Using the SDRAM Memory on Altera’s DE2-70 Board
with VHDL Design

This tutorial explains how the SDRAM chips on Altera’s DEQ{development and Education board can be used
with a Nios Il system implemented by using the Altera SOPAdgui The discussion is based on the assumption
that the reader has access to a DE2-70 board and is familiartieé material in the tutoridhtroduction to the
Altera SOPC Builder Using VHDL Design

The screen captures in the tutorial were obtained using th?ert Il version 9.0; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project
Using a Phase-Locked Loop

The introductory tutorialntroduction to the Altera SOPC Builder Using VHDL Desigrplains how the
memory in the Cyclone Il FPGA chip can be used in the contexa sfmple Nios Il system. For practical
applications it is necessary to have a much larger memorg. Altera DE2-70 board contains 2 SDRAM chips
that can each store 32 Mbytes of data. Each chip is organgddax 16 bitsx 4 banks. The SDRAMs chip
require careful timing control. To provide access to the 83YRchips, the SOPC Builder implements 8DRAM
Controller circuit. This circuit generates the signals needed to déhlthhe SDRAM chips. For the purposes of
this tutorial, we will deal with only one of the SDRAM chipsh& second chip can be used in a similar fashion.

1 ExampleNios|l System

As an illustrative example, we will add the SDRAM to the Nidsystem described in thiatroduction to the
Altera SOPC Builder Using VHDL Designtorial. Figure 1 gives the block diagram of our exampldeys

Host computer

USB-Blaster

Reset_n Clock interface
iog i JTAG Debug JTAG UART
10s II processor module interface
Avalon switch fabric
On-chip SDRAM Svizlltcl:l}es ﬁEle
memory controlles pa.ra el mput par.a el output
interface interface
SW7 SWO LEDG7 LEDGO
SDRAM
chips

Figure 1. Example Nios Il system implemented on the DE2-7¥dbo

Cyclone II
FPGA chip

The system realizes a trivial task. Eight toggle switchetherDE2-70 board$W7 — 0, are used to turn on or
off the eight green LEDSL. EDG7 — 0. The switches are connected to the Nios Il system by meanparfadlel
I/O interface configured to act as an input port. The LEDs aieed by the signals from another parallel I/O
interface configured to act as an output port. To achievel@et operation, the eight-bit pattern corresponding
to the state of the switches has to be sent to the output padtivate the LEDs. This will be done by having the
Nios Il processor execute an application program. Contiswperation is required, such that as the switches are
toggled the lights change accordingly.

The introductory tutorial showed how we can use the SOPCdButio design the hardware needed to imple-
ment this task, assuming that the application program wheells the state of the toggle switches and sets the
green LEDs accordingly is loaded into a memory block in th&RRhip. In this tutorial, we will explain how an
SDRAM chip on the DE2-70 board can be included in the systeRigare 1, so that our application program can
be run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interface for adNiebased system
e Timing issues with respect to the SDRAM on the DE2-70 board

e Using a phase-locked loop (PLL) to control the clock timing

2 The SDRAM Interface

The two SDRAM chips on the DE2-70 board each have a capacidp6fMbits (32 Mbytes). Each chip is or-
ganized as 4M 16 bitsx 4 banks. The signals needed to communicate with a chip avenstmoFigure 2. All

of the signals, except the clock, can be provided by the SDR2dvitroller that can be generated by using the
SOPC Builder. The clock signal is provided separately. # teameet the clock-skew requirements as explained
in section 5. Note that some signals are active low, whiclersotied by the suffix N.

Clock
CLK
Clock Enable
CKE
A
ddress ADDR[12:0]
Bank Address 1
BAl
Bank Address 0
BAO
Chip Select
SDRAM CS_N SDRAM
controller Column Address Strobe CAS N chip
Row Address Strobe
RAS_N
Write Enable
WE_N
Data
DQJ[15:0]
High-byte Data Mask
UDQM
Low-byte Data Mask
LDQM

Figure 2. The SDRAM signals.

