific settings, select for the LIBPATH macro and
click Edit.

In the dialog that appears, enter the host-side directory location of the library
binary you want to dynamically link to, for example:

-L../MyLibrary/$(OBJ_DIR)

Note that $(OBJ_DIR) expands to wherever the build output for MyLibrary is
generated to. Using $(OBJ_DIR) is generic and therefore offers the advantage
of not having to change the LIBPATH macro if you change build specs.

Note further that the relative reference assumes the Shared Library project is
located in the same workspace as the Real-time Process project.

Click OK to close the project’s build-target Properties dialog.

The next time you build the project structure, a dynamic executable capable of
run-time linking to the shared library with the file basename and the
directories (host and target side) you specified above will be produced.

NOTE: If your application is not built as described in this section (17.6
Executables that Dynamically Link to Shared Libraries, p.207), you must set the
LD_LIBRARY_PATH environment variable.

Click Edit beside the Environment field, then click Add in the Edit
Environment dialog, then type LD_LIBRARY_PATH in the Name field and the
full path to your shared library file (using forward slashes and excluding the
filename itself) in the Value field. The path must be defined in terms of the file
system as seen on the target.

Click OK. The Edit Environment dialog should contain the new environment
variable; click OK.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

210

17.7 User-Defined Build-Targets in the Project Navigator

In the Project Navigator you can create custom build-targets that reflect rules in
makefiles. This is especially useful if you have User-Defined projects, which are
projects where the build is not managed by Workbench. However, you might also
find this feature useful in other projects as well.

17.7.1 Custom Build-Targets in User-Defined Projects

Assuming you have two rules in a makefile, clean and all, you can define a custom
build-target for either or both of these rules. To do so:

1. Right-click a project or folder and select New > Build Target.

2. In the dialog that appears, enter the rule(s) you want to create a target for. If
you want to execute multiple rules, separate each one with a space.

In our example, enter clean all to have both these rules, which must exist in
your makefile(s), executed when you build your new user-defined target.

Click Finish. The new build-target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined make rule.

To execute the rule(s), right-click the new target node and select Build Target.

17.7.2 Custom Build-Targets in Workbench Managed Projects

First write the make rules you need into the .wrmakefile file in the project
directory.

1. Right-click a project or folder and select New > Build Target.

2. In the dialog that appears, enter the rule name(s) you created in .wrmakefile.
If you want to execute multiple rules, separate each one with a space.

Set the Build tool to User-defined, click Finish.

The new build target node appears under the project or folder you selected.
The node icon has a superimposed M to identify it as a user-defined rule.

To execute the rule(s), right-click the new target node and select Build Target.

17 Building: Use Cases
17.8 A Build Spec for New Compilers and Other Tools

211

17

17.7.3 User Build Arguments

You can use the User Build Arguments view to execute any existing make rule, or
overwrite any macro, or anything else that is understood by make, at every build,
regardless of what is being built. The view is toggled by choosing User Build
Arguments view from the drop-down menu at the top right of the Project
Navigator, or by clicking the button in the Project Navigator’s toolbar.

If the User Build Arguments check box is selected, the rule, or rules separated by
a space, or macro re-definitions, and so on will override the makefile entries on the
fly at every build, regardless of context.

17.8 A Build Spec for New Compilers and Other Tools

The easiest way to define a build spec for a new compiler and other associated
tools (known as a tool chain) is to copy one of the pre-configured build specs of an
existing tool chain and architecture, and modify the copy.

Step 1: Copy an Existing Build Spec.

1. Open an application project’s, for example an RTP, build properties as
described under 16.2 Accessing Build Properties, p.175.

Using an application project has the advantage that these have a fuller range
of generic build tools (Assembler, language-specific Compiler, Librarian, and
Linker).

2. Select the Build Specs tab and look at the existing specs. The pre-configured
build spec names follow an ArchitectureToolChain_ProjectType convention, for
example, PENTIUMgnu_RTP. This spec is configured for a Pentium target
board, using GNU tools to create an Real-time Process (RTP).

In the Build Specs tab, select the build spec that comes closest to your needs,
at least in terms of target architecture, or a tool chain that you are familiar with,
and click Copy.

You will be warned that build properties need to be saved before proceeding.
Click OK, then enter a name for the copy you are creating in the next dialog
and click OK again.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

212

3. Still in the Build Specs tab, set the Active build spec to your newly created
copy (this is initially right at the bottom of the list of
Available and enabled build specs. Whatever you set here is also propagated
to the following tabs (described in more detail in 16. Build Properties and the
Build Console):

■ Build Tools, p.184
■ Build Macros, p.188
■ Build Paths, p.190

Each of these tabs has a generic section at the top with
Build spec specific settings below. The generic section will normally be
correct, which is one advantage of copying an existing spec, rather than
creating a new spec from the beginning.

Step 2: Configure the Build Tool.

The build system uses generic build tools, for example, a C-Compiler. So if you are
adding a new, unsupported C compiler, you will have to configure a build spec
that understands this specific instance of the generic C-Compiler build tool. Using
the compiler as an example, proceed as follows:

1. Select the Build Tools tab and set the Build tool drop-down list to
C-Compiler.

The generic settings regarding Suffixes and Build output generation should
be correct, if not modify accordingly. (If you were adding a compiler for a new
language, foolanguage, you could first create a Copy of a generic C-Compiler
Build tool and name that, for example, Foo-Compiler, and then configure the
generic settings as required.)

2. In the Build spec specific settings you would configure the options that are
specific to your particular compiler.

– The Active build spec should already be set to your newly created build
spec.

– The Derived suffix refers to the file suffix of the compiler’s output.

– The Command is the command line call to your compiler with all the
options you want to pass.

In theory, you could simply type a hard command in this field. However,
using the predefined macros of the form %MacroName% and macros (your
own and/or pre-defined) that are defined on the Macros tab and
referenced using $(MacroName) generally makes more sense, as does

17 Building: Use Cases
17.9 Developing on Remote Hosts

213

17

separating common Tool Flags and Debug mode and Non Debug mode
flags. For more detailed information please refer to 16.6 Build Tools, p.184.

3. If you are using your own and/or pre-defined using macros in the Command
field, set these in the Build Macros tab.

For more detailed information please refer to 16.7 Build Macros, p.188.

4. In the Build Paths tab, configure the redirection directories for build output
and set the include search paths (if applicable; that is, if you are configuring a
build spec for a C/C++ compiler) using the Generate and Add buttons.

For more detailed information please refer to 16.8 Build Paths, p.190.

After you have configured the build spec for the first tool in the chain, for example,
the compiler, go back to the Build Tools tab (see Step 2, above) to configure any
additional tools, such as the Linker or Librarian.

17.9 Developing on Remote Hosts

The Workbench remote build feature allows you to develop, build and run your
applications on a local host running Workbench, using a workspace that is located
on a remote host as if it were on a local disk.

In the case of a managed build, Workbench generates the makefiles on the local
machine running Workbench using a path mapping of the workspace root

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

214

location, so that the generated makefiles will be correctly dumped for a build that
is executed on the remote machine. When launching the build, a network
connection (rlogin) is established to the build host, and the actual build command
is executed there by using an intermediate script to allow you to set up the needed
environment for the build process.

17.9.1 General Requirements

■ The workspace root directory has to be accessible from both machines.

■ Only Eclipse projects located underneath the workspace root can be remotely
built.

■ A rlogin remote connection to the build machine must be possible.

17.9.2 Remote Build Scenarios

Local Windows, Remote UNIX:

The workspace root directory should be located on the remote UNIX host and
mapped to a specific network drive on Windows. It may also be possible to locate
the root directory on the Windows machine, but then there is the need to mount
the Windows disk on the build host. This may lead to problems regarding
permissions and performance, so a mapping of the workspace root-directory is
definitely needed.

Local UNIX, Remote UNIX:

As it is possible to access the workspace root directory on both machines with the
equivalent path (automount) it may be possible to skip the path mapping.

Local UNIX, Remote Windows:

This scenario is not supported, as you would need to execute the build command
on Windows from a UNIX host.

17 Building: Use Cases
17.9 Developing on Remote Hosts

215

17

17.9.3 Setting Up a Remote Environment

To set up your environment on the remote machine prior to a build or run, use the
Edit remote command script button to include additional commands. It will open
the file workspaceDir/.metadata/.plugins/com.windriver.ide.core/remote_cmd.sh.

For example, to extend the path before a build, add the highlighted lines to the
default file:

#!/bin/sh

WORKSPACE_ROOT="%WorkspaceRoot%"
export WORKSPACE_ROOT
DISPLAY=%Display%
export DISPLAY

PATH=/MyTools/gmake_special/bin:$PATH
export PATH

cd $WORKSPACE_ROOT

cd "$1"
shift 1

exec "$@"

You can add any commands you need, but all commands must be in sh shell style.

17.9.4 Building Projects Remotely

1. Switch to a workspace that contains existing projects by selecting File >
Switch Workspace. Type the path to the appropriate workspace, or click
Browse and navigate to it.

2. In the Project Navigator, right-click a project and select Build > Remote
Connection. The Remote Connections dialog appears.

3. Click Add and type a descriptive name for this remote connection. Click OK.

4. In the Connection Settings fields, add the following information to create a
remote connection:

Hostname
The name of the build host (can also be an IP address).

Username
The username used to establish the connection (the remote user may differ
from the local user).

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

216

Remote Workspace Location
The root directory of the workspace as seen on the remote host.

Display (XServer)
IP address of the machine where the output should be displayed.

By clicking the Advanced button you can also access these fields:

Password request string
A string that will be recognized as a password request to prompt you for
the password.

Remember Password during Workbench sessions
A switch to specify whether the password entered should be remembered
during the current session. This is useful during a lengthy build/run
session.

5. Click Connect to connect immediately. Remote connection settings are stored,
and are specific to this workspace. They are not accessible from any other
workspace.

6. The build is executed on the remote host, with the build output listed in the
standard Workbench Build Console. The XServer (IP address listed in the
Display field) is used whenever any type of X application is started, either
during builds or runs.

7. To return to local development, select Local Host from the list of connections,
then click Connect.

17.9.5 Running Applications Remotely

This section provides information about running native applications only, as
running VxWorks projects remotely is handled differently.

Running native applications remotely is quite similar to running applications
locally: a Native Application launch configuration must be created that defines
the executable to be run, as well as remote execution settings for the launch. On the
Remote settings tab are:

Remote Program
Enter the command that is used to launch the application. This may be useful
for command-line applications that could then be launched within an xterm,
for instance.

17 Building: Use Cases
17.9 Developing on Remote Hosts

217

17

Remote Working Directory
This setting is optional, but if a remote working directory is given, it overrides
the entry in the Working Directory field of the Arguments tab.

For remote runs, a new connection similar to the active connection will be
established to allow control of Eclipse process handling, as the new remote process
will be shown in the Debug view. The Remember password during Workbench
sessions feature is very useful here.

Command-line application’s output and input is redirected to the standard Eclipse
console unless the application is started within an external process that creates a
new window (such as xterm). The default for remote execution is a remote
command like xterm -e %Application%, therefore a local XServer (like Exceed or
Cygwin X) must be set up and running.

For more information about creating launch configurations, see 23. Launching
Programs.

17.9.6 Rlogin Connection Description

The rlogin connection used in the Workbench remote build makes use of the
standard rlogin protocol and ports. It establishes a connection on port 513 on the
remote host, and the local port used must be in the range of 512 to 1023 per rlogin
protocol convention.

On Windows the rlogin connection is implemented directly from within
Workbench, so you do not need an existing rlogin client. The UNIX
implementation is different, because for security reasons the local port (range: 512
to 1023) is restricted to root access, which cannot be granted from within
Workbench. Therefore an external rlogin process is spawned using the
command-line:

rlogin -l username hostname

rlogin on UNIX platforms makes use of setUID root to ensure that the needed root
privileges are available.

The standard rlogin protocol doesn't support access to stderr of the remote
connection, to all output is treated as stdout. Coloring in the Build Console of
Workbench for stderr is therefore not available.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

218

NOTE: On Linux the rlogin client and server daemon can be switched off per
default. So if the machine is used as a Workbench (remote build client) host, the
rlogin executable must be enabled (or built) and if the machine is acting as build
server (remote build host) the rlogin daemon must be enabled. Details may be
found in the system documentation of the host.

219

 18
RTPs and Shared Libraries

from Host to Target

18.1 Introduction 219

18.2 A VxWorks Real-time Process from Host to Target 220

18.3 A VxWorks Shared Library from Real-time Process to Target 225

18.1 Introduction

This chapter uses hands-on examples to illustrate one of the ways you might set
up, build, and run VxWorks Real-time Processes and VxWorks Shared Libraries
from host to target. The target used will be a VxWorks Simulator.

The Shared Library hands-on (18.3 A VxWorks Shared Library from Real-time Process
to Target, p.225) follows from the Real-time Process hands-on, and therefore
assumes that you have completed the steps outlined under 18.2 A VxWorks
Real-time Process from Host to Target, p.220.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

220

18.2 A VxWorks Real-time Process from Host to Target

This section describes how to go about setting up a VxWorks Real-time Process.
Although the section is self-contained, you will also need to set up a VxWorks
Real-time Process with the infrastructure described here if you want to use a
VxWorks Shared Library.

18.2.1 Set Up the Project Structure for Real-time Processes

You will need a VxWorks Image project, a VxWorks File System project, and a
VxWorks Real-time Process project to start with. When this is done, you will need
to add some code and to create a target connection to test the system.

Step 1: Set up a VxWorks image project.

1. In the Project Navigator, right-click and select
New > VxWorks Image Project.

2. In the first wizard page, under Project name: type VxWorksSim and click
Next.

3. In the next wizard page, set A board support package to simpc and click
Finish.

Step 2: Set up a VxWorks File System project.

1. In the Project Navigator, be sure the project you have just created,
VxWorksSim, is selected so that the new VxWorks File System project you are
about to create will automatically become a subproject of VxWorksSim.

2. In the first wizard page, under Project name: type VxWorksSimFS, click
Finish.

3. In the Project Navigator, expand the VxWorks Image project VxWorksSim
project folder you created earlier. You will see the VxWorksSimFS project you
have just created is a subproject of VxWorksSim.

Step 3: Set up a VxWorks Real-time Process project.

1. Right-click in the Project Navigator and select
New > VxWorks Real Time Process Project.

2. In the first wizard page, under Project name: type MyRTP, click Finish.

18 RTPs and Shared Libraries from Host to Target
18.2 A VxWorks Real-time Process from Host to Target

221

18

By default, the build spec SIMPENTIUMdiab_RTP_DEBUG will be activated for
the project, which is fine because this will match the board support package
you set for the VxWorks Image project in Step 1, above.

Step 4: Add the Real-time Process to the File System project.

In the Project Navigator, drag-and-drop the MyRTP project onto the
VxWorksSimFS project (the VxWorksSim project must be expanded).

Figure 18-1 shows the project setup so far (note that .* files have been filtered out).

Step 5: Set up the target file system.

18.2.2 Add Code to the Real-time Process Project

You need some code that will let you verify that everything works.

1. In the Project Navigator, right-click MyRTP, select
New > File from Template, and under File Name: type MyRTP.c.

Click Finish; the file MyRTP.c opens in the Editor view.

Figure 18-1 Project Hierarchy for a VxWorks Real-time Process

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

222

2. In MyRTP.c change the following lines (the results are also shown in
Figure 18-2):

Change:

#include “MyRTP.h”

to read:

#include <stdio.h>

Change the function:

void MyRTP()
{
}

to read:

int main()
{

printf("MyRTP called!\n”);
return 0;

}

Figure 18-2 shows the modified source file, MyRTP.c.

Leave the file open; you will need it again if you intend to go through 18.3 A
VxWorks Shared Library from Real-time Process to Target, p.225.

Figure 18-2 The MyRTP.c Source

18 RTPs and Shared Libraries from Host to Target
18.2 A VxWorks Real-time Process from Host to Target

223

18

18.2.3 Add the Real-time Process to the Target File System

Although you do not have a Real-time Process binary yet, you can make provision
for the binary to be on the target file system once the system is built.

1. In the Project Manager, under the VxWorksSimFS File System project you
created earlier, double-click the VxWorks File System Contents node to open
the File System Contents Editor.

2. In the File System Contents Editor, click New Folder and under Name type
bin.

The bin folder appears in the Target Contents panel.

3. In the Target Contents panel select the bin node, then in the Host Contents
panel, expand the project nodes until you can see the target node that
represents the (future) Real-time Process binary, namely:
MyRTP.vxe (SIMPENTIUMdiab_RTP_DEBUG).

Select this node and click Add. The MyRTP.vxe binary (which does not yet
exist) appears in the Target Contents panel under the bin folder.

Figure 18-3 shows the results.

Leave the File System Contents Editor open; you will need it again if you intend
to go through 18.3 A VxWorks Shared Library from Real-time Process to Target, p.225.

Figure 18-3 The Executable on the Target File System

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

224

18.2.4 Build the System

In the Project Navigator, right-click the VxWorks Image project, VxWorksSim,
and select Build Project.

The structure is recursively built, starting in MyRTP, as you can see in the Build
Console. Next the File System project, VxWorksSimFs, is built. The build finishes
at the top, in VxWorksSim.

In the next step (Set up the Target Connection, p.224) you will need to know the
location of the VxWorks kernel you have just built. You can see the path to this in
the second to last line of the build console; copy this location for later pasting.

18.2.5 Set up the Target Connection

To test the system you have just built, you need to create a connection to the target.

1. In the Target Manager, right-click the default(localhost) registry icon and
select New > Connection.

2. On the first wizard page, select Wind River VxWorks Simulator Connection
and click Next.

3. On the next wizard page, select Custom Simulator and, if you copied the path
to the VxWorks Kernel Image you have just built (under Build the System,
p.224, above) paste this in the field and then either Browse to VxWorks, or
enter /VxWorks.

In general terms, the location of the image is:
WorkspaceDirectory/ProjectName/BuildSpecName/VxWorks whereby
BuildSpecName in this case example would be default.

You have to select Custom Simulator because your image, unlike the
Standard Simulator, has a VxWorks File System (FSROM) that holds a
Real-time Process binary linked to it.

4. Continue to click Next until you reach the last wizard page (when the Finish
button is enabled). At Connection name: type VxWorksSim. Leave the
Immediately connect to target if possible check box selected. Click Finish.

The connection is immediately established and the Kernel Shell opens.

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

225

18

18.2.6 Run the Real-time Process on the Simulator

At the Kernel Shell prompt, type:

cd "/romfs/bin"

Press ENTER and type:

rtpSpawn "MyRTP.vxe"

Press ENTER again.

The output MyRTP called! should appear. Close the Kernel Shell.

18.3 A VxWorks Shared Library from Real-time Process to Target

Much of the initial work required for using a VxWorks Shared Library project is
done under 18.2 A VxWorks Real-time Process from Host to Target, p.220. It is
assumed you have completed all the steps in that section, and the procedures
outlined below will follow on from there.

18.3.1 Set Up the VxWorks Shared Library Project

First, create a new VxWorks Shared Library project to add to the existing project
structure you have already created under 18.2 A VxWorks Real-time Process from
Host to Target, p.220.

1. Right-click in the Project Navigator and select
New > VxWorks Shared Library Project and click Finish.

2. On the first wizard page, at Project name: type MyLibrary and click Finish.

Note that you have not set a build spec. The build spec for a Shared Library
must match that used for the Real-time Process that will link to it. However,
the default build spec for the Real-time Process you implicitly accepted above
(see Step 4:Add the Real-time Process to the File System project., p.221) matches the
default for Shared Libraries, namely SIMPENTIUMdiab_RTP_DEBUG.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

226

18.3.2 Add Code to the Shared Library Project

You need some code that will let you verify that everything works.

1. In the Project Navigator, right-click MyLibrary, select
New > File from Template, and under File Name type MyLibrary.h. Click
Finish; the file MyLibrary.h opens in the Editor view.

2. In the Project Navigator, right-click MyLibrary, select
New > File from Template, and under File Name type MyLibrary.c. Click
Finish; the file MyLibrary.c opens in the Editor view.

3. In MyLibrary.c add the following line:

#include <stdio.h>

4. Insert the following line into the MyLibrary function:

printf("MyLibrary called!\n");

Figure 18-4 shows the modified source file, MyLibrary.c.

5. Save MyLibrary.c.

Figure 18-4 The MyLibrary.c Source

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

227

18

18.3.3 Add the Shared Library to the Run-Time Process

The Shared Library must be built before the Real-time Process, so it is added as a
subproject. Furthermore, the library binary must be located in the host and target
side directories you specify as described below.

Step 1: Add the library as a subproject.

In the Project Navigator, drag-and-drop the MyLibrary project onto the MyRTP
project.

Step 2: Modify the Real-time Process build-target build properties.

1. Right-click the MyRTP project’s build target node (MyRTP.vxe) and select
Properties.

2. In the project’s Properties dialog, select the Build Properties node.

Step 3: Set up the Linker Build Tool for a dynamic executable and target-side run path.

1. Select the Build Tools tab.

2. In the field next to the Tool Flags button, type the run path (-rpath) in the
directory that will hold the shared library on your target, for example,
-rpath /romfs/lib (romfs is the default root directory of the ROMFS created by
the File System project you set up earlier).

3. Click the Tool Flags button. In the Linker Options dialog that appears, select
Create a dynamic executable.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

228

You will notice that the option, as used on the command line, appears in the
Selected Options list on the right.

4. Click OK to close the Linker Options dialog. You will see the option again in
the field next to the Tool Flags button.

Step 4: Define Build Macros for the host-side location and library binary.

1. Select the Build Macros tab.

2. In the list of Build spec specific settings, select the LIBS macro and click Edit.

Figure 18-5 Tool Flags for Dynamic Executables

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

229

18

3. In the dialog that appears, add a space after the existing value (-lstlstd),
followed by the basename of the shared library binary you want to link to,
namely MyLibrary:

-l:MyLibrary.so

When you close the dialog you should see:

LIBATH -lstlstd -l:MyLibrary.so

4. In the list of Build spec specific settings, select the LIBPATH macro and click
Edit.

5. In the dialog that appears, enter the host-side directory location of the library
binary you want to dynamically link to, namely:

-L../MyLibrary/$(OBJ_DIR)

Note that $(OBJ_DIR) expands to wherever the build output for MyLibrary is
generated. In this example, this will be a subdirectory named
SIMPENTIUMdiab_RTP_DEBUG. Using $(OBJ_DIR) is generic and
therefore offers the advantage of not having to change the LIBPATH macro if
you change build specs.

Note that the relative reference assumes that the Shared Library project is
located in the same workspace as the Real-time Process project.

6. Click OK to close the project’s build-target Properties dialog.

The next time you build the project structure, a dynamic executable capable of
run-time linking to the shared library with the file basename and the
directories (host and target side) you specified above will be produced.
However, you still need to do a few more things.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

230

18.3.4 Modify the Code in the Real-time Process Project

You need some code that will let you verify that everything works.

1. Open MyRTP.c in the editor, if it is not already open.

2. In MyRTP.c, insert the line:

#include "MyLibrary.h"

3. Modify main() as follows:

int main()
{

printf("MyRTP calling MyLibrary!
MyLibrary();
return 0;

}

Figure 18-6 shows the modified source file, MyRTP.c.

4. Save MyRTP.c.

Figure 18-6 The Modified MyRTP.c Source

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

231

18

18.3.5 Generate Include Search Paths

The file you included, MyLibrary.h, in MyTP.c is not in the same project
(directory). The include therefore needs to be resolved for successful
compilation.