3 Using the SOPC Builder to Generatethe Nios |1 System

Our starting point will be the Nios Il system discussed inltiteoduction to the Altera SOPC Builder Using VHDL
Designtutorial, which we implemented in a project calléghts. We specified the system shown in Figure 3.

™ Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorial\nios_system.sopc)

File Edt Module System View Tools Nosl Help
System Generation
£ Componet Library ~ Target Slooy>etinge
@ Nios ll Processor Device Family:| Cyclone I v Name Source MHz | [add
#-Bridges and Adapters — clk_0 |External |s0.0 |
=interface Protocols
& Ethernet
®-PCl
=-Serial
» Avalon-STJTAG | Use = Con.. Module Name Description Clock Base End Tags
b Avelon-ST Serial§ & cpu_o INios Il Processor A
birFAGUART) instruction_master Awvalon Memory Mapped Master clk_0
 :SP1(3Wire Serlal) data_master Awvalon Memory Mapped Master IR0 O IRQ 31
> UARTRS-232 52 Jtag_debug_module \&valon Memary Mapped Slave 0x00002800 |Ox0000ZEff
- Legacy Components © onchip_memory2_0 |On-Chip Memary (RAM or ROM)
G Menicrisslanct Memory Cortrol 51 Avalon Memory Mapped Slave clk_0 000001000 |0x0000L£££
EE-DMA B Switches IPIO (Parallel 110) ‘
(E-Flash ‘ 51 \&valon Memory Mapped Slave clk_0 0x00003000 |0x0000300£
&-On-Chip B LEDs PIO (Parallel 110)
@ E'E’fﬁm v 51 Avalon Memory Mapped Slave clk_0 0300003010 |0x0000301 £
Q& > ‘ © jtag_uart 0 UTAG UART ‘
= — avalon_itag_slave |Avalon Memory Mapped Slave clk_0 000003020 |0x00003027 v
< 3
New... x|[a][v][= Filter: Defaut
, Warning: Switches: PIO inputs are not harduwired in test bench. Undefined values will be read from PIO inputs during simulation.
\1

Figure 3. The Nios Il system defined in the introductory tiatior

If you saved thdights project, then open this project in the Quartus Il softward #ren open the SOPC
Builder. Otherwise, you need to create and implement thgegroas explained in the introductory tutorial, to
obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 selédemories and Memory Controllers > SDRAM >
SDRAM Controller and clickAdd. A window depicted in Figure 4 appears. Sel€ttstomfrom the Presets
drop-down list. Set the Data Width parameter to 16 bits, tbe Rvidth to 13 bits, the Column Width to 9 bits,
and leave the default values for the rest. Since we will nousate the system in this tutorial, do not select the
option Include a functional memory model in the system testbench. Click Finish. Now, in the window
of Figure 3, there will be asdram module added to the design. Select the commnystem > Auto-Assign
Base Addresses to produce the assignment shown in Figure 5. Observe tha&d@C Builder assigned the
base address 0x02000000 to the SDRAM. To make use of the SDR&Meed to configure the reset vector and
exception vector of the Nios Il processor. Right-click or ¢tipu_0 and then seledtdit to reach the window in
Figure 6. Selecsdram_0 to be the memory device for both reset vector and exceptiotokeas shown in the
figure. ClickFinish to return to the System Contents tab and regenerate tharsyste

= SDRAM Controller - sdram_0

SDRAM Controller

Documentation

Timing

Presets: 'Cuglom v

Data width

-Architecture

Chip select: l1 vl Banks: |4 v‘

rAddress widths

~Share pins via tristate bridge

[:' Cortroller shares dgidgm/addr /0 pins

Tristate bridge selection:

~Genetic memory model (simulation only)

[Include & functional memary model in the system testbench

Memory size = 32 MBytes
16777216 x 16
256 MBits

Figure 4. Add the SDRAM Controller.

= Altera

File Edit Module System VYiew Tools Niosll Help

System Contents | System Generation |

1 Component Library Target Fockpetinas
© Nios Il Processor Device Family:| Cyclone Il ‘ Name Source MHz
&-Bridges and Adapters clk_0 External 50.0
#-Interface Protocols
#-Legacy Components
[=)-Memories and Memory Controllers
[#DMA
[#-Flash Use = Con.. Module Name Description Clock Base End Tags
(#-On-Chip B cpu_d Nios Il Processor ~
&-SDRAM instruction_master Avalon Memory Mapped Master clk_0 il
° g ontroller data_master Avalon Memory Mapped Master IRQ O IRQ 31
- SRAM jftag_debug_module Avalon Memory Mapped Slave 004002800 Ox0400Z££f
i Petipharals B onchip_memory2_0 (On-Chip Memory (R&M or ROM)
B-PLL 51 &walon Memory Mapped Slave clk_0 0504001000 [0x04001££F
B Switches PIO (Parallel 11O)
s Avalon Memory Mapped Slave clk_0 004003000 00f i
B LEDs PIO (Parallel 110)
1 Avalon Memory Mapped Slave clk_0 0x04003010 0x0400301f
& jtag_uart_0 WTAG UART
avalon_jtag_slave Avalon Memory Mapped Slave clk_0 0x04003020 |0x04003027
Avalon Memory Mapped Slave 0x02000000 OxO3f£ffEff ™
1 | >
E [E v b 4 Fitter: Defautt

/1, Warning: Switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

4 Prev

Figure 5. The expanded Nios Il system.

MegoCore
Parameter

Settings

Core Nios IT

Care Nios |l

Select a Nios Il core:

™ Nios Il Processor - cpu_0

Nios II Processor

Caches and Memory Interfaces

Advanced Features

MMU and MPU Settings

JTAG Debug Madule

Custom Instructions

[®Nios Ie ONios Ilfs |oNios Il
. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone Il Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
feystem: 50.0 MHz Hardware Divide Hardware Divide
iy Barrel Shifter
cpuid: 0 Data Cache

Dynamic Branch Prediction

Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMIPS Up to 51 DMIPS

Logic Usage 600-700 LEs 1200-1400 LEs 1400-1800 LEs

Memory Usage Twvo MaKs (or equiv.) Two MaKs + cache Three MdKs + cache

Hardware Multiply:

Reset Vector: Memory: | sdram_0 + |Offset: igxu | 0x02000000
Exception Yector: Memory: vw‘ Offset: ﬂgng | 0x02000020
Only include the MMU when using an operating system that explicitly supports an MU

Fast TLB Miss Exception Vector: Memory:

Offset: |

~

Figure 6. Define the reset vector and the exception vector.

The augmented VHDL entity generated by the SOPC Builderikarfile nios_system.vhish the directory of
the project. Figure 7 depicts the portion of the code thandsfithe port signals for the entityos_systemAs
in our initial system that we developed in the introductarptial, the 8-bit vector that is the input to the paral-
lel port Switcheds calledin_port_to_the SwitchesThe 8-bit output vector is calledut_port_from_the LEDs
The clock and reset signals are calldkd_0andreset_n respectively. A new entity, callesdram is included.
It involves the signals indicated in Figure 2. For examphte address lines are referred to as the OUT vector
zs_addr_from_the_sdram_0[12:0he data lines are referred to as the INOUT veeztordg_to_and_from_the_sdram_0[15:0
This is a vector of the INOUT type because the data lines aliecistional.

= nios_system.v.

3497 Ewodule nios_system | -~
3498 // 1) global signals:

Y 3499 clk O,

ar 3500 reset_n,

=% || 3501
3502 // the_LEDs

— 3503 out_port_from the LEDs,

= | 3504

&= | 3s0s // the_Switches

- 3506 in port_to_the Switches,

A4 || 3507

% | 3508 // the_sdram 0

= 3509 zs_addr_from_the_sdram 0,

A || 3510 zs_ba_from the_sdram 0O,

n 3511 zs_cas_n_from the_sdram O,
3512 zs_cke_from_the_sdram 0,

0 3513 zs_cs_n_from_the_sdram 0,

| 3514 zs_dg_to_sand_from_the_sdram 0,
3515 zs_dem_from the_sdram O,

@ 3516 zs_ras_n_from_the_sdram 0,
5517 zs_we_n_from the sdram 0

£ | ssis)

oy 3519
3520
3521 output [7: 0] out_port_from the LEDs;

_____ 3522 output [12: 0] zs_addr_from_the_sdram 0;
3523 output [1: 0] zs_ba from the sdram 0;

= 3524 output zs_cas_n from the_sdram 0;

o 3525 output zs_cke_from_the_sdram 0;

- 3526 output zs_cs_n_from_the_sdranm_0: <
< >

Figure 7. A part of the generated VHDL entity.