1. In the Project Navigator, right-click the MyRTP project and select
Generate Include Search Paths.

2. In the dialog that appears, click Next, and on the next page click Resolve All.

Notice that the entry %Proj-MyLibrary% appears in the lower,
Include Search Paths, panel. Click Next, then Finish.

18.3.6 Add the Shared Library to the Target File System

Although you do not have a Shared Library binary yet, you can make provision for
the binary to be on the target file system once the system is built.

1. The File System Contents Editor should still be open. If not, in the
Project Manager, under the VxWorksSimFS File System project you created
earlier, double-click the VxWorks File System Contents node to open it.

2. In the File System Contents Editor, click New Folder and at Name: type lib.
The lib folder appears in the Target Contents panel.

3. In the Target Contents panel select the lib node, and in the Host Contents
panel, expand the project nodes until you can see the target node that
represents the (future) Shared Library binary, namely:
MyLibrary.so (SIMPENTIUMdiab_RTP_DEBUG).

4. Select this node and click Add. The MyLibrary.so binary (which does not yet
exist) appears in the Target Contents panel under the lib folder.

Figure 18-3 shows the results. Notice that the information panel at the bottom
displays the settings you entered earlier in the Build Properties.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

232

18.3.7 Build the System Again

In the Project Navigator, right-click the VxWorks Image project, VxWorksSim,
and select Build Project.

The structure is recursively built, starting, as you can see in the Build Console, in
MyLibrary, followed by MyRTP, followed by the File System project,
VxWorksSimFs, and finishing at the top in VxWorksSim.

Figure 18-7 The Library Binary on the Target File System

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

233

18

18.3.8 Run the RTP with the Shared Library on the Simulator

1. In the Target Manager, right-click VxWorksSim, the connection you created
under 18.2.5 Set up the Target Connection, p.224, and select Connect.

Once the connection has been established, the Kernel Shell will appear.

2. At the Kernel Shell prompt, enter:

cd "/romfs/bin"

3. Press ENTER and type:

rtpSpawn "MyRTP.vxe"

4. Press ENTER again.

The following output should appear:

MyRTP calling MyLibrary!
MyLibrary called!

5. Close the Kernel Shell.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

234

235

PAR T IV

Target Management

19 Connecting to Targets 237

20 New Target Server Connections 245

21 New VxWorks Simulator Connections 257

22 New On-Chip Debugging Connections 261

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

236

237

 19
 Connecting to Targets

19.1 Introduction 237

19.2 The Target Manager View 238

19.3 Defining a New Connection 238

19.4 The Registry 239

19.5 Establishing a Connection 242

19.6 Connect to the Target 242

19.1 Introduction

A target connection manages communication between the Workbench host tools
and the target system. A connection must be configured and established before
host tools can interact with the target.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. Connections are registered and made accessible
to users by the Wind River Registry.

This chapter describes ways to configure, start, and manage target connections in
the Target Manager view. For detailed information Target Server and Registry, see
the tgtsvr and wtxregd API reference entries (see
Help > Help Contents > Wind River Documentation > References > Host API
and Command References > Wind River Host Tools API Reference).

Wind River Workbench
User’s Guide, 2.4

238

19.2 The Target Manager View

A connection to a Target Server, a VxWorks Simulator, an Instruction Set
Simulator (ISS), or an on-chip debugging device (OCD) such as Wind River ICE
and Wind River Probe must be defined and established before tools can
communicate with a target system.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. The target side (required for Target Server and
VxWorks Simulator connections) is configured in the Kernel Editor (see 5.5.1 The
Kernel Editor, p.85).

By default, the Target Manager view is on a tab at the bottom-left of Workbench.
It is available in the Application Development perspective and in the Device
Debug perspective. If the view is not visible, choose Window > Show View >
Target Manager (or, if it is not listed there, Window > Show View > Other).

The most import tasks in the Target Manager view are:

■ defining new connections
■ connecting to targets
■ disconnecting from targets

Once you have connected to a target, more commands are enabled on the
right-click context menu (see also 23. Launching Programs).

19.3 Defining a New Connection

All connections types are defined from the Target Manager view (see 19.2 The
Target Manager View, p.238).

To open the New Connection wizard, use the appropriate toolbar icon or
right-click in the Target Manager and select New > Connection.

The first thing the New Connection wizard asks you to do is to select one of the
following connection types:

■ Wind River ICE

See 22.1 Defining a New Wind River ICE SX Connection, p.261.

■ Wind River ISS

19 Connecting to Targets
19.4 The Registry

239

19

See 22.2 Defining a New Wind River ISS Connection, p.271.

■ Wind River Probe

See 22.3 Defining a New Wind River Probe Connection, p.275

■ Wind River Target Server Connection

Separate options are presented for Linux and VxWorks. For VxWorks
connections, see 20.2 Defining a New Target Server Connection, p.245.

■ Wind River VxWorks Simulator Connection

See 21.2 Defining a New Wind River VxWorks Simulator Connection, p.257.

Properties you set using the New Connection wizard can be modified later by
right-clicking the connection in the Target Manager and choosing Properties. In
most cases, you will have to disconnect and reconnect for the changes to take
effect.

19.4 The Registry

The Wind River Registry is a database of target servers, boards, ports, and other
items used by Workbench to communicate with targets. For details about the
registry, see the wtxregd and wtxreg reference entries.

If Workbench finds an installed VxWorks platform on start-up, it creates a default
VxWorks Simulator connection. Before any target connections have been defined,
the default registry—which runs on the local host—appears as a single node in the
Target Manager. (Under Linux, the default registry is a target-server connection
for Linux user mode.) Additional registries can be established on remote hosts.

Registries serve a number of purposes:

■ The registry stores target connection configuration data. Once you have
defined a connection, this information is persistently stored across sessions
and is accessible from other computers.

You can also share connection configuration data that is stored in the registry.
This allows easy access to targets that have already been defined by other team
members.

Wind River Workbench
User’s Guide, 2.4

240

■ The registry keeps track of the currently running target servers and
administrates access to them.

■ Workbench needs the registry to detect and launch target servers.

If Workbench does not detect a running default registry at start-up, it launches
one. After quitting, the registry is kept running in case it is needed by other
tools. You do not ever need to terminate the registry. If you do terminate the
registry, it stores its internal data in a file that has to be writable on relaunching
Workbench. Please refer to 19.4.2 Registry Data Storage, p.241, for information
on the location of this file.

19.4.1 Remote Registries

If you have multiple target boards being used by multiple users, it makes sense to
maintain connection data in a central place (the remote registry) that is accessible
to everybody on the team. This saves everyone from having to remember
communications parameters such as IP addresses, etc. for every board that they
might need to use.

Creating a Remote Registry

You might want to create a new master registry on a networked remote host that is
accessible to everybody. To do so:

1. Workbench needs to be installed and the registry needs to be running on the
remote host. The easiest way to launch the registry is to start and quit
Workbench. However, you can also launch the wtxregd program from the
command line. (For more information about wtxregd, see
Help > Help Contents > Wind River Documentation > References > Host
API and Command References > Wind River Host Tools API Reference.)

2. Right-click in the Target Manager, (see 19.2 The Target Manager View, p.238),
then select New > Registry from the context menu.

3. In the dialog that appears, enter either the host name or the IP address of the
remote host.

NOTE: Having connection configuration data does not yet mean that the target
is actually connected.

19 Connecting to Targets
19.4 The Registry

241

19

Workbench immediately attempts to connect to the remote registry. If the host
is invalid, or if no registry is identified on the remote host, this information is
displayed in the Target Manager.

19.4.2 Registry Data Storage

If you shut down the registry, its internal data is written to the file
installDir/.wind/wtxregd.hostname. If this file is not writable on launch, the registry
attempts to write to /var/tmp/wtxregd.hostname instead. If this file is also not
writable, the registry cannot start and an error message appears.

19.4.3 The Registry and Product Updates

Because other tools use the registry, it is not automatically shut down when you
quit Workbench. Before updating or uninstalling Workbench (or other products
that use the registry), it is advisable to shut down the registry so that the new one
starts with a fresh database. To shut down the registry:

■ On Windows, right-click the registry icon in the system tray, and choose
Shutdown.

■ On Linux and UNIX, execute wtxregd stop, or manually kill the wtxregd
process.

If you want to migrate your existing registry database and all of your existing
connection configurations to the new version, make a backup of the registry data
file (see 19.4.2 Registry Data Storage, p.241) and copy it to the corresponding new
product installation location.

19.4.4 Changing the Default Registry

Normally, the default registry runs on the local computer. You can change this if
you want to force a default remote registry (see 19.4.1 Remote Registries, p.240). To
do this on Linux and UNIX, modify the WIND_REGISTRY environment variable.
To do this on Windows, under the Windows Registry HKEY_LOCAL_MACHINE
node, modify the field Software\Wind River Systems\Wtx\N.N\WIND
_REGISTRY.

Wind River Workbench
User’s Guide, 2.4

242

19.5 Establishing a Connection

Once you have created your application projects and defined connections, you will
want to run, test, and debug the projects on your target or simulator. To do this,
you first need to connect to the target.

19.5.1 Assumptions

■ You are using a simulator (VxWorks Simulator or the on-chip debugging
simulator, ISS), or you are using a target board and your hardware
connections are set up and running.

■ If you are using a target board (not a simulator), you have correctly configured
your FTP service as described in 3. Setting Up Your Hardware and in the Wind
River ICE for Wind River Workbench Hardware Reference and Wind River Probe for
Wind River Workbench Hardware Reference.

■ You have defined one or more host-target connections as described in 20. New
Target Server Connections, 21. New VxWorks Simulator Connections, and 22. New
On-Chip Debugging Connections.

19.6 Connect to the Target

The first step in running an application on the target is to establish a connection to
that target.

Connect to and disconnect from targets in the Target Manager (see 19.2 The Target
Manager View, p.238) by selecting a connection node and then using the
appropriate toolbar icon, or by right-clicking and selecting Connect.

Once the connection has been established:

■ If the connection is to a simulator, the Kernel Shell appears (see 19.6.1 The
Kernel Shell, p.243, for more information).

■ On Windows, a registry icon appears (if it is not there already) in the Windows
system tray (the area at the right of the Windows taskbar) to indicate the
registry is running (see also 19.4 The Registry, p.239).

■ In the Target Manager:

19 Connecting to Targets
19.6 Connect to the Target

243

19

– A blue check mark is superimposed on the top-left corner of the
connection node, the node is labeled ConnectionName [connected], and
new nodes appear under the connection node.

– A subnode appears under the connection node. This node’s label identifies
the connection type and the kernel. The node’s right-click context menu
offers a subset of the connection node’s context menu (restricted to the
most commonly used commands) as well as the Kernel Objects
command. The Kernel Objects command populates and opens the Kernel
Objects tab (by default located behind the Target Manager).

– A number of additional subnodes appear. These are described in
Table 19-1. Please refer to the Wind River Workbench User Interface
Reference: Target Manager View for a full list of the icons that you might see
in the Target Manager.

19.6.1 The Kernel Shell

The Kernel Shell1 that appears when you establish a connection displays output
generated by applications running on the kernel.

If you are using a VxWorks Simulator connection, shell components are included
in the kernel by default and the Kernel Shell also provides a prompt and accepts

Table 19-1 VxWorks Connections

Node Description

Real Time Processes When you run RTPs, they will appear as subnodes
under this node.

Kernel Tasks When the connection is initially established, you see
the VxWorks tasks. When you download and run
DKMs, they will appear as additional subnodes under
this node.

VxWorks location The kernel node and its host location. A superimposed
red S at the top-right of the icon indicates that symbol
information has been downloaded.

1. In versions of VxWorks prior to 6.0, the Kernel Shell was called the Target Shell.
The new name reflects the fact that the target-resident shell runs in the kernel and
not in a process.

Wind River Workbench
User’s Guide, 2.4

244

input like the Host Shell (see the VxWorks Command-Line User’s Guide). If you are
using a real board connection, the kernel shell does not provide an input prompt
by default; you can, however, include the necessary components in the VxWorks
kernel (see 5.5 Configuring Kernel Components, p.84 as well as the VxWorks Kernel
Programmer’s Guide and the VxWorks Application Programmer’s Guide).

For the most part, the Kernel Shell works the same as the Host Shell. For detailed
information about the Host Shell see the VxWorks Command-Line User’s Guide. For
information about the differences between the Host and Kernel shells, see the
VxWorks API Reference entries for dbgLib, shellLib, and usrLib.

245

 20
New Target Server

Connections

20.1 Introduction 245

20.2 Defining a New Target Server Connection 245

20.3 Kernel Configuration 255

20.1 Introduction

Target Server connections are defined in the Target Manager view (see
19. Connecting to Targets).

20.2 Defining a New Target Server Connection

To open the New Connection wizard, right-click in the Target Manager, then
select New > Connection.

Wind River Workbench
User’s Guide, 2.4

246

20.2.1 Wind River Target Server

On the initial page of the New Connection wizard, select Wind River Target
Server Connection for VxWorks and click Next.

20.2.2 Target Server Connection Page

Back End Settings

Back end
The Back end settings specify how a target server will communicate with a
target. Table 20-1 provides descriptions of the available options in the
Back end drop-down list.

Table 20-1 Communications Back Ends for Target Server

Back End Description

wdbrpc WDB RPC. This is the default. It supports any kind of IP connection
(for example, Ethernet). Polled-mode Ethernet drivers are
available for most BSPs to support system-mode debugging for
this type of connection.

wdbpipe WDB Pipe. The back end for VxWorks target simulators.

wdbserial WDB Serial. For serial hardware connections; does not require
SLIP on the host system. If you select this option, also choose a
Host serial device (port) and Serial device speed (bits per second).

wdbproxy WDB Proxy. The backend for UDP, TCP, and TIPC connections.

loopback Used to run the target server during testing. Not for connecting to
targets.

! CAUTION: The target server must be configured with the same communication
back end as the one built into the kernel image and used by the target agent. The
standard back end options are described in Table 20-1; the compatible kernel
components are listed in Table 20-4.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

247

20

CPU
Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Name/IP address
The Name/IP Address field specifies the network name or the IP address of
the target hardware for networked targets. If you are using a serial port, enter
either COM1 or COM2.

Kernel Image and Symbols

The Kernel Image and Symbols properties relate to a copy of the target kernel
that resides on the host.

File path from target (if available)
Select this option to search for an image of the software running on the target
using the target path.

File
If the run-time image file is not in the same location on the host that is
configured into the target (or if host and target have different views of the file
system), select this option and use the adjacent text box to specify the host
location of the kernel image.

For example, if you are using a target programmed with a vxWorks_rom.hex,
vxWorks_romCompressed.hex, or any other on-board VxWorks image, you
must use this option to identify the kernel file location; otherwise the target
server will not be able to identify the target symbols.

! CAUTION: Do not choose the TIPC WDB Proxy connection type unless you have
included the TIPC network stack (INCLUDE_TIPC_ONLY) component in your
VxWorks Image Project.

For more information about finding components to include in your VxWorks
Image Project, see Wind River Workbench User Interface Reference: Kernel Editor View.

For more information about TIPC, see Wind River TIPC for VxWorks 6 Programmer’s
Guide: Building VxWorks to Include Wind River TIPC.

Wind River Workbench
User’s Guide, 2.4

248

Advanced Target Server Options

Please see the tgtsvr reference entry in the online API reference and the VxWorks
Programmer’s Guide for more detailed information about target server options in
the Target Manager, as well as on additional available options.

Options

These options are passed to the tgtsvr program on the command line. Enter these
options manually, or use the Edit button for GUI-assisted editing.

Advanced Target Server Options Dialog

The properties in the Advanced Target Server Options dialog that you open with
Edit on the main wizard page are subdivided into three tabbed groups: Common,
Memory, and Logging.

The Common Tab

Target Server File System

The Target Server File System (TSFS) is a full-featured VxWorks file system
that provides target access to files located on the host system. It is used by the
Wind River System Viewer. It also provides the most convenient way to boot
a target over a serial connection. Although somewhat slow, it is simple and
easy to use.

A target can access files on the host it is booted from, if booted via FTP or rsh.
However, if the target is booted from a remote host, you can use the TSFS as a
simple method to access files on the local host.

The TSFS is also the default method used by the System Viewer for uploading
event data from the target. The TSFS should therefore be enabled and writable
(default) when using the System Viewer.

Root

If the Enable File System check box is selected, you have to identify the root
of the host file system that will be made visible to target processes using the
TSFS. By default, this is the Workspace root directory. If you use the TSFS for

! CAUTION: To use the TSFS, you must include the
WDB target server file system component when you build the kernel image.
See 20.3 Kernel Configuration, p.255, below, and the VxWorks Kernel Application
Programmer’s Guide for more details.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

249

20

booting a target, it is recommended that you use the default root directory. If
you do not use TSFS, you must use the Kernel Image and Symbols
configuration options to specify the location of the kernel image (see Kernel
Image and Symbols, p.247).

Make Target Server File System writable

To use the Wind River System Viewer, you must select this check box to allow
uploading of event data from the target. Because this also allows other users
to access your host file system, you may wish to set the TSFS option for your
target server to read-only when you are not using the System Viewer.

Timeout Options

Specify allowable spawn time (in seconds) for kernel tasks and RTPs, time (in
seconds) to wait for a response from the agent running on the target system,
how often to retry, and at what intervals.

The Memory Tab

Memory Cache Size

To avoid excessive data-transfer transactions with the target, the target server
maintains a cache on the host system. By default, this cache can grow up to a
size of 1 MB.

A larger maximum cache size may be desirable if the memory pool used by
host tools on the target is large, because transactions on memory outside the
cache are far slower.

The Logging Tab

Options on the Logging tab are used mainly for troubleshooting by Customer
Support.

A maximum size can be specified for each enabled log file. Files are rewritten
from the beginning when the maximum size is reached. If a file exists, it is
deleted when the target server restarts (for example, after a reboot).

For the WTX (Wind River Tool Exchange) log file, you can specify a filter, a
regular expression that limits the type of information logged. In the absence of
a filter, the log captures all WTX communication between host and target. Use
this option in consultation with Customer Support.

Wind River Workbench
User’s Guide, 2.4

250

20.2.3 Object Path Mappings Page

Object Path Mappings have two functions:

■ To allow the debugger to find symbol files for processes created on the target
by creating a correspondence between a path on the target and the appropriate
path on the host.

■ To calculate target paths for processes that you want to launch by browsing to
them with a host file-system browser.

By default, the debug server attempts to load all of a module’s symbols each time
a module is loaded. In the rare cases where you want to download a module or
start a process without loading the symbol file, uncheck Load module symbols to
debug server automatically if possible.

The simplest way to create Object Path Mappings for a module that does not have
symbols yet is to download the output file (or run the executable) manually. In the
Target Manager, right-click the file or executable and select Load Symbols to
Debug Server. From the Load Symbols dialog, select create path mappings based
on selection and click OK. Object path mappings are created automatically, so that
after the next disconnect/reconnect sequence the symbols will be found.

Pathname Prefix Mappings

This maps target path prefixes to host paths. Always use full host paths, not
relative paths.

For example, mapping /tgtsvr/ to C:\workspace\ tells the debugger that files
accessible under /tgtsvr/ on the target can be found under C:\workspace\ on the
host.

If you launch the process host:/usr/hello.vxe on your target, Workbench needs to
know what host:/ corresponds to; in other words, where it can find the hello.vxe
ELF file in the host file system. With an object path mapping of host:/ to
C:\WindRiver\, Workbench knows that the host path to the file is
C:\WindRiver\usr\hello.vxe.

In most cases Workbench provides correct defaults. If necessary, click Add to add
new mappings, or select existing mappings and click Edit to modify existing
mappings. The supplied default mappings are not editable.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

251

20

Reverse Mapping

Sometimes host paths must be mapped to target paths. For example, if you want
to browse to the process C:\WindRiver\usr\hello.vxe and launch it on the target,
Workbench needs to know that the correct target path for this process is
host:/usr/hello.vxe.

Path Mappings for Working with Remote Hosts

You may need to edit object path mappings if your target boots from a remote host
or if your target server runs on a remote host.

Running the target server on a remote host (using a remote registry; see
19.4.1 Remote Registries, p.240 for details) allows you to:

■ Access targets using a serial line wdb connection even if the targets are
physically connected to a remote host.

■ Have different IP subnets for the targets in a lab and the client running
Workbench, with the target server being the intermediary to translate between
the separate subnets.

In this discussion, the target is the VxWorks target, the host is the remote registry
host that the target server is running on, and the client is the system on which
Workbench is running.

Prerequisites

To allow Workbench to access targets attached to a remote host, two prerequisites
must be met:

1. The VxWorks image must be visible to the target (for booting), the host (for the
target server), and the client (for the debugger and the host shell).

2. A file system must be shared between the target and client for running RTPs.

Example: Adding New Path Mappings

When the target server is running on a host that can see the same (networked) file
system that the client can, you do not need to adjust your object path mappings.
The remote target server connections can be used exactly like local connections.

However, when the remote host and the client see different file systems, you need
to create new path mappings to tell the debugger where it can find the files seen
by the target server. In this case, the path to the kernel image is entered as seen on
the remote host; path mappings must be added to tell the debugger where these
paths are on the client.

Wind River Workbench
User’s Guide, 2.4

252

When there are multiple clients with different file systems, you must add path
mappings for each client. The debugger tries them in the order in which they
appear.

For example, consider a scenario with two clients (one on Windows, one on UNIX)
accessing a common target server host. Table 20-2 shows how each client is set up;
this is the information you would have to work with when figuring out the object
path mappings for this scenario.

Based on this information, the host and target path mappings you would enter into
the Pathname Prefix Mappings fields are shown in Table 20-3.

Table 20-2 Clients Connected to a Common Target Server Host

Station Setup Description

target t100 Booted using rsh from moon:/export1/images/t100/vxWorks
TSFS enabled

host moon Kernel path from target, on /export1/images/t100/vxWorks
TSFS enabled, with rootdir /Net/shares/tsfs/t100
Tgtsvr command line: tgtsvr -R /Net/shares/tsfs/t100 -RW t100

client c-unix File system shared with host moon
Kernel seen on /Net/moon/export1/images/t100/vxWorks
TSFS path same as on moon

client c-win Kernel seen on \\moon\export1\images\t100\vxWorks
TSFS seen on L:\tsfs\t100

Table 20-3 Host and Target Paths Converted to Object Path Mappings

Target Path Host Path Comment

moon:/export1 /Net/moon/export1 Access to the boot file system for UNIX clients. Allows
Workbench to reverse-map for running RTPs, so when
running the RTP /Net/moon/export1/myrtp.vxe, the target
path will be computed as moon:/export1/myrtp.vxe

moon:/export1 \\moon\export1 Now the same for Windows clients.

/export1 /Net/moon/export1 Allows Workbench to find the kernel path: sent by the
target server as /export1/..., this can be forward-mapped to
the common UNIX file system for clients.a

/export1 \\moon\export1 Now the same for Windows clients.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

253

20

If you do not run RTPs, only the mappings for the kernel image are required
(shown in the third and fourth rows of Table 20-3). None of the other mappings are
necessary, since a file system is not needed for debugging kernel modules.

Basename Mappings

Use square brackets to enclose each mapping of target file basenames (left element)
to host file basenames (right element), separated by a semi-colon (;). Mapping pairs
(in square brackets) are separated by commas. You can use an asterisk (*) as a
wildcard.

For example, if debug versions of files are identified by the extension *.unstripped,
the mapping [*;*.unstripped] will ensure that the debugger loads
yourApp.vxe.unstripped when yourApp.vxe is launched on the target.

20.2.4 Target State Refresh Page

Since retrieving status information from the target leads to considerable target
traffic, this page allows you to configure how often and under what conditions the
information displayed in the Target Manager is refreshed.

These settings can be changed later by right-clicking the target connection and
selecting Refresh Properties.

Available CPU(s) on Target Board

Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

/tgtsvr /Net/shares/tsfs/t100 Allow reverse-mapping of the tgtsvr file system for UNIX
hosts.

/tgtsvr L:\tsfs\t100 Now the same for Windows hosts.

a. This mapping may be used only for forward-mapping the kernel image, so it must be listed after the
previous mappings, which are used for reverse-mapping as well.

Table 20-3 Host and Target Paths Converted to Object Path Mappings (cont’d)

Wind River Workbench
User’s Guide, 2.4

254

Initial Target State Query and Settings

Specify whether Workbench should query the target on connect, on stopped
events, and/or on running events. You can select all options if you like.

Target State Refresh Settings

Specify whether Workbench should refresh the target state only when you
manually choose to do so, or if (and how often) the display should be refreshed
automatically.

Listen to execution context life-cycle events

Specify whether Workbench should listen for life-cycle events or not.

20.2.5 Connection Summary Page

This page proposes a unique Connection name, which you can modify, and
displays a Summary of name and path mappings for review. To modify these
mappings, click Back.

Shared
This option, which is available only for certain connection types, serves a dual
purpose:

■ When you define a target connection configuration, this connection is
normally visible only for your user ID. If you define it as Shared, other
users can also see the configuration in your registry, provided that they
connect to your registry (by adding it as a remote registry on their
computer; see 19.4.1 Remote Registries, p.240).

■ Normally, when you terminate a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection
that is flagged as Shared, however, they are left running so that other
users can connect to them. In other words, you can flag a connection as
shared if you want to keep the target server (and simulator) running after
you disconnect or exit Workbench.

Immediately connect to target if possible
If you do not want to connect to the target immediately, you can connect to the
target later using one of the ways described in 25. Debugging Projects. If you

20 New Target Server Connections
20.3 Kernel Configuration

255

20

have applications ready to run using the connection(s) you just created, please
see 23. Launching Programs.

20.3 Kernel Configuration

Once you have defined a Target Server (or VxWorks Simulator) connection, you
may have to configure the kernel communication. The default configuration,
however, will normally work fine for getting started.

The target server and the simulator communicate with the target system through
the target agent. To communicate with the target agent, the target server uses a
communication back end that has to be configured for the same communication
protocol and transport layer as the target agent on the kernel.

When you create Target Server or VxWorks Simulator connections, you define
host back end communication in the Kernel Editor. For more information about
this topic, see 5.5.1 The Kernel Editor, p.85.

Table 20-4 shows an overview of target server back ends and the kernel
components that provide the required target-agent communication interface.

Figure 20-1 shows where to find these kernel components in the Kernel Editor.

Table 20-4 Communications Back Ends for Target Server and Compatible Kernel Components

Back End Compatible Kernel Component

wdbrpc WDB END driver connection or WDB network connection

wdbpipe WDB simulator pipe connection

wdbserial WDB serial connection

wdbproxy WDB network connection (for UDP/TCP) or
TIPC network stack (for TIPC)

loopback Not applicable, see Table 20-1.

Wind River Workbench
User’s Guide, 2.4

256

These and other communication-related kernel components are described in detail
in the VxWorks Programmer’s Guide: Kernel Images, Components, and Configuration.

Figure 20-1 Kernel Editor Showing WDB Connection Components

257

 21
New VxWorks Simulator

Connections

21.1 Introduction 257

21.2 Defining a New Wind River VxWorks Simulator Connection 257

21.1 Introduction

The Wind River VxWorks Simulator allows you to simulate a connection to a
standard or customized version of a VxWorks 6 kernel.

21.2 Defining a New Wind River VxWorks Simulator Connection

For VxWorks Simulator-specific information going beyond this description, please
see the Wind River VxWorks Simulator User’s Guide.

Target Server connections are defined in the Target Manager view (see 19.2 The
Target Manager View, p.238).

To open the New Connection wizard, right-click in the Target Manager and choose
New > Connection.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

258

On the initial page of the New Connection wizard, select
Wind River VxWorks Simulator Connection and click Next.

21.2.1 VxWorks Boot Parameters Page

Standard Simulator (Default)
Select this option to create a simulated connection to a standard VxWorks
kernel.

Custom Simulator
Select this option if you are using a customized VxWorks kernel.

VxWorks Kernel Image
This field is enabled only if you select Custom Simulator. Navigate to the
location of your customized kernel image.

Processor Number
Your system is automatically configured to run multiple simulators.
Workbench assigns each simulator a unique positive number, known as the
Processor number.

Advanced Boot Parameters
Please see the Wind River VxWorks Simulator User’s Guide for information on
the vxsim command-line options that can be set in this dialog.

21.2.2 VxSim Memory Options Page

These options allow you to manage your memory resources. Please see the Wind
River VxWorks Simulator User’s Guide for details.

21.2.3 VxWorks Simulator Miscellaneous Options Page

This page offers file-system location options (see the Wind River VxWorks Simulator
User’s Guide for details) and a field for entering additional command-line options
that are passed as-is to vxsim.

21 New VxWorks Simulator Connections
21.2 Defining a New Wind River VxWorks Simulator Connection

259

21

21.2.4 Target Server Options Page

WDB back end type
This corresponds to the Back end, as described for the Target Server
connection; see Back End Settings, p.246. The VxWorks Simulator uses the
wdbpipe back end by default.

Name/IP Address
Available only if the wdbrpc back end is selected. Specifies the network name
or IP address of the target. If you are using a serial port, enter either COM1 or
COM2.

The remaining options in the wizard are the same as those outlined for the Target
Server connection settings. These are described starting from Advanced Target
Server Options Dialog, p.248.

If you have created a connection for a standard simulator, the default settings
should work. However, if you have defined a custom simulator connection, you
may have to configure the kernel-side communication, see 20.3 Kernel
Configuration, p.255.

If you have applications ready to run using the connection(s) you have just created,
please see 23. Launching Programs.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

260

261

 22
 New On-Chip

Debugging
Connections

22.1 Defining a New Wind River ICE SX Connection 261

22.2 Defining a New Wind River ISS Connection 271

22.3 Defining a New Wind River Probe Connection 275

22.1 Defining a New Wind River ICE SX Connection

Wind River ICE SX connections are defined in the Target Manager view (see
19.2 The Target Manager View, p.238).

To open a new Wind River ICE SX connection, use the following steps:

1. Right-click in the Target Manager view and select New > Connection. The
New Connection Wizard appears, as shown in Figure 22-1.

Wind River Workbench
User’s Guide, 2.4

262

2. Choose Wind River ICE from the list of options and click Next.

The Communication Settings dialog appears, as shown in Figure 22-2.

To configure communication settings manually, see Configuring
Communication Settings Manually, p.263. To configure communication settings

Figure 22-1 New Connection Wizard—ICE

Figure 22-2 Communication Settings—ICE

22 New On-Chip Debugging Connections
22.1 Defining a New Wind River ICE SX Connection

263

22

through a serial port, see Configuring Communication Settings Through a Serial
Port, p.265.

Configuring Communication Settings Manually

3. Check the Configure Communication Settings Manually box and click Next.

The Settings dialog appears, as shown in Figure 22-3.

4. In the Designators area, click Select to choose from a list of available target
processors.

If you are using multiple processors, or if you have multiple devices (such as
field-programmable gate arrays or application-specific integrated circuits) on
your JTAG scan chain, specify a board file in the Board File field. If you are
only connecting a single processor, you do not need a board file, and you can
ignore the Board File field.

Either choice will populate the field below the Board File field with a
summary description of your board.

5. In the Communications area, fill in the IP Address field with the IP address
you have assigned to your ICE unit.

Figure 22-3 shows the Settings dialog with values for a PPC750FX board.

NOTE: If you choose this option you will need to know either the network name
of the emulator or its IP address. For information on assigning these values, see the
Wind River ICE SX for Wind River Workbench Hardware Reference: Configuring the
Wind River ICE SX for Network Operation.

Wind River Workbench
User’s Guide, 2.4

264

6. When you have entered the correct processor or board file and IP address,
click Next.

Figure 22-3 Settings Dialog

22 New On-Chip Debugging Connections
22.1 Defining a New Wind River ICE SX Connection

265

22

The Target Operating System Settings dialog appears. Proceed to Step 7.

Configuring Communication Settings Through a Serial Port

If you choose to make your connection using the serial port, make sure that a serial
cable is connected between Wind River ICE SX and your host computer.

a. Check the Configure Communication Settings Through a Serial Port box
and click Next. The Settings dialog appears, as shown in Figure 22-4.

b. Use this dialog to select the serial port you want to connect to, and set a
timeout value in seconds. Communication settings such as the ICE’s
dynamically assigned IP address and other settings will be retrieved and
displayed automatically, as shown in Figure 22-5.

NOTE: A direct serial cable is required to create your connection this way. If you
do not have a direct serial connection between your host and emulator, you must
configure your ICE settings manually.

Figure 22-4 Serial Settings

Wind River Workbench
User’s Guide, 2.4

266

The retrieved settings can also be modified; that is, you can reconfigure the
Wind River ICE SX communication settings using a serial connection. To do
this, check the Modify checkbox.

If you have downloaded a TOS (Target Operating System) to the board, click
into the TOS plugin column, select the operating system from the dropdown,
and enter any required parameters in the next column.

c. Click Next.

The Target Operating System Settings dialog appears, as shown in
Figure 22-6.

Figure 22-5 Serial Settings Summary

22 New On-Chip Debugging Connections
22.1 Defining a New Wind River ICE SX Connection

267

22

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. If you are using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=’value’. Separate options with
a comma. The following options are available:

■ notasklist=’1’ : Never fetch process list.

■ noautomodules=’1’ : Do not plant internal breakpoints to do automatic
kernel module load/unload detection. When this option is specified, you
must manually refresh to see an updated module list.

Figure 22-6 Target OS Settings

Wind River Workbench
User’s Guide, 2.4

268

■ noloadcheckuntilhit=’1’ : Do not issue gophers until a hardware
breakpoint is used to detect kernel load triggers. This option is for
“sensitive” boards that do not accept access until the kernel loads and sets
up memory mapping.

■ loaddetectloc=’symbol or address’ : Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.

The Object Path Mappings dialog appears, as shown in Figure 22-7.

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

11. To add a host or target path, click Add... and type the path in the dialog that
appears.

Figure 22-7 Object Path Mappings

22 New On-Chip Debugging Connections
22.1 Defining a New Wind River ICE SX Connection

269

22

12. Click Next.

The Target State Refresh dialog appears, as shown in Figure 22-8.

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

13. Click Next.

The Connection Summary dialog appears, as shown in Figure 22-9. Inspect the
displayed values to make sure they are correct.

Figure 22-8 Target State Refresh

Wind River Workbench
User’s Guide, 2.4

270

14. If you want to connect to your target now, select Immediately connect to
target if possible.

If you do not want to connect to the target immediately, you can connect to the
target later using the Target Manager view to select the connection you have
just defined, or you can create a Launch Configuration from the Run >
Debug... menu. Launch Configurations allow you to combine applications
with connection definitions, and to set various configuration parameters that
are then persistently stored (see 23.2 Launching a Kernel Task or a Process, p.286
and 23.5 Relaunching Recently Run Programs, p.294). Also see the
Wind River ICE SX for Wind River Workbench Hardware Reference: Establishing
Communications.

15. If you want to share your target connection, select Shared checkbox.

This option serves a dual purpose:

■ When you define a target connection configuration, this connection is
normally only visible for your user-id. If you define it as Shared, other users
can also see the configuration in your registry, provided that they connect to
your registry (by adding it as a remote registry on their computer, see
19.4.1 Remote Registries, p.240).

Figure 22-9 Connection Summary—ICE

22 New On-Chip Debugging Connections
22.2 Defining a New Wind River ISS Connection

271

22

■ Normally, when you disconnect a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection that is
flagged as Shared, however, they are left running so that other users can
connect to them. In other words, you can flag a connection as shared if you
want to keep the target server (and simulator) running after you disconnect or
exit Workbench.

16. Click Finish.

Your connection is now visible in the Target Manager view.

22.2 Defining a New Wind River ISS Connection

For more information on the Wind River Instruction Set Simulator (ISS), please see
the Wind River Workbench On-Chip Debugging Guide: Using the Instruction Set
Simulator and the Wind River Workbench Compiler manuals.

ISS connections are defined in the Target Manager view (see 19.2 The Target
Manager View, p.238).

To define a Wind River ISS connection, use the following steps:

1. Right-click in the Target Manager view and select New > Connection.

The New Connection Wizard appears, as shown in Figure 22-10.

NOTE: For Wind River ICE SX-specific information going beyond this chapter,
including troubleshooting information, see the Wind River ICE SX for Wind River
Workbench Hardware Reference and the Wind River Workbench On-Chip Debugging
Guide.

Wind River Workbench
User’s Guide, 2.4

272

2. Select Wind River ISS and click Next.

The Settings dialog appears, as shown in Figure 22-11.

Figure 22-10 New Connection Wizard—ISS

22 New On-Chip Debugging Connections
22.2 Defining a New Wind River ISS Connection

273

22

3. Select a Processor (to simulate single-core debugging) or a Board file (to
simulate multi-core debugging.)

This populates the list below the Board file field with a summary description
of the board.

If you are simulating a board with multiple cores, the list will display a row for
each. You can choose which cores you want to debug by selecting the checkbox
in the first column of each row.

The second column displays the unique designator used to identify each core.

4. Click Next.

The wizard next passes through three screens (Target Operating System
Settings, Object Path Mappings, and Target State Refresh) that specify
parameters on the target processor. Since this is a simulated connection and

Figure 22-11 Instruction Set Simulator Settings

NOTE: The TOS (Target Operating System) plugin and TOS parameters are not
supported for the Instruction Set Simulator.

Wind River Workbench
User’s Guide, 2.4

274

there is no real target processor, you can ignore these screens. Click Next until
the Connection Summary dialog appears, as shown in Figure 22-12.

5. Check the displayed values to make sure they are correct.

6. If you want to connect to your simulation now, select Immediately connect to
target if possible.

If you do not want to connect to the simulation immediately, you can connect
later using the Target Manager view to select the connection you just defined.

7. Click Finish.

Your connection is now visible in the Target Manager view.

Figure 22-12 Connection Summary—ISS

22 New On-Chip Debugging Connections
22.3 Defining a New Wind River Probe Connection

275

22

22.3 Defining a New Wind River Probe Connection

To open a new Wind River Probe connection, use the following steps:

1. Right-click in the Target Manager view and choose New > Connection.

The New Connection Wizard appears, as shown in Figure 22-13.

2. Select Wind River Probe and click Next.

The Settings dialog appears, as shown in Figure 22-14.

Figure 22-13 New Connection—Probe

Wind River Workbench
User’s Guide, 2.4

276

3. Click Select to choose from a list of available target processors.

4. If a board file is necessary for your target board, check the Board File field and
click Browse to specify the board file.

This populates the list below the Board file field with a summary description
of the board.

5. Inspect the Device Name field.

The Device Name field shows the serial number of your Wind River Probe
unit. Since Wind River Probe uses a USB connection, there may be several
units attached to your host computer at the same time. Make sure the Device
Name field shows the serial number of the Wind River Probe you want to use.

Figure 22-14 Settings—Probe

NOTE: Multicore debugging is not supported for the Wind River Probe. Unless
your target board has more than just the processor on the JTAG scan chain, you
do not need to select a board file. (For example, the Wind River SBC405GP
board has some FPGAs on the scan chain, so it does require a board file.)

22 New On-Chip Debugging Connections
22.3 Defining a New Wind River Probe Connection

277

22

6. Click Next.

The Target Operating System Settings dialog appears, as shown in
Figure 22-15.

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. If you are using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=’value’. Separate options with
a comma. The following options are available:

Figure 22-15 Target OS Settings

Wind River Workbench
User’s Guide, 2.4

278

■ notasklist=’1’ : Never fetch process list.

■ noautomodules=’1’ : Do not plant internal breakpoints to do automatic
kernel module load/unload detection. When this option is specified, you
must manually refresh to see an updated module list.

■ noloadcheckuntilhit=’1’ : Do not issue gophers until a hardware
breakpoint is used to detect kernel load triggers. This option is for
“sensitive” boards that do not accept access until the kernel loads and sets
up memory mapping.

■ loaddetectloc=’symbol or address’ : Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.

The Object Path Mappings dialog appears, as shown in Figure 22-16.

Figure 22-16 Object Path Mappings

22 New On-Chip Debugging Connections
22.3 Defining a New Wind River Probe Connection

279

22

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

11. To add a host or target path, click Add... and type the path in the dialog that
appears.

12. Click Next.

The Target State Refresh dialog appears, as shown in Figure 22-17.

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

13. Click Next.

The Connection Summary dialog appears, as shown in Figure 22-18. Inspect the
displayed values to make sure they are correct.

Figure 22-17 Target State Refresh

Wind River Workbench
User’s Guide, 2.4

280

14. If you want to connect to your target now, select Immediately Connect To
Target If Possible.

If you do not want to connect to the target immediately, you can connect to the
target later using the Target Manager view to select the connection you have
just defined, or you can create a Launch Configuration from the Run >
Debug... menu.

Launch Configurations allow you to combine applications with connection
definitions, and to set various configuration parameters that are then
persistently stored (see 23.2 Launching a Kernel Task or a Process, p.286 and
23.5 Relaunching Recently Run Programs, p.294). Also see the Wind River Probe
for Wind River Workbench Hardware Reference: Establishing Communications.

The Shared option is not available for the Wind River Probe. When you define
a target connection configuration for the Wind River Probe, this connection is
only visible for your user-id.

15. Click Finish.

Your connection is now visible in the Target Manager view.

Figure 22-18 Connection Summary—Probe

22 New On-Chip Debugging Connections
22.3 Defining a New Wind River Probe Connection

281

22

NOTE: For Wind River Probe-specific information going beyond this description,
including troubleshooting information, see the Wind River Probe for Wind River
Workbench Hardware Reference and the Wind River Workbench On-Chip Debugging
Guide.

Wind River Workbench
User’s Guide, 2.4

282

283

PART V

Debugging

23 Launching Programs .. 285

24 Managing Breakpoints 299

25 Debugging Projects .. 307

26 Troubleshooting ... 323

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

284

285

 23
 Launching Programs

23.1 Introduction 285

23.2 Launching a Kernel Task or a Process 286

23.3 Reset & Download: Hardware Debugging Launches 291

23.4 Launching a Native Application 292

23.5 Relaunching Recently Run Programs 294

23.6 Using Attach-to-Target Launches 295

23.7 Suggested Workflow 298

23.1 Introduction

A launch configuration is like a named script that captures the whole process of
building, connecting a target, downloading, running, and possibly attaching a
debugger. Whenever you run a process, task, or program from the Project
Navigator or the Target Manager, a Launch Configuration is automatically
created for you. Launch configurations are stored persistently, so you can rerun
your previous launches by clicking a single button, and you can share them with
your team.

The same launch configuration can be executed in Run-mode and Debug-mode:

■ Run-mode connects to your target, then launches a task or process.

Wind River Workbench
User’s Guide, 2.4

286

■ Debug-mode is like run-mode, but in addition to connecting to your target and
launching your process, it also attaches the debugger.

This chapter explains how to create, edit, and fine-tune your launch configurations
to provide a tight edit-compile-debug cycle, as well as how to manually attach the
debugger to tasks and processes.

For descriptions of these dialogs as well as a guide to the icons you will see in the
launch configuration wizard, see the Wind River Workbench User Interface Reference:
Launch Configuration Dialog.

23.2 Launching a Kernel Task or a Process

Launch configurations that run kernel tasks, RTPs, and Linux processes are very
similar. Only a few options and settings differ between them.

To create a new launch configuration, select a build target in the Project Navigator
then select Run > Run or Run > Debug1. The Create, manage, and run
configurations dialog appears.

1. From the Configurations list, select the type of launch you want to create, then
click New.

2. The Name field will display a default name based on the type of configuration
you selected.

■ A new kernel task launch configuration is called noEntryPoint -
moduleName - connectionName2. As soon as you select an entry point for the
configuration, the name changes to entryPoint - moduleName -
connectionName. If you prefer, you can type a completely new name in the
Name field.

■ A new process or RTP configuration is called noExecPath -
connectionName. As soon as you select an Exec Path for the configuration
(when you specify the executable to run), the name changes to executable -
connectionName. Or, if you prefer, you can type a completely new name in
the Name field.

1. You can also create a launch configuration by right-clicking on the build target in the Project
Navigator and selecting the appropriate Run or Debug command from the context menu.

2. If no target is connected, the default name is noEntryPoint - moduleName - noDownload.

23 Launching Programs
23.2 Launching a Kernel Task or a Process

287

23

23.2.1 Defining the Target Connection

The default Connection to use is the target that is currently connected. If you have
more than one connection defined in the Target Manager, you can select a different
one from the drop-down list.

1. To change the properties of the target connection, including target server
options and object path mappings, click Properties.

2. To create a new connection definition, click Add.

3. To retrieve the connection-specific properties from the target, and adjust them
if necessary, click Connect.

For more information about target connections, see 20. New Target Server
Connections and the Wind River Workbench User Interface Reference: Target Manager
View.

23.2.2 Defining the Kernel Task or Process to Run

The settings in this section can be changed only when you are connected to a
target.

Once your target is connected, you can select the Entry Point of your program
from the drop-down list, click Browse next to the Exec Path on Target field and
navigate to the executable to run3 (if it does not already appear), or change any of
the other settings in this section.

For more information on the fields on the Main tab, see the Wind River Workbench
User Interface Reference: Launch Configuration Dialog.

3. Workbench automatically maps the pathname from your host file system into a pathname
that is valid on the target file system. To change the mappings, click Properties, scroll right
to the Object Path Mappings tab, highlight the mapping you want to change, click Edit,
then update and save your new settings.

NOTE: If your application is not built as described in 17.6 Executables that
Dynamically Link to Shared Libraries, p.207, you must set the LD_LIBRARY_PATH
environment variable. See that section for details.

Wind River Workbench
User’s Guide, 2.4

288

23.2.3 Specifying a Build Target to Download

If you want Workbench to download a particular build target each time this launch
is used, specify it on the Downloads tab (this is necessary only for kernel task
launches). If you highlighted a build target in the Project Navigator before opening
the launch dialog, the file appears in the Downloads list automatically.

1. To modify any of the settings of the output file that appears, click Edit.

To add a file or to specify additional files to be downloaded, click Add.

In both cases, the Download dialog appears. For details about the fields in this
dialog, see Wind River Workbench User Interface Reference: Launch Configuration
Dialog.

2. When you are finished adjusting the settings, click OK. The new information
appears in the Downloads list.

23.2.4 Specifying The Projects to Build

If you want Workbench to build a particular project or projects prior to launching
this configuration, specify them on the Projects to Build tab. If you selected a build
target in the Project Navigator, its project appears in the Projects to Build list
automatically.

1. To add another project to the list, click Add Project, select one or more projects,
then click OK.

2. To rearrange the build order in the list, select a project then click Up or Down.

3. If you do not want Workbench to build for this particular launch
configuration, such as when you are working with very large projects, select
all projects and select Remove to clear the list4.