4 Integration of the Nios|Il System into the Quartus|| Project

Now, we have to instantiate the expanded Nios Il system irtdhdevel VHDL entity, as we have done in the
tutorial Introduction to the Altera SOPC Builder Using VHDL Desigrhe entity is nametights, because this is
the name of the top-level design entity in our Quartus |l @ctj

Afirst attempt at creating the new entity is presented in E@u The input and output ports of the entity use the
pin names for the 50-MHz clock;LOCK _5Q pushbutton switche&EY, toggle switchesSW and green LEDs,
LEDG, as used in our original design. They also use the pin n@R#sM0_CLK DRAMO_CKEDRAMO_ADDR
DRAMO_BA 1DRAMO_BA ODRAMO_CS NDRAMO_CAS NDRAMO_RAS_NDRAMO_WE_NDRAM_DQ
DRAMO_UDQM andDRAMO_LDQM which correspond to the SDRAM signals indicated in FigureAll of
these names are those specified in the DE2-70 User Manualhwhows us to make the pin assignments by
importing them from the file calleBE2_70_pin_assignments.dswhe directoryDE2_70_tutorial§design_files
which is included on the CD-ROM that accompanies the DE2e&¥dand can also be found on Altera’s DE2-70
web pages.

Observe that the tw®ank Addresssignals are treated by the SOPC Builder as a two-bit vectbeda
zs_ba from_the_sdram_0[1;0qs seen in Figure 7. However, in tBE2_70_pin_assignments.céle these
signals are given as separate sigmralRAMO_BA 1and DRAMO_BA 0 This is accommodated by our VHDL
code. Similarly, the vectors_dgm_from_the sdram_O0[1:@prresponds to the signa{f®RAMO_UDQMand
DRAMO_LDQM)

Finally, note that we tried an obvious approach of using Bz system clockCLOCK_50Q as the clock
signal, DRAMO_CLK for the SDRAM chip. This is specified by the last assignméatiesnent in the code. This
approach leads to a potential timing problem caused by tiekakew on the DE2-70 board, which can be fixed
as explained in section 5.

—— Inputs: SWZ-0 are parallel port inputs to the Nios Il system.

—— CLOCK_50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDGZO0 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their reiare those
—— used in the DE2-70 User Manual.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
KEY :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAMO_CLK, DRAMO_CKE : OUT STD_LOGIC;
DRAMO_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0y;
DRAMO_BA 1, DRAMO_BA 0:BUFFER STD_LOGIC;
DRAMO_CS_N, DRAMO_CAS_N, DRAMO_RAS_N, DRAMO_WE_N : OUT STROGIC;
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAMO_UDQM, DRAMO_LDQM : BUFFER STD_LOGIC));
END lights;

ARCHITECTURE Structure OF lights IS

COMPONENT nios_system

PORT (clk: IN STD_LOGIC;
reset_n:IN STD_LOGIC;
out_port_from_the LEDs: OUT STD_LOGIC_VECTOR(7 DOWNTOQ 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTQ 0)
zs_addr_from_the_sdram_0: OUT STD_LOGIC_VECTOR(11 DOVONIT;
zs_ba_from_the_sdram_0 : BUFFER STD_LOGIC_VECTOR(1 DOWN);
zs_cas_n_from_the_sdram_0: OUT STD_LOGIC;
zs_cke _from_the sdram_0: OUT STD_LOGIC;
zs_cs_n_from_the _sdram_0: OUT STD_LOGIC;
zs_dq_to_and_from_the_sdram_0 : INOUT STD_LOGIC_VECTIBROOWNTO 0);
zs_dgm_from_the_sdram_0 : BUFFER STD_LOGIC_VECTOR(1 DOWND);
zs_ras_n_from_the_sdram_0: OUT STD_LOGIC;
zs_we_n_from_the _sdram_0: OUT STD_LOGIC);

END COMPONENT;

SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
DRAMO_BA 1<=BA(1); DRAMO_BA_0<=BA(0);
DRAMO_UDQM <=DQM(1); DRAMO_LDQM <= DQM(0);
—— Instantiate the Nios Il system entity generated by the SORIGI&.

Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW,
DRAMO_ADDR, BA, DRAMO_CAS_N, DRAMO_CKE, DRAMO_CS N,
DRAM_DQ, DQM, DRAMO_RAS_N, DRAMO_WE_N);

DRAMO_CLK <= CLOCK_50;

END Structure;

Figure 8. A first attempt at instantiating the expanded Nigystem.

As an experiment, you can enter the code in Figure 8 into adilealights.vhd Add this file and all the
*.vhd files produced by the SOPC Builder to your Quartus lljgecb Compile the code and download the design
into the Cyclone Il FPGA on the DE2-70 board. Use the appbtoaprogram from the tutoridintroduction to
the Altera SOPC Builder Using VHDL Desigwhich is shown in Figure 9. Notice in our expanded system, th
addresses assigned by the SOPC Builder are 0x040030@nitches and 0x04003010 fotEDs, which are
different from the original system. These changes are @yrezflected in the program in Figure 9.

.include "nios_macros.s"

.equ Switches, 0x04003000
.equ LEDs, 0x04003010

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 9. Assembly language code to control the lights.

Use the Altera Monitor Program, which is described in theriat Altera Monitor Program to assemble,
download, and run this application program. If successhd, lights on the DE2-70 board will respond to the
operation of the toggle switches.

Due to the clock skew problem mentioned above, the Nios Itgseor may be unable to properly access the
SDRAM chip. A possible indication of this may be given by thiketa Monitor Program, which may display the
message depicted in Figure 10. To solve the problem, it isssegy to modify the design as indicated in the next
section.

Info & Errors

Using cable "U3E-Elaster [U3E-0]", dewice 1, instance 0x00
Rezetting and psusing target processor: 0E

Initializing CPU cache (if present)

1124

1
[r] >

Dowmloading 00800000 (0%) -
Dommloaded 1EE in 0.0s

Verifying 00300000 (0%)
Verify failed betweenh address 0x&S00000 and 0xS0001E
Leaving target processor paused

Pogsible causes for the SPEC werification failure:

1. Not enough memory in your Nies I system to contain the SREC file.

2. The locations in your SBEC file do not correspond to a memory dewice.

3. You may need a properly configured PLL to access the SDRAM or Flash memory.

-

Figure 10. Error message in the Altera Monitor Program they be due to the SDRAM clock skew problem.

5 UsingaPhase-Locked Loop

The clock skew depends on physical characteristics of th2-DEboard. For proper operation of the SDRAM
chip, itis necessary that its clock signeBRAMO_CLK leads the Nios Il system clockLOCK_5Q by 3 nanosec-

onds. This can be accomplished by usinghase-locked loop (PLLgircuit. There exists a Quartus Il Megafunc-
tion, calledALTPLL, which can be used to generate the desired circuit. Theittan be created, by using the
Quartus Il MegaWizard Plug-In Manager, as follows:

1. Selecflools > MegaWizard Plug-In Manager. This leads to the window in Figure 11. Choose the action
Create a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1] @

The Megawizard Plug-In Manager helps you create or modify
design files that contain custom variations of megafunctions.

\ Which action do you want to perform?
* iCreate a new custom megafunction variatioré

" Edit an existing custom megafunction variation

" Copy an existing custom megafunction variation

Copyright (C) 1991-2009 Altera Corporation

Cancel | | Next > I |

Figure 11. The MegaWizard.

2. In the window in Figure 12, specify that Cyclone Il is thevide family used and that the circuit should
be defined in VHDL. Also, specify that the generated outpiiiDL) file should be calleddram_pll.vhd
From the list of megafunctions in the left box selé@ > ALTPLL. Click Next.