NOTE: You can also create launches for kernel tasks that are already downloaded,
or are resident in Flash or are part of the kernel image. Those tasks do not require
an entry in the Downloads list since they do not need to be downloaded each time
the configuration is run.

4. To prevent Workbench from building prior to launching any of your programs, unselect
Window > Preferences > Run/Debug > Launching > Build (if required) before launching.

23 Launching Programs
23.2 Launching a Kernel Task or a Process

289

23

23.2.5 Defining Debug Behavior

Break on Entry

When creating debug-mode launches, Break on entry is selected by default.
Uncheck it if you want this program to run to the first breakpoint you set, rather
than breaking immediately after startup.

If Break on entry is selected when the launch is run, four things happen:

■ Workbench automatically switches to the Device Debug perspective (if it is not
already open).5

■ The task or process is displayed in the Debug view.

■ A temporary breakpoint is planted and appears in the Breakpoints view.

■ The program executes up to Entry Point and breaks.

Automatically Attach Spawned Kernel Tasks

For kernel task launches, select this option if you want Workbench to
automatically attach spawned kernel tasks.

NOTE: Workbench is aware of relationships between projects and subprojects.
So if myLib is a subproject of myProj and you choose to add myProj to the list,
you cannot add myLib to the list as well because it will be built automatically
when you build myProj. Adding myLib as well would be redundant and so is
disabled.

When you change the list of downloaded files for kernel task launches (see
Specifying a Build Target to Download, p.288) the projects containing those files
are automatically added to the Projects to Build list. You should always
review this list when you change the list of downloaded files.

5. From the View Management Preferences screen (Window > Preferences > Run/Debug
> View Management) you can control under what circumstances Workbench switches
views based on your selection.

Wind River Workbench
User’s Guide, 2.4

290

23.2.6 Specifying Where Workbench Should Look for Source Files

If your build target was compiled on the same host where you want to debug it,
you do not need to change anything on the Source tab.

However, if the build target was compiled on a different host, and Workbench
needs to find source files during debugging, it searches the locations listed on this
tab in the specified order.

1. On the Sources tab, click Add to configure the source lookup path.

2. Select the type of source to add, then click OK.

3. Most choices require that you select a specific project, folder, or path. Make
your selection, then click OK.

4. Click Up or Down to adjust the search order.

5. Check Search for duplicate source files on the path to have Workbench
search the entire source lookup path and offer you a choice of all the files it
finds that have the same filename, rather than automatically using the first file
of that name it encounters.

For more information about the source locator, see 25.6 Understanding Source
Lookup Path Settings, p.317 and Wind River Workbench User Interface Reference: Source
Lookup Path Dialog.

23.2.7 Configuring Access Methods

Use the Common tab to specify whether this launch is local or shared, to add the
launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

1. By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse
to the directory where you want to save the shared file.

2. If you want to be able to launch this program from the Run or Debug favorites
menus (the drop-down menus on the Workbench toolbar), select Run or
Debug in the Display in favorites menu box.

NOTE: If you do not specify a source lookup path, the debugger will ask for the
correct source path as soon as it encounters a source it cannot find. So if you prefer,
you can configure the source lookup manually as you go, rather than configuring
it when creating the launch.

23 Launching Programs
23.3 Reset & Download: Hardware Debugging Launches

291

23

23.2.8 Using Your Launch Configuration

When you are finished configuring the launch configuration for your program,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run or Debug to launch it now.

Running Your Program

If you select Run to launch your program, the output file or executable is loaded
into target memory and its name and host location appear below your target
connection in the Target Manager (RTPs appear under Real-time Processes). A red
S over the output file icon indicates that symbol information has been downloaded
to the debugger.

Debugging Your Program

If you select Debug to launch your program, in addition to loading the output file
or executable into target memory and downloading symbol information, the
debugger attaches to the task or process that then appears in the Debug view. For
more information about debugging your programs, see 25. Debugging Projects and
the Wind River Workbench User Interface Reference: Debug View.

23.3 Reset & Download: Hardware Debugging Launches

For information about creating a Reset and Download launch configuration, see
Wind River ICE SX for Wind River Workbench Hardware Reference: Establishing
Communications or Wind River Probe for Wind River Workbench Hardware Reference:
Establishing Communications, depending on whether you are using a Wind River
ICE SX or Wind River Probe for your OCD connection.

NOTE: If no symbol information was found, right-click the module and select Load
Symbols to load the symbols for your module from an alternate location.

You can also match module paths with symbol information by selecting the Create
path mappings based on selection checkbox in the Load Symbols dialog.

Wind River Workbench
User’s Guide, 2.4

292

23.4 Launching a Native Application

1. To create a new launch configuration that will run a native application on your
local host or remote host, select your application’s executable in the Project
Navigator then select Run > Run. The Create, manage, and run
configurations dialog appears.

2. From the Configurations list, select Native Application, then click New.

3. The default name of the new configuration is New_configuration. Type a
descriptive name in the Name field.

23.4.1 Specifying the Location and Arguments for Your Application

1. To specify the location of your application’s executable file, click Browse
Workspace near the Location field. The Select an application dialog opens.

2. Select the executable and click OK. The executable appears in the Location
field.

3. To specify the working directory for your application, click Browse
Workspace to open the Select a working directory dialog, or Browse File
System to open the Browse for Folder dialog.

4. Select a working directory, then click OK. The directory appears in the
Working Directory field.

5. Type the arguments your application requires into the Arguments field, or
click Variables to open the Select Variable dialog. Double-click the variable
you want to use, or select it and click OK to add it to the Arguments field.

23.4.2 Specifying Remote Settings

These settings are optional, and are required only if you are running your
application on a remote host. For more information about working with remote
hosts, see 17.9.5 Running Applications Remotely, p.216.

Command-line application’s output and input will be redirected to the standard
Eclipse console unless the application is started within an external process that
creates a new window, such as xterm.

1. If your application requires an interactive shell, type the program and
arguments in the Remote Program field. The default for remote execution is a

23 Launching Programs
23.4 Launching a Native Application

293

23

remote command like xterm -e %Application%, so a local X-server like Exceed
or Cygwin X must be running.

2. If you want to use a different working directory than the one specified on the
Arguments tab, type the path to the desired directory (as seen on the remote
host).

23.4.3 Setting Environment Variables

These settings define the environment variable values to use when running a Java
application. By default, the environment is inherited from the Eclipse run time.
You may override or append to the inherited environment.

1. To set a new environment variable, or to change or extend variables from the
existing environment, click New. The New Environment Variable dialog
opens.

2. Type a descriptive name for the variable.

3. Type the value for the variable, or click Variables and select the desired
variable, add any required arguments, then click OK.

4. To include an existing environment variable, click Select. The Select
Environment Variables dialog opens.

5. Select the checkbox next to the desired variable, then click OK.

6. For each variable, choose whether to append it to the native environment or
substitute it for the native environment.

23.4.4 Configuring Access Methods

Use the Common tab to specify whether this launch is local or shared, to add the
launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

1. By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse
to the directory where you want to save the shared file.

NOTE: These settings apply to applications that run locally, not to remote
applications.

Wind River Workbench
User’s Guide, 2.4

294

2. If you want to be able to launch this program from the Run favorites menu (the
drop-down menu on the Workbench toolbar), select Run in the Display in
favorites menu box.

23.4.5 Running Your Native Application

When you are finished configuring the launch configuration for your application,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run to launch it now.

23.5 Relaunching Recently Run Programs

In a typical development scenario, you will run the same application many times
in a single debugging session. After creating a launch configuration, you can click
the Run or Debug icon or use a keyboard shortcut to run a process and attach the
debugger in a few seconds.

To relaunch a recently run program:

■ Press CTRL+F11 to launch the last run-mode configuration you used, or F11
to launch the last debug-mode configuration you used.

■ Click the drop-down arrow next to the Run or Debug icon and select the
configuration from the list. If you ran the configuration recently, it will appear
on the menu. If you selected Run or Debug from the
Display in favorites menu list (see Configuring Access Methods, p.290) it will
always appear on the list, whether you have run it recently or not.

23 Launching Programs
23.6 Using Attach-to-Target Launches

295

23

■ To run a configuration not listed on the favorites menu, click Run > Run or
Run > Debug, then choose the configuration from the Configurations list and
click Run or Debug.

23.5.1 Increasing the Size of the Launch History List

Workbench stores a history of previously launched configurations. The default
length of the launch history is 10, but you can increase the history length by
selecting Window > Preferences > Run/Debug > Launching and increasing the
number in the Size of recently launched applications list field.

23.6 Using Attach-to-Target Launches

Workbench automatically creates Attach to Target launch configurations when
you attach to an individual process or kernel task from the Target Manager. They
do not actually run an application, they just connect to your target and attach the
debugger to the specified task or process that already exists. These configurations
are visible only in Debug mode.

Once Attach to Target launches are created, you can:

■ Review them and delete those that you no longer need.

■ Change which target connection should be used to run the process.

■ Rename your launch configurations, and if you think they are valuable, put
them into your Favorites menu using the Common tab.

■ Change the mapping between source paths compiled into your objects and
source paths in your workspace by editing the Source Locator information in
the Sources tab.

■ Change the Projects to Build settings for the launch. This is particularly
valuable for Attach to Kernel launches on the VxWorks simulator: you can
disconnect your simulator, rebuild your kernel as part of the launch, and then
let the launch automatically restart and reconnect the simulator.
Automatically rebuilding shared libraries is another use of Build before
launching.

Wind River Workbench
User’s Guide, 2.4

296

23.6.1 Attaching the Debugger to a Running Task or Process

To attach the debugger to a task or RTP that is already running, right-click it in the
Target Manager and select:

■ Attach to Real-time Process to attach to a Real-time Process on VxWorks.

■ Attach to Kernel Task to attach to a kernel task on VxWorks.

■ Attach to Process to attach to a process on Linux.

Whenever you manually attach an individual process or task, Workbench
automatically switches to the Device Debug perspective (if it is not already open)
and displays the task or process in the Debug view, the debugger attaches without
stopping the program, and Workbench automatically creates a corresponding
Attach-to-Target launch configuration with those properties. For more
information about how to use Attach-to-Target configurations, see 23.6 Using
Attach-to-Target Launches, p.295.

Comparing Definitions: Running, Suspended, and Stopped Tasks

VxWorks and the Workbench Debug view both make a distinction between
running, suspended, or stopped tasks, but their definitions are not identical.

NOTE: When you attach to a process or task with the same name using the same
connection, Workbench automatically reuses all the settings from the previous
launch.

However, Workbench creates a new launch (requiring you to reconfigure the
settings) when it detects that the properties of the connection have changed: for
example, if the connection was renamed, a different kernel image was used, or the
target server arguments or other connection properties were changed.

One way to avoid accumulating many similar launches is to make your
configuration changes in the launch itself, rather than right-clicking a process in
the Target Manager and selecting Attach. That way Workbench will always have
the correct settings for the process you want to run.

VxWorks Workbench Debug View Definition

Running Running Task is active, and has focus.

Suspended Running Task is waiting while another task runs.

23 Launching Programs
23.6 Using Attach-to-Target Launches

297

23

23.6.2 Attaching the Debugger to the Kernel

The debugger functions differently depending on whether you attach to the kernel
in task mode or system mode.

23.6.3 Attaching the Kernel in Task Mode

To attach to the kernel in Task Mode6 (VxWorks), right-click the Kernel Tasks
node in the Target Manager and select Attach All Kernel Tasks.

The debugger will automatically track added and removed kernel tasks so that
you can always debug the entire system. You can also stop (suspend) individual
kernel tasks, unless they have the VX_UNBREAKABLE option set. When you stop
a kernel task, the rest of the system will continue to run.

23.6.4 Attaching the Kernel in System Mode

To attach the kernel in System Mode (VxWorks and Linux dual-mode agent),
right-click the CPU icon below the Connection icon and select Attach-to-Kernel.

This will create an Attach-to-Target launch configuration that automatically
switches your target into System Mode before attaching the debugger. The
Debugger will show a single node labelled System Context that represents the
code that the CPU is currently executing. When you stop (suspend) the System
Context, your entire System is stopped, including all the tasks, processes, and
interrupt service routines. You can now also set breakpoints that will suspend the
entire system when they are hit.

In addition to the single System Context node in the debugger, you can also attach
to individual kernel tasks. This will create separate debug sessions. You can also
set breakpoints that are specific to the task that is currently executing by selecting
restrict breakpoint scope to task on the Scope tab of the breakpoint dialogs (for
more information, see the line, expression, and hardware breakpoint dialog entries
in the Wind River Workbench User Interface Reference).

Stopped Suspended Task stopped at a breakpoint or other
event, or was stopped by user.

6. Task mode is also known as user mode.

Wind River Workbench
User’s Guide, 2.4

298

Note that System Mode breakpoints (breakpoints that are planted while a System
Mode attach is active) will only be active when your target is in System Mode. You
can switch your target between System Mode and User Mode by choosing the
gear-wheel icon in the Target Manager, or by ticking the Debug Mode menu items
in the Debugger. For more information about Debug Mode functionality, see
25.5 Using Debug Modes, p.313.

23.7 Suggested Workflow

Launch Configurations allow for a very tight Edit-Compile-Debug cycle when you
need to repeatedly change your code, build and run it. You can use the F11 (Debug
Last Launched) key to build the projects you have specified, connect your target
(unless it is already connected), download, and run your most important program
over and over again.

The only thing to keep in mind is that it may not be possible to rebuild your
program or kernel while it is still being debugged (or its debug info is still loaded
into the debugger). Workbench will warn you with a dialog and suggest proper
actions in case a problem of such simultaneous usage is detected. Depending on
the size of the modules you run and debug, it can be the case that the debug server
cannot load all the symbolic information for your modules into memory. By
default, the size limit is set to 60MB (this can be changed by selecting Preferences
> Target Manager > Debug Server Settings > Symbol File Handling Settings.)

If a module is bigger than this limit, it will be locked against overwriting as long
as the debugger has symbols loaded. This means that when you try to rebuild this
module, you will see a dialog asking you to unload the module’s symbol
information from the debugger before you continue building. You can usually
unload symbolic information without problems, provided that you do not have a
debug session open in the affected module. If you have a module open, you should
terminate your debug session before continuing the new build and launch process.

299

 24
 Managing Breakpoints

24.1 Introduction 299

24.2 Types of Breakpoints 299

24.3 Manipulating Breakpoints 303

24.1 Introduction

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. This chapter shows how you can use the
Breakpoints view to keep track of all breakpoints, along with any conditions.

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), by opening the
various breakpoint dialogs from the pull-down menu in the Breakpoints view
itself, or by selecting one of the breakpoint options from the Run menu.

24.2 Types of Breakpoints

Figure 24-1 shows the Breakpoints view with various types of breakpoints set.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

300

See the sections below for when and how to use each type of breakpoint. For a
guide to the icons you will see in the Breakpoints view, see Wind River Workbench
User Interface Reference: Breakpoints View.

24.2.1 Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

Creating Line Breakpoints

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click in the gutter and select Add Global Line Breakpoint.

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Add Breakpoint for selected thread. If the selected
thread has a color in the Debug view, a dot with the same color will appear in the
Editor gutter, with the number of the thread inscribed inside it.

Right-clicking in the Editor’s gutter and selecting Add Line Breakpoint, or
selecting Add Line Breakpoint from the Breakpoints view’s pull-down menu will
open the Line Breakpoint dialog, where you can create and adjust the properties
of the breakpoint.

Figure 24-1 Breakpoints View

24 Managing Breakpoints
24.2 Types of Breakpoints

301

24

For more information about the settings in this dialog, see Wind River Workbench
User Interface Reference: Line Breakpoint Dialog.

24.2.2 Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped task or process. Functions in the condition string are evaluated as
addresses and are not executed. Other restrictions are similar to the C/C++
restrictions for calculating the address of a breakpoint using the Expression
Breakpoint dialog.

Select Add Expression Breakpoint from the Breakpoints view’s pull-down menu
to open the Expression Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, see the Wind River
Workbench User Interface Reference: Expression Breakpoint Dialog.

24.2.3 Hardware Breakpoints

Some processors provide specialized registers, called debug registers, which can
be used to specify an area of memory to be monitored. For instance, IA-32
processors have four debug address registers, which can be used to set data
breakpoints or control breakpoints.

Hardware breakpoints are particularly useful if you want to stop a process when
a specific variable is written or read. For example, with hardware data
breakpoints, a hardware trap is generated when a write or read occurs in a
monitored area of memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so only a maximum of four memory locations can be
watched in this way.

There are two types of hardware breakpoints:

■ A hardware data breakpoint occurs when a specific variable is read or written.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

302

■ A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Adding Hardware Instruction Breakpoints

There two ways to add a new hardware instruction breakpoint:

In the gutter (grey column) on the left of the source file, right-click and select
Add Hardware Code Breakpoint. Or, double-click in the gutter to add a standard
breakpoint and then, in the Breakpoints view, right-click the breakpoint you've
just added and select Properties. In the last pane (Hardware) of the Properties
dialog select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

■ The debugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

■ Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

Select Add Data Breakpoint from the Breakpoints view’s pulldown menu to open
the Hardware Data Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, see the Wind River
Workbench User Interface Reference: Hardware Data Breakpoints Dialog.

Converting Line or Expression Breakpoints Into Hardware Code Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the Hardware tab of
the Line Breakpoint or Expression Breakpoint dialogs.

24 Managing Breakpoints
24.3 Manipulating Breakpoints

303

24

This request does not guarantee that the hardware code breakpoint will be
planted; that depends on whether the target supports hardware breakpoints, and
if so, whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

Comparing Software and Hardware Breakpoints

Software breakpoints work by replacing the destination instruction with a
software interrupt. Therefore it is impossible to debug code in ROM using
software breakpoints.

Hardware breakpoints work by comparing the break condition against the
execution stream. Therefore they work in RAM, ROM or flash.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.”

24.3 Manipulating Breakpoints

Now that you have an understanding of the different types of breakpoints, this
section will show you how to work with them.

24.3.1 Importing Breakpoints

To import breakpoint properties from a file:

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter.

In the Breakpoints view, the original line number will appear, with the new line
number in square brackets [] after it. See the third breakpoint in Figure 24-1.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

304

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view, and the next time the context
for that breakpoint is active in the Debug view, the breakpoint will be planted.

24.3.2 Exporting Breakpoints

To export breakpoint properties to a file:

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog appears.

2. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

24.3.3 Refreshing Breakpoints

Right-clicking a breakpoint in the Breakpoints view and selecting
Refresh Breakpoint causes the breakpoint to be removed and reinserted on the
target. This is useful if something has changed on the target (for example, a new
module was downloaded) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
Breakpoints view toolbar drop-down menu.

24.3.4 Disabling Breakpoints

To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

24.3.5 Removing Breakpoints

There are several ways to remove a breakpoint:

■ right-click it in the Editor gutter and select Remove Breakpoint

24 Managing Breakpoints
24.3 Manipulating Breakpoints

305

24

■ select it in the Breakpoints view and click the Remove icon

■ right-click it in the Breakpoints view and select Remove

For more information about the Breakpoints view or any of the breakpoint dialogs,
see the Wind River Workbench User Interface Reference.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

306

307

 25
 Debugging Projects

25.1 Introduction 307

25.2 Using the Debug View 308

25.3 Coloring Views 312

25.4 Stepping Through a Program 313

25.5 Using Debug Modes 313

25.6 Understanding Source Lookup Path Settings 317

25.7 Using the Disassembly View 318

25.8 Using the Kernel Objects View 319

25.9 Run/Debug Preferences 322

25.1 Introduction

Like other debuggers you may have used, the Wind River Workbench debugger
allows you to download object modules, launch new processes, and take control of
processes already running on the target.

Unlike other debuggers, it allows you to attach to multiple processes
simultaneously, without affecting the state of the items you are attaching to or
requiring you to disconnect from one process in order to attach to another.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

308

This chapter shows you how to use the Debug, Disassembly, and Kernel Objects
views to debug your programs. For a guide to the dialogs and icons you will see
while using them, see the Wind River Workbench User Interface Reference entries for
those views.

25.2 Using the Debug View

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. Unlike the Target Manager, which shows all the
processes that exist on the target, the Debug view shows only the ones that are
currently under debugger control.

To put a process or task under the control of the debugger and thus see it in the
Debug view:

1. Connect to your target in the Target Manager view (see Connect to the Target,
p.242).

2. Launch one or more processes:

■ Using a launch configuration as described in Relaunching Recently Run
Programs, p.294.

■ By attaching to an already running process, as described in Attaching the
Debugger to a Running Task or Process, p.296

3. Once the debugger has attached to your process, it will appear in the Debug
view as shown in Figure 25-1.

NOTE: You must compile your programs using debugging symbols (the -g
compiler option) to use many debugger features. The compiler settings used by the
Wind River Workbench project facility’s Managed Builds include debugging
symbols.

However, the Workbench debugger does not support code compiled with -02
optimization.

25 Debugging Projects
25.2 Using the Debug View

309

25

Additionally, the Debug view shows processes that were launched on the target
using Workbench, but which were not attached by the debugger. These launches
have a special entry in the Debug view, as shown in Figure 25-2, and are only
available to help you locate and terminate the process.

25.2.1 Understanding the Debug View Display

When using the Debug view, it is crucial that you understand what is represented
by each level in the hierarchical tree of the process you are debugging. This is
because the level of the current selection in the Debug view affects the activities
that you can perform on it and controls the information displayed in other views.

Below are examples from the kernel task in Figure 25-1 for what might appear at
each level of the tree, with a general description of each level.

main -ball.out - vxsim0 [Kernel task] = launch level
launch name [launch type]

SIMNT: vxWorks 6.2 (Task Mode) = debug target level
core name:OS name OS version (debug mode), can also be process name

tMain (Stopped - Breakpoint Hit) = thread level
thread name (state - reason for state change)

Figure 25-1 Debug View

Figure 25-2 Debug View Showing Process Not Under Debugger Control

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

310

main() - main.c:59 = stack frame level
function(args) - file : line #, can also be address

In Workbench 2.4, stack arguments and argument values are not displayed in the
Debug view by default. This default setting was implemented to improve
debugging performance.

To activate stack-level arguments in the Debug view, select Window > Preferences
> Run/Debug > Performance, then select the Retrieve stack arguments for stack
frames in Debug View and Retrieve stack argument values for stack frames in
Debug View checkboxes. Click OK.

How the Selection in the Debug View Affects Activities

Choosing a specific level of your debug target controls what you can do with it.

NOTE: The stack arguments reflect the current value of the stack argument
variables, not the initial value of the stack arguments immediately after entering
the function call.

Selected Level Action Allowed

launch Terminate or disconnect from all processes/cores for the launch
debug target.

debug target Terminate or disconnect from the debug target.

Perform run control that applies to the whole process:
suspend/resume all threads.

Assign color to the debug target and all its threads/tasks.

thread Terminate or disconnect; terminates individual tasks/threads, if
supported by process/core.

Run control for thread: resume/suspend/step.

Assign color to thread.

stack frame Select of the stack frame causes the editor to display instruction
pointer and source for stack frame.

Perform same run control as on the thread.

Assign color to thread.

Assign corresponding color for parent thread.

25 Debugging Projects
25.2 Using the Debug View

311

25

Monitoring Multiple Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. Likewise, breakpoints that are restricted to a particular process display
that process’s color/number context in the Breakpoints and Editor views.

For example, in Figure 25-3:

■ The first breakpoint in main.c (a blue circle containing a 0) is restricted to ball,
the blue process numbered 0 in the Debug view.