MegaWizard Plug-In Manager [page 2a] @

Which megafunction would you like to customize? ‘Which device family will you be Cyclone Il v
ing?
Select a megafunction from the list below usings
- @& 1/0 R ‘Which type of output file do you want to create?

L] ALTE " AHDL
= ;

(/] ALTASMI_PARALLEL :
[/] ALTCLKCTRL " Verilog HDL
] ALTCLKLOCK
[Z] ALTODIO_BIDIR
(2] ALTDDIO_IN [D:\sopc_builder_lukovia|\sdram_pll.vhd
/] ALTDDIO_OUT

‘What name do you want for the output file? Browse...

[ﬁ ALTD;)E!S ™ Retum to this page for another create operation
T) Nate: To compile a project successfully in the Quartus || software,
) your design files must be in the project directory, in the global user
] - libraries specified in the Options dialog box (T ools menu), or a user
" library specified in the User Libraries page of the Settings dialog
d ALTLVDS box [Assighments menu).
] Your current user library directories are:
d ALTPLL §
] L
=
2] M
+ @8 JTAG-accessible Extensions N

Cancel | < Back | Next > I |

Figure 12. Select the megafunction and name the output file.

3. In Figure 13, specify that the frequency of thhelockOinput is 50 MHz. Leave the other parameters as
given by default. ClickNext to reach the window in Figure 14.

10

MegaWizard Plug-In Manager [page 3 of 10]

Documentation

Currently selected device Farmly: -

sdrarm_pll 1 Match project/default

KD | fregquency: 50,000 hiHe DEE Able to implement the requested PLL
2resst | apermion Mode: Homnal el

~General -

CTyelone Il

wihich device speed grade will you be using?

wihat is the Frequency of the inclockd input?

PLL bype
“which PLL type will pou be: using?

®! Select the PLL type automatically.

- Operation made
How will the PLL outputs be generated?
Use the feedback path inside the PLL

% In Mormal Mode

1 In Source-Synchronous Compensation Mode

In Zero Delay Buffer Mods

J Wit no compensation

wihich output clack wil bs compensated For?

[[Gancel || <gack |[mests |[Enish |

Figure 13. Define the clock frequency.

MegaWizard Plug-In Manager [page 4 of 10]

ALTPLL

Able ko implement the requested PLL

sdram_pll

optional inputs

ROSKD 1 ko frequency: 50.000 Mz [[T aata st lnatimiE o sslastiiehs mrshis e pLL
i et N or | Create an 'pllena’input to selsctively enable the

[7] Create an‘areset’ input to asynchronoushy reset the PLL

[] Create an 'pfdena’ input b selectively enable the phase/freq, detectar

Lock output

Tyrclone ||

["] Create 'locked' output

| Advanced PLL parsmsters
Using these parameters is recommended for advanced users orly
[Create output file(s) using the 'Advanced PLL parameters
- Configurations with output clock(s) that use cascade counters are not supported

| Cancel ” < Back ” Mext > ” Einish ‘

Figure 14. Remove unnecessary signals.

11

4. We are interested only in the input sigmatlockOand the output signa0. Remove the other two signals
shown in the block diagram in the figure by de-selecting thioapl inputareset as well as thdocked
output, as indicated in the figure. Clickext on this page as well as on page 5, until you reach page 6
which is shown in Figure 15.

MegaWizard Plug-In Manager [page 6 of 10]

Documentation

c0 - CorefExternal Qutput Clock

sdram_pll Able taimplement the requested PLL
Ok | o < 50.000 hHz £ Use this clack
Operation hiode: Normal Clock Tap Settings
[Cik [Riatio Ph cd] OC (%) ey Jﬁ_ct_uf‘-l_S_t?_t_tl_ngs _
Leo | 111 {5400 so.00 | ! Enter output clock Frequency: |_5Ul_UUUU__UUUU__|I MHz | ED-DDDDDD |
(' Enter output clock parameters:
Clock multiplication factar C 1 |
<= Cof " =
Clock division Factor C gl |
Clock phase shift i-S.DD & ns :o :-300 -|
Clock duby cycle (%) ISD.DD | ?” ;50.00 |

More Details ==

1~ Per Clock Feasibility Indicators

(B

| Cancel ” < Back ” Mext = ” Einish |

Figure 15. Specify the phase shift.