■ The second breakpoint (a solid blue-green circle) is unrestricted.

■ The breakpoint in cobble.c (a red circle containing a 1) is restricted to cobble,
the red process numbered 1 in the Debug view.

The color assigned to a process or thread can be changed by right-clicking the
process or thread and selecting Color > specific color.

The context pointer (the arrow in the left gutter in main.c) indicates the statement
that will execute when the process resumes.

Figure 25-3 Debug View with Breakpoint and Editor Views

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

312

25.3 Coloring Views

The color context you assign to a process also carries through to other views whose
scope is determined by the contents of the Debug view.

The data views that appear in the Device Debug perspective (such as the Threads
or Stack Trace view) usually update to reflect whatever is currently selected in the
Debug view. If you prefer, you can start colored views that are associated with a
process of a particular color and update only when that process changes.

To open a view of a particular color, select
Window > Show View > Other > Device Debug - color > view.

For more information about data views in the Device Debug perspective, see the
Wind River Workbench User Interface Reference entries for those views.

25 Debugging Projects
25.4 Stepping Through a Program

313

25

25.4 Stepping Through a Program

Once a process has stopped under debugger control (most often, at a breakpoint),
you can single-step through the code, jump over subroutine calls, or resume
execution. What you can do depends on what you selected in the Debug view.

When the program is stopped, you can resume operation by clicking Resume on
the toolbar of the Debug view. If there are no more remaining breakpoints,
interrupts, or signals, the program will run to completion (unless you click
Suspend).

To step through the code one line at a time, in the Debug view, click Step Into. If
you have other data views open, such as the Registers or Local Variables views,
they will update with current values as you step through the code.

The effect of Step Into is somewhat different if you click
Toggle Disassembly/Instruction Step Mode in the Debug view, or when the
current routine has no debugging information. When this mode is set, the step
buttons cause instruction-level steps to be executed instead of source-level steps.
Also, the Disassembly view will appear instead of the Editor view.

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. In this situation, if you click Step Return in
Debug, execution continues until the current subroutine completes, then the
debugger regains control in the calling statement.

These run control options, as well as others, are available from the Run menu as
well as from the Debug view toolbar. For more information, see the Wind River
Workbench User Interface Reference: Debug View.

25.5 Using Debug Modes

Depending on the type of connection you created between the debugger and the
target, you may be able to operate the debugger in different modes. Different
debug modes have different capabilities and limitations, which are mostly related
to how the debugger interacts with the target and the processes that are being

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

314

debugged. You can also create multiple debug connections to the same target,
allowing you to debug in multiple modes simultaneously.

Target
Connection Type Supported Modes

WDB agent on
VxWorks

System Mode

■ Supports debugging the entire system using a single
execution context.

■ Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

Task Mode

■ Supports debugging of kernel tasks. It allows suspending,
resuming, and stepping kernel tasks individually, without
affecting other kernel tasks.

■ Supports debugging of RTPs.

kgdb on Linux Kernel Mode

■ Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

ptrace agent on
Linux

User Mode

■ Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

Dual Mode on
Linux

In dual mode, you must toggle between user and kernel mode
depending on your debugging needs.

Kernel Mode (also called System Mode)

■ Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

25 Debugging Projects
25.5 Using Debug Modes

315

25

As a general rule, when you are debugging the target in user mode or task mode,
the debugger interacts only with the process or processes being debugged. If you
suspend this process, other processes keep running. This mode is less intrusive, as
it allows you to control the selected process or thread while the rest of the system
can continue to operate normally.

When you are debugging in system mode, the debugger interacts with the entire
system at once, so if you suspend one task, all processes and kernel tasks running
on the system are suspended as well. This gives you increased control and
visibility into what is happening on the system, but it is also very disruptive.

User Mode

■ Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

OCD System Mode

■ Supports debugging the entire system using a single
execution context.

OCD with OS
Awareness for
VxWorks

System Mode

■ Supports debugging entire system using a single execution
context, including retrieving the full stack trace when the
system is suspended.

■ Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

■ Supports viewing of individual RTPs, but does not provide
run control unless the target has been configured for
one-to-one MMU virtual page mapping.

OCD with OS
Awareness for
Linux

System Mode

■ Only supports debugging the kernel and kernel modules
using a single execution context.

■ Supports viewing of processes, but the debugger cannot be
attached to them.

■ Kernel objects are not available.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

316

For example, if the system maintains network connections with other systems,
suspending it will cause the others to lose their network connections with the
debugged system.

25.5.1 Setting and Recognizing the Debug Mode of a Connection

Right-clicking on a connection in the Target Manager or the Debug view and
selecting Target Mode allows you to specify a debug mode for the connection. The
currently active mode is indicated by a checkmark.

When you create a new debug connection through a launch, the connection debug
mode (either system mode or task mode) is saved as a property of the launch. This
mode is listed in parentheses at the end of the label of the target node in the Debug
view.

Switching Debug Modes

For target connections that support switching between modes, if you switch the
debug mode while a debug connection is active, this debug connection will
become unavailable in the Debug view, as shown in Figure 25-4. When a debug
connection is unavailable, no operations can be performed on it, except for
disconnecting the debug connection.

Figure 25-4 Debug View Showing Unavailable Connections

25 Debugging Projects
25.6 Understanding Source Lookup Path Settings

317

25

In the Target Manager, if you switch the target to system mode, every node in the
tree will have a system mode icon painted on top. If the system mode icon does not
appear, then the node and processes are in task or user mode.

25.5.2 Debugging Multiple Target Connections

You can debug processes on the same target using multiple target connections
simultaneously. An example of this setup is a Linux target that has a user mode
ptrace agent installed for debugging processes, and an OCD connection for halting
the system and debugging the kernel.

In this situation, if the system is halted using the OCD (system mode) target
connection, the user mode ptrace agent will also be halted, and the user mode
target connection will be lost. When the system is resumed, the user mode target
connection will be re-established.

The Target Manager and the Debug view (if a debug session is active) both provide
feedback in this scenario. The Target Manager hides all the process information
that was visible for the target, and displays a label back-end connection lost next
to the target node. The Debug view does not end the active debug session, but it
shows it as being unavailable, in the same manner as if the debug mode was
switched.

25.5.3 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

25.6 Understanding Source Lookup Path Settings

Source Lookup Path settings allow you to map source file paths that the debugger
retrieves from an executable's symbol data (also known as the debugger path) to

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

318

the correct location of the source files on the host file system and in your
workspace.

The compiler generated these paths when the executable was built, but if you are
debugging the executable on a different machine, then the paths to those files are
no longer valid.

For information about how to set Source Lookup Path settings, see the Wind River
Workbench User Interface Reference: Source Lookup Path Dialog.

25.7 Using the Disassembly View

Use the Disassembly view:

■ To examine a program when you do not have full source code for it (such as
when your code calls external libraries).

■ To examine a program that was compiled without debug information.

■ When you suspect that your compiler is generating bad code (the view
displays exactly what the compiler generated for each block of code).

25.7.1 Opening the Disassembly View

Unlike other Wind River Workbench views, you cannot access the Disassembly
view from the Window > Show View menu—it appears automatically if the
Debug view cannot display the appropriate source code file in the Editor (it
appears as a tab in the Editor, labeled with the target connection being debugged).

You can open the Disassembly view manually by clicking the Debug view’s
Toggle Assembly Stepping Mode toolbar icon, and by right-clicking in the Stack
Trace view, then selecting Go To Code.

25.7.2 Understanding the Disassembly View Display

The Disassembly view shows source code from your file (when available),
interspersed with instructions generated by the compiler. As you step through
your code, the Disassembly view keeps track of the last four instructions where the

25 Debugging Projects
25.8 Using the Kernel Objects View

319

25

process was suspended. The current instruction is highlighted in the strongest
color, with each previous step fading in color intensity.

If the Disassembly view displays a color band at the top and bottom (here, the band
is blue), then it is associated with the process with that color context in the Debug
view; if no color band is displayed, then the view will update as you select
different processes in the Debug view.

For more information, see Wind River Workbench User Interface Reference:
Disassembly View.

25.8 Using the Kernel Objects View

Use the Kernel Objects view to monitor and manipulate data structures such as
kernel tasks, message queues, semaphores, and other operating system resources.

Figure 25-5 Disassembly View

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

320

During multi-process debugging, you can use the Kernel Objects view to monitor
a semaphore used to control a device that two processes are using. Or you can set
an RTP that uses a system resource to watch that resource during Step Over
system calls.

To examine a resource in the Kernel Objects view:

1. Connect to your target in the Target Manager view (see 19.6 Connect to the
Target, p.242).

2. Click the Kernel Objects tab to bring it to the foreground, then click the
pull-down arrow and select your target connection.

The Kernel Objects view appears.

25 Debugging Projects
25.8 Using the Kernel Objects View

321

25

25.8.1 Understanding the Kernel Objects View Display

System resources are displayed in a hierarchical tree. To see specific instances of
each type of resource, click the plus sign to expand the tree.

Information about specific kernel objects is displayed in the Properties view.

Figure 25-6 Kernel Objects View

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

322

For a guide to the icons in the Kernel Objects view, see Wind River Workbench User
Interface Reference: Kernel Objects View.

25.9 Run/Debug Preferences

For information about how to set debug and run control preferences, see
Wind River Workbench User Interface Reference: Debug View.

323

 26
 Troubleshooting

26.1 Introduction 323

26.2 Startup Problems 324

26.3 General Problems 327

26.4 Error Messages 329

26.5 Troubleshooting VxWorks Configuration Problems 341

26.6 Error Log View 344

26.7 Error Logs Generated by Workbench 344

26.8 Technical Support 351

26.1 Introduction

This chapter displays some of the errors or problems that may occur at different
points in the development process, and what steps you can take to correct them. It
also provides information about the log files that Workbench can collect, and how
you can create a ZIP file of those logs to send to Wind River support.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

324

26.2 Startup Problems

This section discusses some of the problems that might cause Workbench to have
trouble starting.

Workspace Metadata is Corrupted

If Workbench crashes, some of your settings could get corrupted, preventing
Workbench from restarting properly.

1. To test if your workspace is the source of the problem, start Workbench,
specifying a different workspace name.

On Windows

Select Start > Programs > Wind River > Wind River Workbench 2.4 > Wind
River Workbench 2.4, then when Workbench asks you to choose a workspace,
enter a new name (workspace2 or whatever you prefer).

Or, if the Workbench startup process does not get all the way to the Workspace
Launcher dialog, or does not start at all, start it from a terminal window:

> installDir\workbench-2.3\wrwb\2.3\x86-win32\bin\wrwb.exe -data newWorkspace

On Linux or Solaris

Start Workbench from a terminal window, specifying a new workspace name:

> ./startWorkbench.sh -data newWorkspace

2. If Workbench starts successfully with a new workspace, exit Workbench, then
delete the .metadata directory in your original Workbench installation
(installDir/workspace/.metadata).

3. Restart Workbench using your original workspace. The .metadata directory
will be recreated and should work correctly.

4. Because the .metadata directory contains project information, that information
will be lost when you delete the directory.

To recreate your project settings, reimport your projects into Workbench
(File > Import > Existing Project into Workspace). For more information
about importing projects, see Importing Projects, p.132.

26 Troubleshooting
26.2 Startup Problems

325

26

.workbench-2.4 Directory is Corrupted

1. To test if your %USERPROFILE%/.workbench-2.4 directory is the source of
the problem, rename it to a different name, then restart Workbench.

2. If Workbench starts successfully, exit Workbench, then delete the old version
of your %USERPROFILE%/.workbench-2.4 directory (the one you renamed).

3. Restart Workbench. The %USERPROFILE%/.workbench-2.4 will be recreated
and should work correctly.

4. Because the .workbench-2.4 directory contains Eclipse configuration
information, any information about manually configured Eclipse extensions
or plug-ins will be lost when you delete the directory.

To make them available again within Workbench, you must re-register them
(Help > Software Updates > Manage Configuration). For more information
about registering plug-ins, see Adding Plug-in Functionality to Workbench,
p.359.

Registry Unreachable (Windows)

When Workbench starts and it does not detect a default Wind River registry, it
launches one. After you quit Workbench, the registry is kept running since it is
needed by all Wind River tools. You do not need to ever kill the registry.

If you do stop it, however, it stores its internal database in the file
installDir/.wind/wtxregd.hostname.

If this file later becomes unwritable, the registry cannot start, and Workbench will
display an error.

NOTE: Make sure you rename the %USERPROFILE%/.workbench-2.4
directory (for example, on Windows XP it could be C:\Documents and
Settings\username\.workbench-2.4).

Do not rename the installDir/workbench-2.4 directory.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

326

This error may also occur if you install Workbench to a directory to which you do
not have write access, such as installing Workbench as an administrator and then
trying to run it as yourself.

Workspace Cannot be Locked (Linux and Solaris)

If you start Workbench and select a workspace, you may see a Workspace Cannot
be Locked error.

There are three possible causes for this error:

1. Another user has opened the same workspace. A workspace can only be used
by one user at a time.

2. You installed Workbench on a file system that does not support locking.

Use the following command at a terminal prompt to start Workbench so that
it creates your workspace on a file system which does allow locking, such as a
directory on a local disk:

./startWorkbench.sh -configuration directory that allows locking

For example:

26 Troubleshooting
26.3 General Problems

327

26

./startWorkbench.sh -configuration /usr/local/yourName

3. On some window managers (e.g. gnome) you can close the window without
closing the program itself and deleting all running processes. This results in
running processes maintaining a lock on special files in the workspace that
mark a workspace as open.

To solve the problem, kill all Workbench and Java processes that have open file
handles in your workspace directory.

26.2.1 Pango Error on Linux

If the file pango.modules is not world readable for some reason, Workbench will
not start and you may see an error in a terminal window similar to

** (<unknown>:21465): WARNING **: No builtin or dynamically loaded modules
were found. Pango will not work correctly. This probably means there was an
error in the creation of:

'/etc/pango/pango.modules'
You may be able to recreate this file by running pango-querymodules.

Changing the file’s permissions to 644 will cause Workbench to launch properly.

26.3 General Problems

This section describes problems that are not associated with any particular
Workbench component.

26.3.1 Java Development Tools (JDT) Dependency

Some third party plug-ins are dependent on JDT. If a plug-in you are interested in
requires JDT, you should download it from the official Eclipse Website:

http://download.eclipse.org/eclipse/downloads/drops/R-3.0.1-200409161125/ecli
pse-JDT-3.0.1.zip

A list of official mirror sites is here:

http://www.eclipse.org/downloads

http://www.eclipse.org/downloads
http://download.eclipse.org/eclipse/downloads/drops/R-3.0.1-200409161125/eclipse-JDT-3.0.1.zip

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

328

26.3.2 Help System Does Not Display on Solaris or Linux

Eclipse comes preconfigured to use Mozilla on Solaris and Linux, and it expects it
to be in your path. If Mozilla is not installed, or is not in your path, you must set
the correct path to the browser or Workbench will not display help or other
documentation.

To manually set the browser path in Workbench:

1. Select Window > Preferences > Help.

2. Click Custom Browser (user defined program), then in the
Custom Browser command field type or browse to your browser launch
program. Click OK.

■ On Solaris, a sample Netscape browser launch command is
"/usr/dt/bin/netscape" %1, though you should enter the command line
that is appropriate for your browser.

■ On Linux, sample Mozilla browser launch commands are
“/usr/bin/mozilla” %1 and kfmclient openURL %1, though you should
enter the command line that is appropriate for your browser.

26.3.3 Help System Does Not Display on Windows

The help system can sometimes fail to display help or other documentation due to
a problem in McAfee VirusScan 8.0.0i (and possibly other virus scanners as well).

For McAfee VirusScan 8.0.0i, the problem is known to be resolved with patch10
which can be obtained from Network Associates. As a workaround, the problem
can be avoided by making sure that McAfee on-access-scan is turned on and
allowed to scan the TEMP directory as well as *.jar files.

More details regarding this issue have been collected by Eclipse Bugzilla #87371 at
https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371.

26.3.4 Removing Unwanted Target Connections

If you have trouble deleting a target connection session for any reason, use wtxtcl.

1. Start wtxtcl from a terminal window.

% wtxtcl

https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371

26 Troubleshooting
26.4 Error Messages

329

26

2. List all entries in the registry.

wtxtcl> wtxInfo

3. Unregister the offending entry or entries (the full entry name must be used).

wtxtcl> wtxUnregister tgt_localhost@manebogad

26.4 Error Messages

Some errors display an error dialog directly on the screen, while others that
occurred during background processing only display this icon in the lower right
corner of Workbench window.

Hovering your mouse over the icon displays a pop-up with a synopsis of the error.
Later, if you closed the error dialog but want to see the entire error message again,
double-click the icon to display the error dialog or look in the Eclipse Log, p.345.

This section explains error messages that appear in each Workbench component.

26.4.1 Project System Errors

For general information about the Project System, see 4. Projects Overview.

Project Already Exists

If you deleted a project from the Project Navigator but chose not to delete the
project contents from your workspace, then you try to create a new project with the
same name as the old project, you will see this error:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

330

If you click Yes, your old project contents will be overwritten with the new project.
If you want to recreate the old project in Wind River Workbench, click No, then
right-click in the Project Navigator, select Import, then select
Existing Project into Workspace.

Type the name of your old project or browse to the old project directory in your
workspace, click OK, then click Finish. Your old project will appear in the Project
Navigator.

Cannot Create Project Files in Read-only Location

When Workbench creates a project, it creates a .wrproject file and other metadata
files it needs to track settings, preferences, and other project-specific information.
So if your source files are in a read-only location, Workbench cannot create your
project there.

To work around this problem, you must create a new project in your workspace,
then create a folder that links to the location of your source files.

1. Create a User-defined Project in your workspace by selecting
File > New > User-Defined Project. The Target Operating System dialog
appears.

2. Select a target operating system from the drop-down list, then click Next. The
Project dialog appears.

3. Type in a name for your project, select Create project in workspace, then click
Next.

4. Click Next to accept the default settings in the next dialogs, then click Finish
to create your project.

26 Troubleshooting
26.4 Error Messages

331

26

5. In the Project Navigator, right-click your new project and select New > Folder.
The Folder dialog appears.

6. Type in a name for your folder, then click Advanced and select the
Link to folder in the file system checkbox.

7. Type the path or click Browse and navigate to your source root directory, then
click OK to create the new folder.

8. Click the plus next to the folder to open it, and you will see the source files
from your read-only source directory. Eclipse calls items incorporated into
projects in this way linked resources.

26.4.2 Build System Errors

For general information about the Build System, see 16. Build Properties and the
Build Console.

Building Projects While Connected to a Target

If you try to build a project while you have a target connection active in the Target
Manager, you may see an error. This happens when any of the files that need to be
built contain symbol information, and therefore have been locked by the debugger.

You can continue your build by clicking OK, but be advised that you will need to
disconnect your target and restart the build if you see an Build Console error
message similar to dld: Can’t create file XXX: Permission denied.

To avoid this problem, Workbench loads files up to a certain size completely into
memory so no file lock is needed. To specify the largest symbol file that can be
loaded into memory, select Window > Preferences > Target Manager > Debug
Server Settings > Symbol File Handling Settings and specify a file size up to 60M.

Workflow for Cases Where You Need to Continually Rebuild Objects in Use by Your Target

1. Create a launch configuration for your debugging task. When you need to
disconnect your target in order to free your images for the build process, the
launch configuration allows you to automatically connect, build, download,
and run your process with a single click.

NOTE: This mechanism cannot be used for managed-build projects, only for
user-defined projects.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

332

You can even specify that your project should be rebuilt before it is launched
by selecting Window > Preferences > Run/Debug > Launching, and then
selecting Build (if necessary) before launching. For more information about
launch configurations, see 23. Launching Programs.

■ When you work with processes or RTPs, make sure that your process is
terminated before you rebuild or relaunch. You can then safely ignore the
warning (and check the Do not show this dialog again box).

■ When you work with Downloadable Kernel Modules or user-built kernel
images, just let the build proceed. If the Link error message appears, either
disconnect your target or unload all modules, then rebuild or relaunch.

Workflow for Using On-Chip Debugging to Debug Standalone Modules Loaded on Your Target

1. Create a Reset & Download-type launch configuration for your application,
and enable the Build before launch option (by selecting Window >
Preferences > Run/Debug > Launching > Build (if required) before
launching).

2. Run the launch configuration to debug your code. Make any changes to the
source files and save them. Note that saving before unloading the symbols
allows the debugger to track your breakpoints.

3. Before relaunching or rebuilding, unload the modules from the target by
selecting them in the Target Manager and pressing the Delete key (you can
multi-select if there are multiple modules).

4. Press the Debug button to relaunch your application. It will automatically
rebuild, redownload, reset, and attach the debugger.

Problems Building Workbench 2.x Projects Imported Into Workbench 2.4

If you have trouble building projects that you imported from a previous version of
Workbench, check if the .wrproject file contains an entry for platform. If not, the
project is not compatible and has to be patched to work with the newest version of
Workbench.

To patch the .wrproject file:

1. Open the file with the Workbench text editor by right-clicking the file in the
Project Navigator, then selecting Open With > Text Editor.

26 Troubleshooting
26.4 Error Messages

333

26

If the .wrproject file is not visible in the Project Navigator, click the downward
arrow on the right side of the Project Navigator toolbar and select Filters to
open the Project Navigator Filters dialog.

Select the checkbox next to .wr*, then click OK. The .wrproject file should now
appear in the Project Navigator.

2. Locate the line at the beginning of the file similar to:

<properties root="1" type="RealTimeProcessProject"/>

3. Add platform="projectplatform" to the end of the line, with projectplatform
replaced by one of VxWorks, Linux, or Standalone, depending on the
platform to which the project type belongs.

4. The result should appear similar to the following:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

334

5. Save and close the .wrproject file. Your project should now build properly.

Build All Command Builds Projects Whose Resources have not Changed

Workbench may enter a state where selecting Project > Build All builds projects
whose resources have not changed since the last build.

This happens only if Auto-Build (Project > Build Automatically) was previously
enabled. If you switch this feature off, you must do a manual clean for all projects
(Project > Clean) in order to re-enable building for previously built projects.

26.4.3 Target Manager Errors

For general information about the Target Manager, see 19. Connecting to Targets.

Troubleshooting Connecting to a Target

If you see the following error:

26 Troubleshooting
26.4 Error Messages

335

26

Or if you have other trouble connecting to your target, try these steps:

1. Check that the target is switched on and the network connection is active. In a
terminal window on the host, type:

ping n.n.n.n

where n.n.n.n is the IP address of your target.

2. Verify the target Name/IP address in the Edit the Target Connection dialog
(right-click the target connection in the Target Manager then select
Properties.)

3. Choose the actual target CPU type from the drop-down list if the CPU type in
the Edit the Target Connection dialog is set to default from target.

4. Verify that a target server is running. If it is not:

a. Open the Error Log view, then find and copy the message containing the
command line used to launch the target server.

b. Paste the target server command line into a terminal window, then hit
ENTER.

c. Check to see if the target server is now running. If not, check the Error Log
view for any error messages.

5. Check if the dfwserver is running (on Linux and Solaris, use the ps command
from a terminal window; on Windows, check the Windows Task Manager). If
multiple dfwservers are running, kill them all, then try to reconnect.

6. When starting the VxWorks simulator on Solaris, the path environment
variable must include /usr/openwin/bin so that it can find xterm. If xterm is
not in the path, the simulator connection will fail.