5. The shifted clock signal is callex. Specify that the output clock frequency is 50 MHz. Also,@fethat
a phase shift of-3 ns is required, as indicated in the figure. Clidkxt to reach the window in figure 16.

6. In order to ensure that the phase shift is exactly -3 ns, iNeltive the original (non-shifted) clock through
the PLL as well, but without any modifications. It will be eadlcl. SelectUse this clock and specify
that the output clock frequency is 50 MHz. Leave all the o8edtings unchanged and cli€linish, which
advances to page 10.

7. Inthe summary window in Figure 17 cli¢knish to complete the process. At this point, a box may pop up
asking you to add the newly generated files to the projecthi;idase, seledlo, since this is not needed
when using VHDL.

12

MegaWizard Plug-In Manager [page 7 of 10]

ALTPLL

¢l - CorefExternal Output Clock,

sdrarn_pll Able to implement the requested PLL
WSO | o trequency: 50.000 he 01 71 Use this clock
Operation hdode: Normal L Clock Tap Settings
o T O O Requested settings Actual settings
o0 | # | -54.00| 5000 %) Enter output clock frequencyt: 50 HMHZ 20:000000 |
el | 14 | 0.00 | 5000

) Enter output clock parameters:

Cyelone || Clock multiplication Factor

R R

Clock division Factor

Clack phase shift 0,00 % !deg ;ﬁ; D.00 |

Clock duty cycle (%) ‘SD‘DD

More Details >

~Per Clock Feasibillky Indicakars

. cl o2

| Cancel H < Back || et = ” Einish |

Figure 16. Drive the original clock signal through the PLL.

13

MegaWizard Plug-In Manager [page 10 of 10] -- Summary.

' a ALTPLL

sdram_pll
NCKD | ko frequency: 50.000 Mz c
Operation Mode: Normal ¢l
Cik [Ratio] Ph @] OC (%)
oo | 141 | -54.00] s0.00
ot | 141] 000 | s0.00

Cyclone Il

About

Documentation

Turn on the files you wish to generate. & gray checkmark indicates a file that is
automatically generated, and a red checkmark indicates an optional file. Click
Finish to generate the selected files. The state of each checkbox is maintained in

subsequent MegaWizard Plug-In Manager sessions.

The MegaWizard Plug-In Manager creates the selected files in the following

directory:

D:\sopc_builder_tutorialy,

O sdram_pll_inst.vhd
[sdram_pll_waveforms. htel
L. sdram_pll_wave”.jpg

File] Description

[sdram_pll.vhd Wariation file

[sdram_pll.ppf PinPlanner ports PPF file

O sdram_pll.inc AHDL Include file

O sdram_pll.cmp YHDL component declaration file
O sdram_pll.bsf Quartus Il symbol file

Instantiation template file
Sample waveforms in summary
Sample waveform file(s)

| Cancel “ < Back l

| Finish |

The desired PLL circuit is now defined as a VHDL entity in the §itlram_pll.vhdwhich is placed in the project
directory. Figure 18 shows the entity ports, consistingigrialsinclkO, cO, andcl.

b sdram_pll.vhd

Figure 17. The summary page.

B az
43

ih 4] 44
45

16

- 47
A% % a5
% 0T 43
50

& 51
52

=y | 53
= =2 54
55

56

<

EENTITY sdram_pll
FPORT
= {
inclk0
co
cl

Vi
END sdram_pll;

E LARCHITECTURE 3TN

SIGNAL sub_wireld
SIGNAL sub_wirel
SIGNAL sub wirez

I3

: IN 3TD_LoOGIc
OUT 3TD_LOGIC ;
OUT 3TD_LOGIC

OF sdram pll I3

STD_LOGIC ;
STD_LOGIC ;

STD_LOGIC VECTOR (5 DOWNTO O);

|<

|

Figure 18. The generated PLL entity.