7. Check that the WDB connection to the target is fully operational by
right-clicking a target in the Target Manager and selecting
Target Tools > Run WTX Connection Test. This tool will verify that the

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

336

communication link is correct. If there are errors, you can use the WTX and
WDB logs to better track down what is wrong with the target.

Exception on Attach Errors

If you try to run a task or launch an RTP and the Target Manager is unable to
comply, it will display an Exception on Attach error containing useful
information.

Build errors can lead to a problem launching your task or process; if one of the
following suggestions does not solve the problem, try launching one of the
pre-built example projects delivered with Workbench.

If the host shell was running when you tried to launch your task or process, try
closing the host shell and launching again.

Error Launching a VxWorks Real-time Process on Linux

If you get an error when launching a VxWorks RTP from a Red Hat Workstation,
update 3 host system, try these steps:

1. Delete boothost: from the beginning of the Exec Path on Target field of the
Run Real-time Process dialog.

2. Add a new object path mapping to the target server connection properties that
does not have boothost: in the host path.

Error When Running a Task Without Downloading First

You will see the following error if you try to run a kernel task without first
downloading it to your target:

26 Troubleshooting
26.4 Error Messages

337

26

Processes can be run directly from the Project Navigator, but kernel tasks must be
downloaded before running. Right-click the output file, select Download, fill in
the Download dialog, then click OK.

If you see this error and you did download the file, open a host shell for your
connection, and try to run the task from the host shell. Type:

lkup entrypoint

to see if your entry point is there.

Downloading an Output File Built with the Wrong Build Spec

If you built a project with a build spec for one target, then try to download the
output file to a different target (for example, you build the project for the
simulator, but now you want to run it on a hardware target), you will see this error:

To select the correct build spec, right-click the output file in the Project Navigator,
select Set Active Build Spec, select the appropriate build spec from the dialog,
then rebuild your project.

Your project should now download properly.

Error if Exec Path on Target is Incorrect

If the Exec Path on Target field of the Run Real-time Processes dialog does not
contain the correct target-side path to the executable file (if, for example, it contains
the equivalent host-side path instead) you will see this error:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

338

1. If the target-side path looks correct but you still get this error, check the
following:

a. Recheck the path you gave.
Even if you used the Browse button to locate the file, it will be located in
the host file system. The Object Path Mapping that is defined for your
target connection will translate it to a path in the target file system, which
is then visible in the Exec Path edit field. If your Object Path Mapping is
wrong, the Exec Path will be wrong, so it is important to check.

Troubleshooting Running a Process

If you have trouble running your process from the Run Process or
Run Real-time Process dialog, try these steps:

1. If the error Cannot create context appears, verify that the Exec Path on Target
is a path that is actually visible on the target (and doesn’t contain the
equivalent host-side path instead).

a. Right-click the process executable in the Project Navigator or right-click
Processes or Real-time Processes in the Target Manager and select
Run Real-time Process.

b. Copy the exec path and paste it into the Output View > Target
Console Tab (at the bottom of the view). Verify that the program runs
directly on the target.

2. If the program runs but symbols are not found, manually load the symbols by
right-clicking the process and selecting Load Symbols.

26 Troubleshooting
26.4 Error Messages

339

26

3. Check your Object Path Mappings to be sure that target paths are mapped to
the correct host paths. See 20.2.3 Object Path Mappings Page, p.250 for details on
setting up your Object Path Mappings.

a. Open a host shell and type:
ls execpath

If you have a target shell, type the same command.

b. In the host shell, type:
devs

to see if the prefix of the Exec Path (for example, host:) is correct.

4. If the Exec Path is correct, try increasing the back-end timeout value of your
target server connection (see Advanced Target Server Options, p.248 for details).

5. From a target shell or Linux console, try to launch the RTP or process.

6. Verify that the vxWorks node in the Target Manager view has a small S added
to the icon, indicating that symbols have been loaded for the Kernel.

a. If not, verify that the last line of your Object Path Mappings table
displays a target path of <any> corresponding to a host path of
<leave path unchanged>.

26.4.4 Launch Configuration Errors

If a launch configuration is not working properly, delete it by clicking Delete
below the Debug dialog Configurations list.

If you cannot delete the launch configuration using the Delete button, navigate to
installDir/workspace/.metadata/.plugins/org.eclipse.debug.core/.launches and
delete the .launch file with the exact name of the problematic launch configuration

.

Troubleshooting Launch Configurations

If you click the Debug icon (or click the Debug button from the
Launch Configuration dialog) and get a “Cannot create context” error, check the
Exec Path on the Main tab of the Debug dialog to be sure it is correct. Also check
your Object Path Mappings (see 20.2.3 Object Path Mappings Page, p.250 for
information about Object Path Mappings).

! WARNING: Do not delete any of the com.windriver.ide.*.launch files.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

340

If you still get the error, check to be sure that the process you are trying to run is a
Real-time Process, and not a Downloadable Kernel Module or some other type of
executable.

For general information about launch configurations, see 23. Launching Programs.

26.4.5 Debugger Errors

Shared Library Problems

If you are having trouble working with shared libraries, try these steps:

1. If you are trying to run an executable and shared libraries located on your host
machine's disk, make sure you can see the host machine's disk and the location
of the shared libraries from the target.

Use a target shell, or the @ls command from a host shell, to check this.

2. Set SHAREDLIB_VERSION to 1 in order to generate the proper versioned
shared object.

3. Make sure that a copy of libc.so.1 is located in a place where the RTP has
access to it. By default it should be located with the executable files, but you
may locate it elsewhere as long as you use the compiler's -rpath option or the
environment variable LD_LIBRARY_PATH.

26.4.6 Static Analysis Errors

If at any point Workbench is unable to open the cross reference database, you will
see this error:

There are many reasons the cross reference database may be inaccessible,
including:

26 Troubleshooting
26.5 Troubleshooting VxWorks Configuration Problems

341

26

■ The database was not closed properly at the end of the last Workbench session
running within the same workspace. This happens if the process running
Workbench crashed or was killed.

■ Various problems with the file system, including wrong permissions, a
network drive that is unavailable, or a disk that is full.

You have several choices for how to respond to this error dialog:

■ Retry—the same operation is performed again, possibly with the same failure
again.

■ Recover—the database is opened and a repair operation is attempted. This
may take some time but you may recover your cross reference data.

■ Clear Database—the database is deleted and a new one is created. All your
cross reference data is lost and your workspace will be reparsed the next time
you open the call tree.

■ Close—the database is closed. No cross reference data is available, nor will it
be generated. At the beginning of the next Workbench session, an attempt to
open the database will be made again.

26.5 Troubleshooting VxWorks Configuration Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. This section discusses the most common sources of error. Please
read 26.5.1 What to Check, p.341 before contacting Wind River customer support.
Often, you can locate the problem just by re-checking the installation steps, your
hardware configuration, and so forth.

26.5.1 What to Check

Most often, a problem with running VxWorks can be traced to configuration errors
in hardware or software. Consult the following checklist to locate a problem.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

342

Hardware Configuration

■ If you are using an emulator . . .

See the Wind River ICE for Wind River Workbench Hardware Reference or the Wind
River Probe for Wind River Workbench Hardware Reference for information on
troubleshooting those connections.

■ Limit the number of variables

Start with a minimal configuration of a single target.

■ Check that the RS-232 cables are correctly constructed

In most cases, the documentation accompanying your target system describes
its cabling requirements. A common problem—make sure your serial cable is
a NULL modem cable, if that is what your target requires.

■ Check the boot ROM(s) for correct insertion

If the target seems completely dead when applying power (some have front
panel LEDs) or shows some error condition (for example, red lights), the boot
ROMs may be inserted incorrectly.

■ Press the RESET button if required

Some system controller boards do not reset completely on power-on; you must
reset them manually. Consult the target documentation if necessary.

■ Make sure all boards are jumpered properly

Refer to the target information reference for your BSP and the target
documentation to determine the correct dip switch and jumper settings for
your target and Ethernet boards.

NOTE: If you need to use a gender converter to connect your serial cable, it is
most likely not the right kind of cable. NULL modem cables tend to have same
gender connectors on each end, such as both female or both male. Straight
through cables tend to have one male and one female connector. Changing the
gender of a cable rarely has the desired results.

26 Troubleshooting
26.5 Troubleshooting VxWorks Configuration Problems

343

26

Booting Problems

■ Check the Ethernet transceiver site

For example, connect a known working system to the Ethernet cable and check
whether the network functions.

■ Verify IP addresses

An IP address consists of a network number and a host number. There are
several different classes of Internet addresses that assign different parts of the
32-bit Internet address to these two parts, but in all cases, the network number
is given in the most significant bits and the host number is given in the least
significant bits. The simple configuration described in 3.4 Booting VxWorks,
p.43 assumes that the host and target are on the same network—they have the
same network number. If the target Internet address is not on the same
network as the host, the VxWorks boot program displays the following
message:

Error loading file: errno = 0x33.

See the errnoLib reference entry for a discussion of VxWorks error status
values.

■ Verify FTP server permissions

Check the FTP server configuration. See Configuring FTP on Windows, p.34 for
more information on configuring the FTP server if you are using WFTPD
(shipped by Wind River). Otherwise, consult your system documentation on
the FTP Server shipped with it.

■ Helpful troubleshooting tools

When tracking down configuration problems, ping, arp -a, and netstat -r are
useful tools. For more information, see B. Glossary.

Target Server Problems

■ Check back end serial port

If you use a WDB Serial connection to the target, make sure you have
connected the serial cable to a port on the target system that matches your
target-agent configuration. The agent uses serial channel 1 by default, which is
different from the channel used by VxWorks as a default console (channel 0).
Your target’s ports may be numbered starting at one; in that situation,
VxWorks channel one corresponds to the port labeled “serial 2.”

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

344

■ Verify path to VxWorks image

The target server requires a host-resident image of the VxWorks run-time
system. By default, it obtains a path for this image from the target agent (as
recorded in the target boot parameters). In some cases (for example, if the
target boots from a local device), this default is not useful.

In that situation, create a new Target Server Connection definition in the
Target Manager, and use the -c filename option in the Advanced Target Server
Options field to specify the path to a host-resident copy of the VxWorks
image.

Check the WFTPD Server Log

The WFTPD server log displays very helpful plain text messages. For information
about how to enable logging FTP activities, see Configuring FTP on Windows, p.34.

26.6 Error Log View

Some errors direct you to the Error Log view, which displays internal errors
thrown by the platform or your code. For more information about the Error Log,
see Wind River Workbench User Interface Reference: Error Log View.

26.7 Error Logs Generated by Workbench

Workbench has the ability to generate a variety of useful log files. Some
Workbench logs are always enabled, some can be enabled using options within
Workbench, and some must be enabled by adding options to the executable
command when you start Workbench.

This section describes the logs, tells you how to enable them (if necessary), and
how to collect them into a ZIP file you can send to Wind River support
representatives.

26 Troubleshooting
26.7 Error Logs Generated by Workbench

345

26

26.7.1 Creating a ZIP file of Logs

Once all the logs you are interested in have been enabled, Workbench
automatically collects the information as you work.

To create a ZIP file to send to a Wind River support representative:

1. Select Help > Collect Log Files. The dialog opens.

2. Type the full path and filename of the ZIP file you want to create (or browse
to a location and enter a filename) then click Finish. The ZIP file is created in
the specified location, and contains all information collected to that point.

3. To discontinue logging (for those logs that are not always enabled) uncheck
the boxes on the Target Server Options tab, or restart Workbench without the
additional options.

26.7.2 Eclipse Log

The information displayed in the Error Log view is a subset of this log’s contents.

How to Enable Log

This log is always enabled.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

346

What is Logged

■ All uncaught exceptions thrown by Eclipse java code.

■ Most errors and warnings that display an error dialog in Workbench.

■ Additional warnings and informational messages.

What it Can Help Troubleshoot

■ Unexpected error popups.

■ Bugs in Workbench java code.

■ Bugs involving intercomponent communication.

26.7.3 DFW GDB/MI and Debug Tracing Logs

The DFW logs are a record of all communication and state changes between the
debugger back end (the “debugger framework”, or DFW) and other views within
Workbench, including the Target Manager, debugger views, and OCD views.

How to Enable Log

These logs are always enabled.

To change the maximum debug server log file size, select Window > Preferences
> Target Manager > Debug Server Settings. In the Maximum Debug Server Log
File Size field, change the default size to the size you prefer (or to the size
requested by a Wind River support representative).

Changing this field to 0 disables the collecting of dfwserver.log information.

What is Logged

Internal exceptions in the debugger back end, as well as all commands sent
between Workbench and the debugger back end.

What it Can Help Troubleshoot

Debugger, Target Manager, and debugger back end-related bugs.

26 Troubleshooting
26.7 Error Logs Generated by Workbench

347

26

26.7.4 Debugger Views GDB/MI Log

This log shows the same information as reported in the DFW GDB/MI and Debug
Tracing Logs, p.346.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Same as DFW GDB/MI and Debug Tracing Logs, p.346, except with Workbench
time-stamps.

What it Can Help Troubleshoot

Debugger and Target Manager-related bugs.

26.7.5 Debugger Views Internal Errors Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Exceptions caught by the Debugger views messaging framework.

What it Can Help Troubleshoot

Debugger views bugs.

26.7.6 Debugger Views Broadcast Message Debug Tracing Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

348

-vmargs -DDFE.Debug=true

What is Logged

Debugger views internal broadcast messages.

What it Can Help Troubleshoot

Debugger views bugs.

26.7.7 Target Server Output Log

This log contains the messages printed by the target server while running. These
messages typically indicate errors during various requests sent to it, such as load
operations. Upon startup, if a fatal error occurs (such as a corefile checksum
mismatch) then this error will be printed before the target server exits.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable output logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -l path/filename and -lm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind
River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

■ Fatal errors on startup, such as library mismatches and errors during exchange
with the registry.

■ Standard errors, such as load failure and RPC timeout.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

26 Troubleshooting
26.7 Error Logs Generated by Workbench

349

26

26.7.8 Target Server Back End Log

This log records all requests sent to the WDB agent.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable backend logging
and provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Bd path/filename and -Bm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind
River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WDB request sent to the agent. For more information about WDB services,
see Wind
River Documentation > References > Host API and Command References > Wi
nd River WDB Protocol API Reference.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

26.7.9 Target Server WTX Log

This log records all requests sent to the target server.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

350

Select the Logging tab, then check the box next to Enable WTX logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Wd path/filename and -Wm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind
River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WTX request sent to the target server. For more information about WTX
services, see Wind River Documentation > References > Host API and Command
References > WTX C Library Reference > wtxMsg.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

26.7.10 Target Manager Debug Tracing Log

This log prints useful information about creation and modification of Target
Manager internal structures, as well as inconsistencies or warning conditions in
the subsystems the Target Manager interoperates with.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-debug -vmargs -Dcom.windriver.ide.target.DEBUG=1.

What is Logged

Target Manager internal debug errors.

What it Can Help Troubleshoot

Inconsistencies in the debugger back end.

26 Troubleshooting
26.8 Technical Support

351

26

26.7.11 Static Analysis Parser Logs

These logs contain information that can help a Wind River technical support
representative to resolve problems with the source code parsers.

How to Enable Logs

Enable these logs by right-clicking a resource or resources in the Project Navigator
or the Editor and selecting Static Analysis > Generate Parser Logs. From the list
of logs that appears, select the logs that were requested by a technical support
representative (the jobs log and the performance log are selected by default). Click
OK.

What is Logged

■ The jobs log describes what the parsers were instructed to do.

■ The performance log lists the source files the parsers spent the most time with.

■ The PI4 interface and symbols logs contains the result of parsing.

■ The debug log shows how the cpp-parser uses internal caching strategies.

■ The tokens log lists every token processed by the cpp-parser.

What it Can Help Troubleshoot

Problems related to excessive parsing time. The performance log can help pinpoint
if there are single files that require more parsing time, or if there are simply many
resources to parse.

In a case where results of the analysis are different from what you expect but Wind
River support cannot reproduce the problem, the PI4 and symbol logs are crucial
in helping support representatives see the raw data the parsers are generating.

The debug and tokens logs are needed very seldom, but are useful to Wind River
developers working on the parsers themselves.

26.8 Technical Support

If you have questions or problems with Workbench or with VxWorks after
completing the above troubleshooting section, or if you think you have found an

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

352

error in the software, please see the Wind River Workbench Release Notes for your
platform for any additional information. Contact information for the Wind River
Technical Support organization is also listed in the release notes. Your comments
and suggestions are welcome.

353

PAR T VI

Updating

27 Integrating Plug-ins .. 355

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

354

355

 27
 Integrating Plug-ins

27.1 Introduction 355

27.2 Finding New Plug-ins 356

27.3 Incorporating New Plug-ins into Workbench 356

27.4 Using Workbench with ClearCase Views 360

27.5 Downloading and Installing Java Development Tools (JDT) 361

27.6 Managing Multiple Plug-in Configurations 362

27.7 Using Workbench in an Eclipse Environment 363

27.1 Introduction

Because Wind River Workbench is based on Eclipse, you can incorporate new
modules into Workbench without having to recompile or reinstall it. These new
modules are called plug-ins, and they can deliver new functionality and tools to
your copy of Wind River Workbench.

Many developers enjoy creating new plug-ins and sharing their creations with
other Eclipse users, so you will find many Web sites with interesting tools and
programs available for you to download and incorporate into your Workbench
installation.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

356

Some plug-ins are dependent on Java Development Tools (JDT). This chapter will
show you how to download and install it.

27.2 Finding New Plug-ins

In addition to the Eclipse Web site, http://www.eclipse.org, many other Web sites
offer a wide variety of Eclipse plug-ins. Here are a few:

http://www.eclipse-plugins.info/eclipse/plugins.jsp

http://www.eclipseplugincentral.com/

http://eclipse-plugins.2y.net/eclipse/

http://www.sourceforge.net/

27.3 Incorporating New Plug-ins into Workbench

Many developers who download plug-ins prefer to create a new directory for each
one, rather than unzipping the files directly into their Workbench installation
directory. There are many advantages to this approach:

■ The default Workbench installation does not change.

■ You do not lose any of your plug-ins if you update or reinstall Workbench.

■ Plug-ins do not overwrite each other’s files.

■ You know which files to replace when an update to the plug-in is available.

27.3.1 Creating a Plug-in Directory Structure

To make your plug-ins easier to manage, create a directory structure for them
outside your Workbench installation directory.

1. Create a directory to hold your plug-ins. It can have any descriptive name you
want, for example, eclipseplugins.

http://www.eclipse.org
http://www.eclipse-plugins.info/eclipse/plugins.jsp
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://www.sourceforge.net/

27 Integrating Plug-ins
27.3 Incorporating New Plug-ins into Workbench

357

27

2. Inside this directory, create a directory for each plug-in you want to install.
These directories can also have any descriptive name you want.

3. Inside each plug-in directory, create a directory named eclipse. This directory
must be named eclipse, and a separate eclipse directory is required inside each
plug-in directory.

4. Inside each eclipse directory, create an empty file named .eclipseextension.
This file must be named .eclipseextension (with no .txt or any other file
extension), and a separate .eclipseextension file is required inside each eclipse
directory.

5. When you extract your plug-in, two directories, called features and plugins,
appear in the eclipse directory alongside the .eclipseextension file.

27.3.2 Installing a ClearCase Plug-in

Once you have created a plug-in directory structure and have found a plug-in you
want to use with Workbench, download and install it according to the instructions
provided by the plug-in’s developer (almost every plug-in comes with release
notes containing installation instructions).

This section will show you how to download and install a plug-in on Windows.

Downloading the IBM Rational ClearCase Plug-in

If you are running Workbench on Windows or Linux, you should use the IBM
Rational ClearCase plug-in.

1. Follow the instructions in 27.3.1 Creating a Plug-in Directory Structure, p.356.

NOTE: Some plug-ins assume they need to create the eclipse directory for you.
So after extracting your plug-in, you may discover that your eclipse directory
contains another eclipse directory, and below that are the plug-in files. If that
is the case, move the plug-in files up one level and delete the extra eclipse
directory.

NOTE: For any plug-in to work properly, its features and plug-ins directories
as well as an empty file called .eclipseextension must be located inside a
directory called eclipse.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

358

For the purposes of this example, name the top-level directory eclipseplugins,
and name the plug-in directory clearcaseIBM.

2. Navigate to
http://www-128.ibm.com/developerworks/rational/library/1376.html and
click the Plug-ins link under ClearCase. The Rational ClearCase Plug-ins page
opens.

3. Click the Download link to the right of the appropriate version of the package
file. For this example, select IBM Rational ClearCase SCM adapter for Eclipse
3.0.x: Windows.

4. Extract the ZIP file to your /eclipseplugins/clearcaseIBM directory. The
eclipse directory is created for you, and inside are two directories, called
features and plugins, alongside the .eclipseextension file.

Downloading the Source Forge ClearCase Plug-in

If you are running Workbench on Solaris, you should use the Source Forge
ClearCase plug-in.

1. Follow the instructions in 27.3.1 Creating a Plug-in Directory Structure, p.356.

For the purposes of this example, name the top-level directory eclipseplugins,
and name the plug-in directory clearcaseSF.

2. Navigate to http://sourceforge.net/projects/eclipse-ccase.

3. Click Download to the right of the appropriate version of the package file, for
example eclipse-ccase:Eclipse 3.1.

4. From the File List page, click the appropriate package to download (with or
without source). A page of download mirror sites appears; click the Download
icon next to the site closest to you.

5. Extract the file you downloaded to your /eclipseplugins/clearcaseSF/eclipse
directory. Two directories, called features and plugins, appear in the eclipse
directory alongside the .eclipseextension file.

NOTE: Extracting the IBM ClearCase ZIP file creates the eclipse directory and
the .eclipseextension file for you, so you do not need to create them yourself.

http://sourceforge.net/projects/eclipse-ccase
http://www-128.ibm.com/developerworks/rational/library/1376.html

27 Integrating Plug-ins
27.3 Incorporating New Plug-ins into Workbench

359

27

Adding Plug-in Functionality to Workbench

1. If Workbench is not already running, start it.

2. Select Help > Software Updates > Manage Configuration. The
Product Configuration dialog appears.

3. Select Add an Extension Location in the Wind River Workbench pane.

4. Navigate to your eclipseplugins/plug-in/eclipse directory. Click OK.

5. Workbench will ask if you want to restart. To properly incorporate ClearCase
functionality, click Yes.

Incorporating the IBM Rational Plug-in

1. When Workbench restarts, select Window > Customize Perspective.

2. In the Customize Perspective dialog, switch to the Commands tab.

3. Select the ClearCase option in the Available command groups column, then
click OK. A new ClearCase menu and icons appear on the main Workbench
toolbar.

4. From the ClearCase menu, select Connect to Rational ClearCase to activate
ClearCase functionality.

To configure the ClearCase plug-in, select Window > Preferences > Team >
ClearCase SCM Adapter.

For more information about using the ClearCase plug-in, see Help > Help
Contents > Rational ClearCase SCM Adapter.

Incorporating the Source Forge Plug-in

1. When Workbench restarts, a new Clearcase menu appears on the main
Workbench toolbar.

2. From the Clearcase menu, select Activate plugin to activate ClearCase
functionality.

3. To Associate a Workbench project with Source Forge ClearCase:

■ Select your project in the Project Navigator and then select
Clearcase > Associate project, or

■ Right-click your project in the Project Navigator, then select
Team > Associate with clearcase.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

360

For more information about ClearCase functionality, refer to your ClearCase
product documentation.

27.4 Using Workbench with ClearCase Views

When using Workbench with ClearCase dynamic views, create your workspace on
your local file system for best performance. For recommendations about setting up
your workspaces and views, see Help > Help Contents > Rational ClearCase
SCM Adapter > Concepts > Managing workspaces.

Wind River does not recommend that you place the Eclipse workspace directory
in a view-private directory. If you create projects in the default location under the
workspace directory, ClearCase prompts you to add the project to source control.
This process requires all parent directories to be under source control, including
the workspace directory.

Instead, create workspace directories outside of a ClearCase view. If you want to
create projects under source control, you should unselect the Create project in
workspace checkbox in the project creation dialog and then navigate to a path in a
VOB.

In addition, you should also redirect all build output files to the local file system
by changing the Redirection root directory in the Build Properties > Build Paths
tab of your product. All build output files such as object files and generated
Makefiles will be redirected.

For more information about the redirecting build output and the redirection root
directory, see 16.8 Build Paths, p.190.

27.4.1 Adding Workbench Project Files to Version Control

To add Workbench project files to version control without putting your workspace
into a ClearCase view, check-in the following automatically generated files along
with your source files:

■ .project
■ .wrproject
■ .wrmakefile
■ .wrfolder (in subfolders of your projects)

27 Integrating Plug-ins
27.5 Downloading and Installing Java Development Tools (JDT)

361

27

For more information about IBM Rational ClearCase, see
http://www-130.ibm.com/developerworks/rational/products/clearcase.

27.5 Downloading and Installing Java Development Tools (JDT)

If you find that one of your plug-ins has a dependency on JDT, this section will
show you how to download and install it.

27.5.1 Creating a JDT Directory Structure

1. Follow steps 1 and 2 in 27.3.1 Creating a Plug-in Directory Structure, p.356.

In this example, the directory to hold your plug-ins is called eclipseplugins,
and the plug-in directory is called JDT.

27.5.2 Downloading the JDT SDK

1. Navigate to http://download.eclipse.org/eclipse/downloads, then select the
appropriate Eclipse release (for example, under Latest Releases, select 3.1).
The Release Build page appears.

2. Scroll down until you see the JDT SDK section of the page, then select the drop
for your platform. A page of mirror sites appears.

3. Select the mirror site closest to you to start the download.

4. When the file is finished downloading, extract it to your JDT directory.

27.5.3 Making JDT Available to Workbench

1. In your /eclipseplugins/JDT/eclipse directory, create a file named
.eclipseextension (with no .txt or any other file extension).

2. In this file, type the following information:

NOTE: JDT creates the eclipse directory for you, so you do not need to create
it manually.

http://download.eclipse.org/eclipse/downloads
http://www-130.ibm.com/developerworks/rational/products/clearcase

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

362

name=Eclipse Java Development Tools
Id=com.eclipse.jdt
Version=version you downloaded, such as 3.1

3. In Workbench, select Help > Software Updates > Manage Configuration. The
Product Configuration window appears.

4. Click the Add an Extension Location link in the Wind River Workbench pane.

5. The Browse for Folder dialog prompts you to choose an extension location.
Navigate to your /eclipseplugins/JDT/eclipse directory, then click OK.

6. The Install/Update dialog prompts you to restart Workbench. Click Yes.

JDT should now be available to any plug-in that requires it.

27.6 Managing Multiple Plug-in Configurations

If you have many plug-ins installed, you may find it useful to create different
configurations that include or exclude specific plug-ins.

When you make a plug-in available to Workbench using the process shown in
section 27.5.3, its extension location is stored in the Eclipse configuration area.

When starting Workbench, you can specify which configuration you want to start
by using the -configuration path option, where path represents your Eclipse
configuration directory.

On Windows:

From a shell, type:

% cd installdir\workbench-2.4\wrwb\2.4\x86-win32\bin
% .\wrwb.exe -configuration path

On Linux and Solaris:

Use the option as a parameter to the startWorkbench.sh script:

./startWorkbench.sh -configuration path &

For more information about using -configuration and other Eclipse startup
parameters, see Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

27 Integrating Plug-ins
27.7 Using Workbench in an Eclipse Environment

363

27

27.7 Using Workbench in an Eclipse Environment

It is possible to install Workbench in a standard Eclipse environment, though some
fixes and improvements that Wind River has made to Workbench will be lost.

27.7.1 Recommended Software Versions and Limitations

Java Runtime Version

Wind River tests, supports, and recommends using the JRE 1.4.2_08 for
Workbench plug-ins.

Wind River adds a package to that JRE version, and not having that package will
make the Terminal view inoperable.

Eclipse Version

Wind River Workbench 2.4 is based on Eclipse 3.1. Wind River patches Eclipse 3.1
to fix some Eclipse debugger bugs. These fixes will be lost when using a standard
Eclipse environment.

See the getting started for your platform for supported and recommended host
requirements for Workbench 2.4.

Defaults and Branding

Eclipse uses different default preferences from those set by Workbench.

In a standard Eclipse environment, the Eclipse branding (splash screen, welcome
screen, etc.) is used instead of the Wind River branding.

27.7.2 Setting Up Workbench

This setup requires a complete Eclipse and Workbench installation. Follow the
respective installation instructions for each product.

Substitute the correct installation locations for these values in the rest of the steps
in this section:

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

364

■ ECLIPSE_INST denotes the Eclipse installation directory.
■ WORKBENCH_INST denotes the Workbench installation directory.

Creating a Workbench Plug-in for Eclipse

To register Workbench plug-ins and features with Eclipse they must be located in
a directory called eclipse, with the subdirectories plugins and features.

Essentially, to create an Eclipse-recognizable extension location, you must create a
similar structure to what you created in 27.3.1 Creating a Plug-in Directory Structure,
p.356.

1. Change directory into WORKBENCH_INST/workbench-2.4/wrwb/2.4.

2. Create a directory called eclipse.

3. Inside the eclipse directory, create the subdirectories plugins and features.

4. From the original Workbench plugins and features subdirectories
(WORKBENCH_INST/workbench-2.4/wrwb/2.4), copy the following files and
directories into the newly created plugins and features directories (in
WORKBENCH_INST/workbench-2.4/wrwb/2.4/eclipse):

■ features/com.windriver*
■ features/org.eclipse.gef*
■ features/org.eclipse.emf*
■ plugins/com.windriver*
■ plugins/org.eclipse.gef*
■ plugins/org.eclipse.emf*
■ plugins/org.eclipse.cdt*

Adding Workbench Extension Locations to Eclipse

To add the location of the plug-ins as an extension location:

1. Create a directory ECLIPSE_INST/links.

2. Create all Eclipse extension locations currently registered with Workbench:

a. Copy all contents of WORKBENCH_INST/workbench-2.4/wrwb/2.4/links
into ECLIPSE_INST/links.

b. Edit the copied files and replace the Workbench relative paths with
absolute paths. For example:

27 Integrating Plug-ins
27.7 Using Workbench in an Eclipse Environment

365

27

Original: path=components/extensions
Replacement: path=WORKBENCH_INST/components/extensions

UNIX example: /windriver/components/extensions
Windows example: C:\windriver\components\extensions

3. Add the path to the Workbench plug-ins directory:

a. In ECLIPSE_INST/links, create a file wb.link.

b. Edit wb.link to add the path to the Workbench plug-ins as an absolute
path.

Example: path=C:\windriver\workbench-2.4\wrwb\2.4.

Changing Eclipse Default Preferences to Workbench Defaults

Standard Eclipse uses different default preferences from Workbench.

The default setting for auto-build is one example where Workbench defaults and
Eclipse defaults differ, causing behavior changes. Wind River chooses to disable
auto-build, because it does not make much sense for C/C++ development,
whereas Eclipse enables auto-build by default.

In order to have the Wind River defaults in the Eclipse environment, you must
copy the contents of the Workbench plugin_customization.ini file into the Eclipse
installation.

1. Change directory into ECLIPSE_INST/plugins/org.eclipse.platform_3.1.0.

2. Rename plugin_customization.ini to plugin_customization.ini.orig.

3. Extract the default preferences from a Workbench plug-in to the current
location:

unzip -q
WORKBENCH_INST/workbench-2.4/wrwb/2.4/plugins/com.windriver.ide_2.4.0.ja
r plugin_customization.ini

4. Repeat the above steps for the directory
ECLIPSE_INST/plugins/org.eclipse.sdk_3.1.0.

Launching Eclipse with Workbench

No special steps are necessary to launch Eclipse.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

366

367

PAR T VII

Reference

A Updating Workspaces on the Command-line .. 369

B Glossary .. 373

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

368

369

 A
Updating Workspaces on the

Command-line

A.1 Overview 369

A.2 wrws_update Reference 370

A.1 Overview

The Workbench installation includes a wrws_update script that allows you to
update workspaces from the command-line. This can be used, for example, to
update workspaces in a nightly build script. The following section provides a
reference page for the command.

Wind River Workbench
User’s Guide, 2.4 (Linux Version)

370

A.2 wrws_update Reference

A script for updating an existing workspace is available in the Workbench
installation and is named:

wrws_update.bat (Windows only)

wrws_update.sh (Windows, Linux, and Solaris)

This script launches a GUI-less Eclipse application that can be used to update
makefiles, symbols (static analysis), and the retriever index.

Execution

Specify the location of the wrws_update script or add it to your path and execute
it with optional parameters, for example:

$ wrws_update.sh -data workspace_dir

The workspace must be closed for the command to execute. If you do not specify
any options to the command, all update operations are performed (-refresh,
-all projects, -generate makefiles, --update symbols, -update index).

Options

-data workspace_dir
The script uses the default workspace (if known), but it can also update other
workspaces by specifying the -data workspace_dir option, just as Workbench
does. (The script accepts the same command-line options as Workbench. For
example, to increase virtual memory specify -vmargs -Xmxmem_size.)

-refresh
Refresh workspace (this option should always be specified to ensure correct
information is generated).

--all-projects
Update all projects in the workspace. Closed projects will be opened before
any operation and closed afterwards to restore the initial state of the
workspace.

--generate-makefiles
Trigger a regeneration of all makefiles that use IDE-managed build (including
kernel makefiles).

--update-symbols
Trigger an update of static analysis data (symbols and cross references).

A Updating Workspaces on the Command-line
A.2 wrws_update Reference

371

A

--update-index
Trigger an update of the retriever index (text search).

Output

Any errors that might occur during the updates are printed out to stderr. Other
information (for example, status, what has been done, and so on) are printed out
to stdout.

Build Information

Note that no actual builds are executed within this script and the launched
application, only the needed makefiles will be generated when specifying the
--generate-makefiles option.

NOTE: No configuration management-specific actions or commands are executed
within this script and the launched application. Configuration management
specific synchronizations or updates relevant to the workspace (for example,
cvs-update, ClearCase view synchronization, and so on) have to be done before
this script is started.

Wind River Workbench
User’s Guide, 2.4 (Linux Version)

372

373

 B
 Glossary

This glossary contains terms used in Wind River Workbench.

If the term you want is not listed here, you can search for it throughout all online
documentation.

1. At the top of the Help > Help Contents window, type your term into the
Search field.

2. Click Go. Topics containing the term will appear in the Search Results list.

3. To open a topic in the list, click it.

For more information about online help, see Help > Help Contents > Wind
River Partner Documentation > Eclipse Workbench User Guide > Tasks > Usin
g the help system.

arp -a

This command displays the address resolution protocol tables that map IP
addresses to physical media access control (or MAC) addresses. Your target
machine is listed if at least one packet was transferred from your target to your
host.

The following example shows both the IP address (91.0.10.1) and physical address
(08-00-20-1b-66-e9) of the target venus:

C:\> arp -a
Interface: 91.0.10.26
Internet Address Physical Address Type
91.0.10.1 08-00-20-1b-66-e9 dynamic
91.0.10.20 00-20-af-52-1e-72 dynamic
91.0.10.254 00-00-ef-01-f1-a0 dynamic

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

374

active view

The view that is currently selected, as shown by its highlighted title bar. Many
menus change based on which is the active view, and the active view is the focus
of keyboard and mouse input.

back end

Functionality configured into a target server which allows it to communicate with
various target agents, based on the mode of communication that you establish
between the host and the target (network, serial, and so on).

The target server must be configured with a back end that matches the target agent
interface with which VxWorks has been configured and built.

board support package (BSP)

A Board Support Package (BSP) consists primarily of the hardware-specific VxWorks
code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

build spec

A particular set of build settings appropriate for a specific target board.

color context

The color assigned to a particular process in the Debug view; this color carries over
to breakpoints in the Editor and to other views that derive their context from the
Debug view.

cross-development

The process of writing code on one system, known as the host, that will run on
another system, known as the target.

editor

An Editor is a visual component within Wind River Workbench. It is typically
used to edit or browse a file or other resource.

Modifications made in an Editor follow an open-save-close life cycle model.
Multiple instances of an editor type may exist within a Workbench window.

B Glossary

375

B
kernel module

A piece of code, such as a device driver, that can be loaded and unloaded without
the need to rebuild and reboot the kernel.

launch configuration

A run-mode launch configuration is a set of instructions that instructs the IDE to
connect to your target and launch a process or application. A debug-mode launch
configuration completes these actions and then attaches the debugger.

netstat

This command displays network status reports. The -r option displays the network
routing tables. This is useful when gateways are used to access the target.

C:\> netstat -r
Route Table

Network Address Netmask Gateway Address Interface Metric
 0.0.0.0 0.0.0.0 91.0.10.254 91.0.10.26 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 91.0.10.0 255.255.255.0 91.0.10.26 91.0.10.26 1
 91.0.10.26 255.255.255.255 127.0.0.1 127.0.0.1 1
 91.11.255.255 255.255.255.255 91.0.10.26 91.0.10.26 1
 224.0.0.0 224.0.0.0 91.0.10.26 91.0.10.26 1
255.255.255.255 255.255.255.255 91.0.10.26 91.0.10.26 1

Active Connections

Proto Local Address Foreign Address State
TCP mercury:1025 saturn.wrs.com:nbsession ESTABLISHED
TCP mercury:1177 earth.wrs.com:nntp ESTABLISHED
TCP mercury:1259 oak.oakland.edu:ftp ESTABLISHED

overview ruler

The vertical borders on each side of the Editor view. Breakpoints, bookmarks, and
other indicators appear in the overview ruler.

perspective

A perspective is a group of views and editors in the Workbench window. One or
more perspectives can exist in a single Workbench window. Each perspective
contains one or more views and editors. Within a window, each perspective may
have a different set of views, but all perspectives share the same set of editors.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

376

ping IP address

This utility determines whether a specific IP address is accessible by sending a
packet to the specified address and waiting for a reply.

The following exchange indicates this host is successfully sending packets to the
target venus:

C:\> ping venus
Pinging venus.wrs.com [91.0.10.1] with 32 bytes data:

Reply from 91.0.10.1: bytes=32 time=10ms TTL=255
Reply from 91.0.10.1: bytes=32 time<10ms TTL=255
Reply from 91.0.10.1: bytes=32 time<10ms TTL=255
Reply from 91.0.10.1: bytes=32 time<10ms TTL=255

If a machine’s name and IP address are listed in your hosts file (for details, see
Establishing the VxWorks Target Name and IP Address, p.34) you may substitute the
machine name for the IP address in the ping command.

plug-in

An independent module, available from Wind River, the Eclipse Foundation, or
from many Internet Web sites, that delivers new functionality to Workbench
without the need to recompile or reinstall it.

program counter

The address of the current instruction when a process is suspended.

project

A collection of source code files, build settings, and binaries that are used to create
a downloadable application or bootable system image.

real-time process (RTP)

An application that runs in a protected memory space. If an RTP crashes, it will not
crash the kernel.

registry

The registry associates a target server’s name with the network address needed to
connect to that target server, thereby allowing you to select a target server by a
convenient name.

B Glossary

377

B
system mode

When in system mode, the debugger is focused on kernel processes and threads.
When a process is suspended, all processes stop. Compare with user mode.

target agent

The target agent runs on the target, and is the interface between VxWorks and all
other Wind River Workbench tools running on the host or target.

target server

The target server runs on the host, and connects Wind River Workbench tools to
the target agent. There is one server for each target; all host tools access the target
through this server.

user mode

When in user mode, the debugger is focused on user applications and processes.
When a process is suspended, other processes continue to run. Compare with
system mode.

view

A view is a visual component within Workbench. It is typically used to navigate a
hierarchy of information (like the resources in your Workbench), open an editor, or
display properties for the active editor.

Modifications made in a view are saved immediately. Only one instance of a
particular view type may exist within a Workbench window.

working set

A working set is a group of resources you select because you want to view them or
perform an operation on them as a group. For example, creating a working set
allows you to speed up a search by restricting its scope. A working set can also help
you focus by reducing the number of projects visible in the Project Navigator, the
number of symbols displayed in the Outline view, and so on.

workspace

The directory where your projects are created.

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

378

379

Index

A
accessing build properties 175
active build spec 183
adding

application code to projects 132
application initialization routines to VIPs 85
applications to VIPs 85
new files to projects 133
subprojects 71

applications
adding to VIPs 85
creating, for VxWorks 124
initialization stubs 83
projects, configuring 110

architecture specific compiler flags 188
Attach to Target launches 295

B
back end, target server 246
ball sample program 15
basename mappings 253
board support package 86

creating 87
customizing manually 88
migrating 87
simulator 86

Wind River Workbench 87
Bookmarks view 26
boot

loader project 67
build specs 91
creating 90
makefile 92
project nodes 91
target nodes 91

mechanism, setting up 41
programs

creating new 53
serial connection, configuring for 58

ROMs
emulators, substituting ROM 42

boot loader project 89
booting

command line parameters 52
parameters

displaying current, at boot time 44
nonvolatile RAM, effect of 52
setting 44
VxWorks 50

rebooting VxWorks 53
TFTP, requiring 53
troubleshooting 343
VxWorks

commands 46
breakpoints

conditional 301

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

380

converting to hardware 302
data 301
disabling 304
exporting 304
expression 301
hardware 301
importing 303
line 300
refreshing 304
removing 304
restricted 300
unrestricted 300

Breakpoints view 299
BSP

See board support package
build 173

applications for different boards 202
architecture-specific functions 206
command 177
command line 177
complete product image 148
console 197

preferences 197
disabled build support 174
executables to dynamically link to shared

libraries 207
failure due to locked files 331
library for test and release 203
make rule in Project Navigator 210
managed 174
management 174
output

folders 82
saving 197

properties 173
accessing 175
dialog 175

redirection root directory 190
remote 215
remote connection 215
remote, setting up environment 215
spec 181

active 183
creating 211
customizing 74

for new compilers, other tools 211
support 174

disabled 174
target properties 194
troubleshooting

imported projects 332
user-defined 174

C
cables, connecting 39
ClearCase

installing plug-ins 357
using with Workbench 360

colored views 312
command line

build 177
parameters 52
registry 237
update workspaces (wrws_update) 369

communication settings 262
configuring manually 263
configuring through a serial port 265

compiler
flags, add 200
flags, architecture specific 188
new build spec 211
specifying a different default for a single

project 189
complex project structures 146
conditional breakpoints 301
configuring

application projects 110
file system project 163
jumpers 38
kernel components 84
shared library projects 110
target file system 96
target hardware 39
VxWorks image project 86, 163

console
build 197

container
project

 Index

381

Index

creating 149
per project type and external headers 150

subprojects 160
context pointer 311
customize build specs, shared subprojects 74

D
data

breakpoints 301
debug modes 313
Debug view 308
debugger

disconnecting and terminating processes 317
single-stepping through code 313

deleting
project nodes 139
target nodes 139

development 153
disabled build support 174
Disassembly view 318

opening automatically 318
opening manually 318

Domain Name Service (DNS) 34
downloadable kernel module

application code 118
in Project Navigator 116
project

build specs 117
creating 114
files 118
nodes 117
target nodes 117

dual mode 32

E
Eclipse

basic concepts 7
log 345
using Workbench in 363

Editor 171

context pointer 311
Kernel 85

environment variables
LD_LIBRARY_PATH 209, 287
redirection root directory 190

Error Log view 344
Exec Path on Target

troubleshooting
Linux 336
RTPs 337

expression
breakpoints 301

external files
linking to 122

external headers 157

F
file

properties 194
system

configuring the target 96
project files 95
project nodes 95
project, VxWorks 69

File Navigator view 169
File Transfer Protocol

See FTP server
files

manipulating 137
find and replace 171
folder properties 194
folders, build output 82
FTP server

configuring 34
WFTPD 34

G
generating include search-paths wizard 192
go into project 135

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

382

H
hardware breakpoints 301
headers, external 157
help system

accessing 12
display problems

Linux 328
Solaris 328
Windows 328

host, setting up 37

I
importing

application code 133
build settings 133
projects 132
resources 132
VxWorks image project 76

Include Browser view 170
include search-paths, generating 192
initialization stubs, application 83

J
jumpers 38

K
kernel

configuration 80, 95
back ends 255

editor 85
image and symbols 247
shell 243

Kernel Editor 85
Kernel Objects view 319

multi-process debugging 320

L
launch configurations

creating 286
native applications 292

LD_LIBRARY_PATH environment variable 209,
287

library, shared
project structure 155
project, configuring 110

line breakpoints 300
linking project nodes, moving and 138
linking to external sources 123
location, resource 144
logical nodes 136
logs

creating a ZIP of 345
debugger back end

debug tracing 346
GDB/MI 346

debugger views
broadcast message debug tracing 347
GDB/MI 347
internal errors 347

Eclipse 345
static analysis parser 351
target manager debug tracing 350
target server

back end 349
output 348
WTX 349

M
make rule in Project Navigator 210
makefile

boot loader project 92
build properties 194
nodes

downloadable kernel modules 118
native application 129
RTP 101
shared libraries 109
VIP 82

 Index

383

Index

managed build 174
memory

cache size, target server 249
menu, Navigate 136
multiple

processes, monitoring 311
software systems 145
target operating systems or versions 176

multi-process debugging
Kernel Objects view 320

N
native application

project
application code 130
build specs 128
creating 126
files 130
nodes 128
target nodes 128

native applications
launching 292
project 125

Navigate menu 136
navigation 135
New Connection wizard 238
nodes

moving and (un-)linking project 138
resources and logical 136

O
object path mappings

creating automatically 250
examples 251
for remote hosts 251
why they are required 250

opening
new window 135
project

in new window 135

properties dialog, build 175
operating systems, multiple 176
output folders, build 82

P
pango error 327
pathname prefix mappings 250
plug-ins

activating 359
adding an extension location 359
creating a directory structure 356
creating a Workbench plug-in for Eclipse 363
installing ClearCase 357
web sites 356

polled mode 32
preconfigured project types, overview 66
preferences

build console 197
processes

Attach to Target launches 295
disconnecting debugger 317
RTPs, running 291

profiles 78
VxWorks 5.5 compatible 79
VxWorks scalability levels 78

project
application code 65
boot loader 67, 89

creating 90
bsp, getting a functioning 87
build

macros 188
paths 190
properties 173

accessing 175
build support 177

remote 215
specs 181
system 73
targets 178
tools 184

closing 134, 135
compiler

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

384

specifying a different default for a single
project 189

configuring application 110
creating 132

for read-only sources 330
creating new 64
creating, boot loader 90
customizing VxWorks image 80
go into 135
headers 150
infrastructure design 148
linking application projects to VxWorks

image 85
linking to external sources 123
native application 125
nodes

manipulating 138
moving and (un-)linking 138

opening 134
preconfigured, overview 66
project structures 70
real-time process 68
sample 66
scoping 135
shared library 69, 110
sharing subprojects 74
structure

and build system 73
and host directory structure 72

structures, complex 146
troubleshooting imported 332
user-defined 174

linking to external files 122
VxWorks

file system 69
image 66
kernel configuration profiles 78
scalable 78

Project Navigator
boot loader projects 91
DOSFS file system projects 95
move, copy, delete 136
moving and (un-)linking project nodes 138
native application projects 128
real-time process projects 100

shared libraries 108
target nodes, manipulating 139
user-defined build-targets 210
VxWorks image projects 80

properties
build-target 194
file 194
folder 194
project build 173

R
read-only sources

creating projects for 330
real-time process

and shared library 219
project 68

application code 103
build specs 101
creating 98
files 102
nodes 101
target nodes 101