14

Next, we have to fix the top-level VHDL entity, given in FiguBe to include the PLL circuit. The desired
code is shown in Figure 19. The PLL circuit connects the stilock output0to the pinDRAMO_CLK and the
unmodified clock signat1to the clock signal required to drive the Nios Il system.

—— Implements a simple Nios Il system for the DE2-70 board.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system.

—— CLOCK_50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDG7O0 are parallel port outputs from the Nios Il system.
—— SDRAM ports correspond to the signals in Figure 2; their nmare those
—— used in the DE2-70 User Manual.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK 50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAMO_CLK, DRAMO_CKE : OUT STD_LOGIC;
DRAMO_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
DRAMO BA 1, DRAMO BA 0:BUFFER STD_LOGIC;
DRAMO_CS N, DRAMO_CAS N, DRAMO_RAS N, DRAMO_WE_N : OUT STROGIC;
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAMO _UDQM, DRAMO_LDQM : BUFFER STD_LOGIC);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (clk: IN STD_LOGIC;

reset_ n:IN STD_LOGIC;
out_port_from_the LEDs : OUT STD_LOGIC_VECTOR(7 DOWNTQ 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
zs_addr_from_the_sdram_0: OUT STD_LOGIC_VECTOR(11 DOV@NDD;
zs_ba_from_the _sdram_0: BUFFER STD_LOGIC_VECTOR(1 DOWN);
zs_cas_n_from_the_sdram_0: OUT STD_LOGIC;
zs_cke from_the sdram_0: OUT STD_LOGIC;
zs_cs_n_from_the_sdram_0: OUT STD_LOGIC;
zs_dg_to_and_from_the_sdram_0: INOUT STD_LOGIC_VECTIZRDOWNTO 0);
zs_dgm_from_the _sdram_0: BUFFER STD_LOGIC_VECTOR(1 DOWN);
zs_ras_n_from_the sdram_0:OUT STD_LOGIC;
zs_we_n_from_the_sdram_0: OUT STD_LOGIC);

END COMPONENT;

...continued in Pari

Figure 19. Proper instantiation of the expanded Nios llaystParta).

15

COMPONENT sdram_pll
PORT (inclkO : IN STD_LOGIC;
c0: OUT STD_LOGIC;
cl:0OUT STD_LOGIC);
END COMPONENT;

SIGNAL BA: STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);

—— This signal is used to connect the unmodified clock signatamfthe PLL to the
—— NIOS Il system

SIGNAL pll_cl1: STD_LOGIC;
BEGIN

DRAMO_BA_1<=BA(1);

DRAMO_BA_0 <= BA(0);

DRAMO_UDQM <= DQM(1);

DRAMO_LDQM <= DQM(0);

—— Instantiate the Nios Il system entity generated by the SOBIEZI&.
Niosll: nios_system PORT MAP (pll_c1, KEY(0), LEDG, SW,
DRAMO_ADDR, BA, DRAMO_CAS N, DRAMO_CKE, DRAMO_CS_ N,
DRAM_DQ, DQM, DRAMO_RAS_N, DRAMO_WE_N);

—— Instantiate the entity sdram_pll (inclkO, c0, c1).
neg_3ns: sdram_pll PORT MAP (CLOCK_50, DRAMO_CLK, pll_r1)

END Structure;

Figure 19. Proper instantiation of the expanded Nios llaystPart).

Compile the code and download the design into the CyclonB@#/& on the DE2-70 board. Use the application
program in Figure 9 to test the circuit.

Copyright(©2009 Altera Corporation. All rights reserved. Altera, Thregtammable Solutions Company, the
stylized Altera logo, specific device designations, ana#iler words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thentratts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicees are the property of their respective holders.
Altera products are protected under humerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance oksémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resetvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitiiability arising out of the application or use of any
information, product, or service described herein excembaressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialewite specifications before relying on any published
information and before placing orders for products or s&Ewi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdiguinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesisd particular purpose, are specifically disclaimed.

16