See also RTPs
rebooting VxWorks 53
redirection root directory 190

with ClearCase 360
registry 239

changing default 241
command line 237
data storage 241
error, unreachable 325
remote, creating 240
shutting down 241
Wind River 37
wtxregd 240

remote build 215
setting up environment 215

remote connection 215
removing breakpoints 304
replace 171
resource locations 144
resources and logical nodes 136
Retriever 171

 Index

385

Index

RTPs
and shared library 219
attaching to running 296
running 291

S
sample

ball program 15
projects 66

search 171
serial lines

target server back end connection, as 57
testing 58

set, working 135
setting breakpoints

restricted 300
unrestricted 300

settings
build console 197

shared library 155
and real-time process 219
LD_LIBRARY_PATH environment

variable 209, 287
project

configuring 110
creating 106
nodes 108

project file 109
troubleshooting problems 340

simulator
establishing a new connection 257
VxWorks 86

software systems, multiple 145
source lookup path

adding sources 290
editing 317

source mode build 78
spec

build 181
active 183

static analysis
description 167

structures, complex project 146

stubs, application initialization 83
subprojects 163

adding 71
container 160

Symbol Browser
view 168

symbol file
specifying maximum size 331

symbol table
target server, configuring 247

symbolic links to files, creating 122
symbols and kernel image 247
system mode 32

compared with task mode 313

T
target

agent
communication modes 32
introduction 30

board
configuring 39
establishing a connection 242
jumpers, setting 38
serial port 39
Terminal view 39

file system 96
name (tn) (boot parameter) 49
operating systems, multiple versions 176
server

back end settings 246
connecting

ethernet 54
serial 59

connections
establishing new 245
network 54
serial line 57

core file 247
file system (TSFS) 248

making writable 249
introduction 30
kernel configuration

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

386

back ends 255
memory cache size 249
symbol table 247
timeout options 249
troubleshooting 343
WDB Pipe back end 246
WDB Proxy back end 246
WDB Serial back end 246

Target Manager view 238
basename mappings 253
defining a new Wind River Probe

connection 275
defining a VxWorks Simulator connection 257
New Connection wizard 238
object path mappings 250

examples 251
for remote hosts 251

pathname prefix mappings 250
shared connection configuration 254
Wind River ICE

connection configuration, shared 270
Wind River Probe

connection configuration, shared 280
tasks

attaching to running 296
state 296

Terminal view 39
text search 171
tgtsvr options 248
TIPC target server backend 246
TOOL_PATH macro

setting 189
troubleshooting

booting problems 343
building imported projects 332
creating a ZIP of log files 345
downloading 337
exception on attach 336
Exec Path on Target 337
hardware configuration 342
help system

display problems
Linux 328
Solaris 328
Windows 328

Java Development Tools (JDT)
dependency 327

launch configurations 339
logs

debugger back end 346
debugger views

broadcast message debug tracing 347
GDB/MI 347
internal errors 347

Eclipse 345
Error Log 344
generated by Workbench 344
static analysis parser 351
target manager debug tracing 350
target server

back end 349
output 348
WTX 349

pango error 327
registry unreachable 325
removing unwanted target connections 328
running a process 338
shared library problems 340
startup errors 324
target connection 334
target server problems 343
VxWorks 341
workspace cannot be locked 326

TSFS
See target server, file system 248

tutorial
ball sample program 15

Type Hierarchy view 170

U
user mode 32
user-defined

build 174
projects

creating 122
linking to external files 122

usrappinit.c 83
usrrtpappinit.c 83

 Index

387

Index

V
views

See Workbench views
VIP

See VxWorks image project
vxprj 132
VxWorks

boot loader project 67
booting 43
file system project 69

creating 94
image

customizing 80
default location 45
source mode build 78

image project 66
build specs 80
creating 77
files 83
in Project Navigator 80
linking application projects to 85
project nodes 80
source mode build 78
target nodes 80

image projects
kernel configuration profiles 78

rebooting 53
shared library project 69
simulator 86

defining a new connection 257

W
WDB back end

Pipe 246
Proxy 246
Serial 246

WFTPD FTP server 34
Wind River

ICE
shared connection configuration 270

Probe
defining a new connection 275

shared connection configuration 280
registry 37
System Viewer

support libraries, excluding 78
writable target server file system 249

Workbench
Application Development perspective 15
bookmarks

creating 25
viewing 26

breakpoints
modifying 21
running to 20
setting 20

building a project
build errors 22

connection definition, creating 17
creating a project 15
Editor

bracket matching 25
code completion 23
Eclipse functionality 11
parameter hints 24

help system
accessing 12
display problems

Linux 328
Solaris 328
Windows 328

moving and sizing views 11
perspectives 8
project source

bookmarks
creating 25
viewing 26

bracket matching 25
breakpoints

modifying 21
running to 20
setting 20

code completion 23
parameter hints 24

running sample program
from build output 18
with Device Debug perspective 18

Wind River Workbench
User’s Guide, 2.4 (VxWorks Version)

388

starting 14
Target Manager

connection definition 17
target, connecting to

connection definition 17
using in an Eclipse environment 363
using with ClearCase 360
views 10

Breakpoints 299
colored 312
Debug 308
Disassembly 318
Editor 171
Error Log 344
File Navigator 169
Include Browser 170
Kernel Objects 319
Symbol Browser 168
Type Hierarchy 170

working sets 168
using 135

workspace
project location 64
starting Workbench with a new 324
switching to a different 145
using one for multiple projects 146

wrws_update
reference page 370
script 369

wtxregd
how to find API 237
using a remote registry 240

	Wind River Workbench User's Guide
	Contents

	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Wind River Documentation
	1.3 Road Map to the Wind River Workbench User’s Guide
	1.4 Understanding Cross-Development Concepts
	1.4.1 Hardware in a Cross-Development Environment

	1.5 Basic Eclipse Concepts
	1.5.1 Window
	1.5.2 Workspace
	1.5.3 Perspectives
	1.5.4 Views
	1.5.5 Editors
	1.5.6 Projects

	1.6 Accessing Additional Interface Information

	2 Wind River Workbench Tutorials
	2.1 Introduction
	2.2 Starting Wind River Workbench
	2.3 Tutorial: Creating a Project and Running a Program
	2.3.1 Before You Begin
	2.3.2 Creating a Project
	2.3.3 Importing Source Files Into Your Project
	2.3.4 Building Your Project
	2.3.5 Creating a Connection Definition to the VxWorks simulator
	2.3.6 Downloading the Program and Attaching the Debugger
	2.3.7 Setting Up the Device Debug Perspective
	2.3.8 Setting and Running to a Breakpoint.
	2.3.9 Modifying the Breakpoint

	2.4 Tutorial: Editing and Debugging Source Files
	2.4.1 Before You Begin
	2.4.2 Introducing an Error into the Source Code
	2.4.3 Tracking Down a Build Failure
	2.4.4 Rebuilding the Project

	2.5 Tutorial: Using the Editor’s Code Development Features
	2.5.1 Using Code Completion to Add Symbols to Your File
	2.5.2 Using Parameter Hints
	2.5.3 Using Bracket Matching to Clarify Syntax

	2.6 Tutorial: Tracking Items of Interest in Your Files
	2.6.1 Creating a Bookmark on a Source Line in a File
	2.6.2 Creating a Bookmark for an Entire File
	2.6.3 Locating and Viewing Your Bookmarks

	3 Setting Up Your Hardware
	3.1 Introduction
	3.1.1 Overview of Host and Target Configuration Tasks
	3.1.2 Understanding Target Servers and Target Agents

	3.2 Configuring Your Cross-Development System
	3.2.1 Configuring Host Software
	3.2.2 Verifying Serial Setup and Power

	3.3 Setting Up a Boot Mechanism
	3.4 Booting VxWorks
	3.4.1 Default Boot Process
	3.4.2 Entering New Boot Parameters
	3.4.3 Boot Program Commands
	3.4.4 Description of Boot Parameters
	3.4.5 Booting With New Parameters
	3.4.6 Alternate Boot Methods
	3.4.7 Rebooting VxWorks

	3.5 Configuring Host-Target Communication for Workbench
	3.5.1 Ethernet Connections
	3.5.2 Serial-Line Connections

	3.6 Troubleshooting VxWorks Problems

	Part II Projects
	4 Projects Overview
	4.1 Introduction
	4.2 Workspace/Project Location
	4.3 Creating New Projects
	4.3.1 Subsequent Modification of Project Creation Wizard Settings
	4.3.2 Projects and Application Code

	4.4 Overview of Preconfigured Project Types
	4.4.1 Workbench Sample Projects
	4.4.2 VxWorks Image Project
	4.4.3 VxWorks Board Support Package Project
	4.4.4 VxWorks Downloadable Kernel Module Projects
	4.4.5 Real-time Process Projects
	4.4.6 VxWorks Shared Library Projects
	4.4.7 VxWorks File System Projects
	4.4.8 Native Application Projects

	4.5 Projects and Project Structures
	4.5.1 Adding Subprojects to a Project
	4.5.2 Project Structures and Host File System Directory Structure
	4.5.3 Project Structures and the Build System
	4.5.4 Project Structures and Sharing Subprojects
	4.5.5 Customizing Build Settings for Shared Subprojects

	5 VxWorks Image Projects
	5.1 Introduction
	5.2 Importing a VxWorks Image Project
	5.2.1 Migrating a VxWorks Image Project

	5.3 Creating a VxWorks Image Project
	5.4 VxWorks Image Projects in the Project Navigator
	5.4.1 Global Project Nodes
	5.4.2 Project Build Specs and Target Nodes
	5.4.3 Build Output Folders
	5.4.4 Makefile Nodes
	5.4.5 Project File Nodes

	5.5 Configuring Kernel Components
	5.5.1 The Kernel Editor

	5.6 Adding Application Projects to the VxWorks Image Project
	5.7 Notes on Board Support Packages (BSPs)
	5.7.1 Using the Simulator BSP
	5.7.2 Using a Wind River or Third-Party BSP
	5.7.3 Using a Custom BSP for Custom Hardware

	6 Boot Loader Project
	6.1 Introduction
	6.2 Creating a Boot Loader Project
	6.3 Boot Loader Projects in the Project Navigator
	6.3.1 Global Project Nodes
	6.3.2 Project Build Specs and Target Nodes
	6.3.3 Makefile Nodes
	6.3.4 Other Project Files

	7 ROMFS File System Projects
	7.1 Introduction
	7.2 Creating a ROMFS File System Project
	7.3 ROMFS File System Projects in the Project Navigator
	7.3.1 Global Project Nodes
	7.3.2 Project File Nodes
	7.3.3 Configuring the ROMFS File System

	8 VxWorks Real-time Process Projects
	8.1 Introduction
	8.2 Creating a VxWorks Real-time Process Project
	8.3 VxWorks Real-time Processes in the Project Navigator
	8.3.1 Global Project Nodes
	8.3.2 Project Build Specs and Target Nodes
	8.3.3 Makefile Nodes
	8.3.4 Project File Nodes

	8.4 Application Code for a VxWorks Real-time Process Project
	8.5 Linking to VxWorks and Using Shared Libraries

	9 VxWorks Shared Library Projects
	9.1 Introduction
	9.2 Creating a VxWorks Shared Library Project
	9.3 Shared Libraries in the Project Navigator
	9.3.1 Global Project Nodes
	9.3.2 Target Node
	9.3.3 Makefile Nodes
	9.3.4 Project File Nodes

	9.4 Source Code for the Shared Library
	9.5 Making Shared Libraries Available to Applications
	9.5.1 Configuring the Shared Library Project
	9.5.2 Configuring the Application Projects

	10 VxWorks Downloadable Kernel Module Projects
	10.1 Introduction
	10.2 Creating a VxWorks Downloadable Kernel Module Project
	10.3 Downloadable Kernel Modules in the Project Navigator
	10.3.1 Global Project Nodes
	10.3.2 Project Build Specs and Target Nodes
	10.3.3 Makefile Nodes
	10.3.4 Project File Nodes

	10.4 Application Code for a VxWorks DKM Project

	11 VxWorks User-Defined Projects
	11.1 Introduction
	11.2 Creating a User-Defined Project
	11.2.1 Linking to External Files

	11.3 Creating an Application for VxWorks

	12 Native Application Projects
	12.1 Introduction
	12.2 Creating a Native Application Project
	12.3 Native Applications in the Project Navigator
	12.3.1 Global Project Nodes
	12.3.2 Project Build Specs and Target Nodes
	12.3.3 Makefile Nodes
	12.3.4 Project File Nodes

	12.4 Application Code for a Native Application Project

	13 Working in the Project Navigator
	13.1 Introduction
	13.2 Creating Projects
	13.3 Adding Application Code to Projects
	13.3.1 Importing Resources
	13.3.2 Adding New Files to Projects

	13.4 Opening and Closing Projects
	13.4.1 Closing a Project

	13.5 Scoping and Navigation
	13.6 Moving, Copying, and Deleting Resources and Nodes
	13.6.1 Resources and Logical Nodes
	13.6.2 Manipulating Files
	13.6.3 Manipulating Project Nodes
	13.6.4 Manipulating Target Nodes

	13.7 Project Navigator Quick Reference

	14 Advanced Project Scenarios
	14.1 Introduction
	14.2 Resource Locations
	14.3 Multiple, Unrelated Software Systems
	14.3.1 Using Different Workspaces for Different Systems
	14.3.2 Using the Same Workspace for Different Software Systems

	14.4 Complex Project Structures
	14.4.1 Project Assumptions
	14.4.2 Infrastructure Design
	14.4.3 Development
	14.4.4 Finalization

	Part III Development
	15 Navigating and Editing
	15.1 Introduction
	15.2 Wind River Workbench Context Navigation
	15.2.1 The Symbol Browser
	15.2.2 The Outline View
	15.2.3 The File Navigator
	15.2.4 Type Hierarchy View
	15.2.5 Include Browser

	15.3 The Editor
	15.4 Search and Replace: The Retriever
	15.4.1 Intiating Text Retrieval

	15.5 Static Analysis

	16 Build Properties and the Build Console
	16.1 Introduction
	16.2 Accessing Build Properties
	16.2.1 Project Build Properties and Preferences Build Properties

	16.3 Build Support
	16.4 Build Targets
	16.5 Build Specs
	16.6 Build Tools
	16.7 Build Macros
	16.8 Build Paths
	16.8.1 The Generate Include Search-Paths Wizard

	16.9 Build Properties for VxWorks Image Projects
	16.9.1 Build Specs for VIPs
	16.9.2 Build Tools for VIPs
	16.9.3 Build Macros for VIPs
	16.9.4 Build Paths for VIPs
	16.9.5 Link Order for VIPs

	16.10 Folder, File, and Build-Target Properties
	16.11 Makefiles
	16.11.1 Derived File Build Support

	16.12 Build Console View
	16.12.1 Saving Build Output
	16.12.2 Build Console Preference Settings

	17 Building: Use Cases
	17.1 Introduction
	17.2 Adding Compiler Flags
	17.2.1 Add a Compiler Flag by Hand
	17.2.2 Add a Compiler Flag with GUI Assistance

	17.3 Building Applications for Different Boards
	17.4 Creating Library Build-Targets for Testing and Release
	17.5 Architecture-Specific Implementation of Functions
	17.6 Executables that Dynamically Link to Shared Libraries
	17.7 User-Defined Build-Targets in the Project Navigator
	17.7.1 Custom Build-Targets in User-Defined Projects
	17.7.2 Custom Build-Targets in Workbench Managed Projects
	17.7.3 User Build Arguments

	17.8 A Build Spec for New Compilers and Other Tools
	17.9 Developing on Remote Hosts
	17.9.1 General Requirements
	17.9.2 Remote Build Scenarios
	17.9.3 Setting Up a Remote Environment
	17.9.4 Building Projects Remotely
	17.9.5 Running Applications Remotely
	17.9.6 Rlogin Connection Description

	18 RTPs and Shared Libraries from Host to Target
	18.1 Introduction
	18.2 A VxWorks Real-time Process from Host to Target
	18.2.1 Set Up the Project Structure for Real-time Processes
	18.2.2 Add Code to the Real-time Process Project
	18.2.3 Add the Real-time Process to the Target File System
	18.2.4 Build the System
	18.2.5 Set up the Target Connection
	18.2.6 Run the Real-time Process on the Simulator

	18.3 A VxWorks Shared Library from Real-time Process to Target
	18.3.1 Set Up the VxWorks Shared Library Project
	18.3.2 Add Code to the Shared Library Project
	18.3.3 Add the Shared Library to the Run-Time Process
	18.3.4 Modify the Code in the Real-time Process Project
	18.3.5 Generate Include Search Paths
	18.3.6 Add the Shared Library to the Target File System
	18.3.7 Build the System Again
	18.3.8 Run the RTP with the Shared Library on the Simulator

	Part IV Target Management
	19 Connecting to Targets
	19.1 Introduction
	19.2 The Target Manager View
	19.3 Defining a New Connection
	19.4 The Registry
	19.4.1 Remote Registries
	19.4.2 Registry Data Storage
	19.4.3 The Registry and Product Updates
	19.4.4 Changing the Default Registry

	19.5 Establishing a Connection
	19.5.1 Assumptions

	19.6 Connect to the Target
	19.6.1 The Kernel Shell

	20 New Target Server Connections
	20.1 Introduction
	20.2 Defining a New Target Server Connection
	20.2.1 Wind River Target Server
	20.2.2 Target Server Connection Page
	20.2.3 Object Path Mappings Page
	20.2.4 Target State Refresh Page
	20.2.5 Connection Summary Page

	20.3 Kernel Configuration

	21 New VxWorks Simulator Connections
	21.1 Introduction
	21.2 Defining a New Wind River VxWorks Simulator Connection
	21.2.1 VxWorks Boot Parameters Page
	21.2.2 VxSim Memory Options Page
	21.2.3 VxWorks Simulator Miscellaneous Options Page
	21.2.4 Target Server Options Page

	22 New On-Chip Debugging Connections
	22.1 Defining a New Wind River ICE SX Connection
	22.2 Defining a New Wind River ISS Connection
	22.3 Defining a New Wind River Probe Connection

	Part V Debugging
	23 Launching Programs
	23.1 Introduction
	23.2 Launching a Kernel Task or a Process
	23.2.1 Defining the Target Connection
	23.2.2 Defining the Kernel Task or Process to Run
	23.2.3 Specifying a Build Target to Download
	23.2.4 Specifying The Projects to Build
	23.2.5 Defining Debug Behavior
	23.2.6 Specifying Where Workbench Should Look for Source Files
	23.2.7 Configuring Access Methods
	23.2.8 Using Your Launch Configuration

	23.3 Reset & Download: Hardware Debugging Launches
	23.4 Launching a Native Application
	23.4.1 Specifying the Location and Arguments for Your Application
	23.4.2 Specifying Remote Settings
	23.4.3 Setting Environment Variables
	23.4.4 Configuring Access Methods
	23.4.5 Running Your Native Application

	23.5 Relaunching Recently Run Programs
	23.5.1 Increasing the Size of the Launch History List

	23.6 Using Attach-to-Target Launches
	23.6.1 Attaching the Debugger to a Running Task or Process
	23.6.2 Attaching the Debugger to the Kernel
	23.6.3 Attaching the Kernel in Task Mode
	23.6.4 Attaching the Kernel in System Mode

	23.7 Suggested Workflow

	24 Managing Breakpoints
	24.1 Introduction
	24.2 Types of Breakpoints
	24.2.1 Line Breakpoints
	24.2.2 Expression Breakpoints
	24.2.3 Hardware Breakpoints

	24.3 Manipulating Breakpoints
	24.3.1 Importing Breakpoints
	24.3.2 Exporting Breakpoints
	24.3.3 Refreshing Breakpoints
	24.3.4 Disabling Breakpoints
	24.3.5 Removing Breakpoints

	25 Debugging Projects
	25.1 Introduction
	25.2 Using the Debug View
	25.2.1 Understanding the Debug View Display

	25.3 Coloring Views
	25.4 Stepping Through a Program
	25.5 Using Debug Modes
	25.5.1 Setting and Recognizing the Debug Mode of a Connection
	25.5.2 Debugging Multiple Target Connections
	25.5.3 Disconnecting and Terminating Processes

	25.6 Understanding Source Lookup Path Settings
	25.7 Using the Disassembly View
	25.7.1 Opening the Disassembly View
	25.7.2 Understanding the Disassembly View Display

	25.8 Using the Kernel Objects View
	25.8.1 Understanding the Kernel Objects View Display

	25.9 Run/Debug Preferences

	26 Troubleshooting
	26.1 Introduction
	26.2 Startup Problems
	26.2.1 Pango Error on Linux

	26.3 General Problems
	26.3.1 Java Development Tools (JDT) Dependency
	26.3.2 Help System Does Not Display on Solaris or Linux
	26.3.3 Help System Does Not Display on Windows
	26.3.4 Removing Unwanted Target Connections

	26.4 Error Messages
	26.4.1 Project System Errors
	26.4.2 Build System Errors
	26.4.3 Target Manager Errors
	26.4.4 Launch Configuration Errors
	26.4.5 Debugger Errors
	26.4.6 Static Analysis Errors

	26.5 Troubleshooting VxWorks Configuration Problems
	26.5.1 What to Check

	26.6 Error Log View
	26.7 Error Logs Generated by Workbench
	26.7.1 Creating a ZIP file of Logs
	26.7.2 Eclipse Log
	26.7.3 DFW GDB/MI and Debug Tracing Logs
	26.7.4 Debugger Views GDB/MI Log
	26.7.5 Debugger Views Internal Errors Log
	26.7.6 Debugger Views Broadcast Message Debug Tracing Log
	26.7.7 Target Server Output Log
	26.7.8 Target Server Back End Log
	26.7.9 Target Server WTX Log
	26.7.10 Target Manager Debug Tracing Log
	26.7.11 Static Analysis Parser Logs

	26.8 Technical Support

	Part VI Updating
	27 Integrating Plug-ins
	27.1 Introduction
	27.2 Finding New Plug-ins
	27.3 Incorporating New Plug-ins into Workbench
	27.3.1 Creating a Plug-in Directory Structure
	27.3.2 Installing a ClearCase Plug-in

	27.4 Using Workbench with ClearCase Views
	27.4.1 Adding Workbench Project Files to Version Control

	27.5 Downloading and Installing Java Development Tools (JDT)
	27.5.1 Creating a JDT Directory Structure
	27.5.2 Downloading the JDT SDK
	27.5.3 Making JDT Available to Workbench

	27.6 Managing Multiple Plug-in Configurations
	27.7 Using Workbench in an Eclipse Environment
	27.7.1 Recommended Software Versions and Limitations
	27.7.2 Setting Up Workbench

	Part VII Reference
	A Updating Workspaces on the Command-line
	A.1 Overview
	A.2 wrws_update Reference

	B Glossary
	Index

