
Introduction to the Altera SOPC Builder
Using VHDL Design

This tutorial presents an introduction to Altera’s SOPC Builder software, which is used to implement a system
that uses the Nios II processor on an Altera FPGA device. The system development flow is illustrated by giving
step-by-step instructions for using the SOPC Builder in conjuction with the QuartusR© II software to implement a
simple system.

The last step in the development process involves configuring the designed circuit in an actual FPGA device,
and running an application program. To show how this is done,it is assumed that the user has access to the Altera
DE2-70 Development and Education board connected to a computer that has Quartus II and NiosR© II software
installed.

The screen captures in the tutorial were obtained using the Quartus II version 9.0; if other versions of the
software are used, some of the images may be slightly different.

Contents:
Nios II System
Altera’s SOPC Builder
Integration of the Nios II System into a Quartus II Project
Running the Application Program

1

Altera’s Nios II is a soft processor, defined in a hardware description language, which can be implemented
in Altera’s FPGA devices by using the QuartusR© II CAD system. To implement a useful system it is necessary
to add other funcional units such as memories, input/outputinterfaces, timers, and communications interfaces.
To facilitate the implementation of such systems, it is useful to have computer-aided-design (CAD) software for
implementing a system-on-a-programmable-chip (SOPC). Altera’s SOPC Builder is the software needed for this
task.

This tutorial provides a basic introduction to Altera’s SOPC Builder, which will allow the reader to quickly
implement a simple Nios II system on the Altera DE2-70 board.For a fuller treatment of the SOPC Builder, the
reader can consult theNios II Hardware Development Tutorial. A complete description of the SOPC Builder can
be found in theQuartus II Handbook Volume 4: SOPC Builder. These documents are available on the Altera web
site.

1 Nios II System

A Nios II system can be implemented on the DE2-70 board as shown in Figure 1.

Figure 1. A Nios II system implemented on the DE2-70 board.

2

The Nios II processor and the interfaces needed to connect toother chips on the DE2-70 board are implemented
in the Cyclone II FPGA chip. These components are interconnected by means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in the Cyclone II device can be used to provide an on-chip
memory for the Nios II processor. The SSRAM, SDRAM and Flash memory chips on the DE2-70 board are
accessed through the appropriate interfaces. Parallel andserial input/output interfaces provide typical I/O ports
used in computer systems. A special JTAG UART interface is used to connect to the circuitry that provides a
Universal Serial Bus (USB) link to the host computer to whichthe DE2-70 board is connected. This circuitry and
the associated software is called theUSB-Blaster. Another module, called the JTAG Debug module, is provided
to allow the host computer to control the Nios II system. It makes it possible to perform operations such as
downloading programs into memory, starting and stopping execution, setting breakpoints, and collecting real-time
execution trace data.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware descrip-
tion language, a knowledgeable user could write such code toimplement any part of the system. This would be
an onnerous and time consuming task. Instead, one can use theSOPC Builder to implement a desired system
simply by choosing the required components and specifying the parameters needed to make each component fit
the overall requirements of the system. In this tutorial, wewill illustrate the capability of the SOPC Builder by
designing a very simple system. The same approach is used to design large systems.

On-chip
memory

parallel input

interface

parallel output

interface

Avalon switch fabric

Nios II processor
JTAG UART

interface

USB-Blaster

interface

Host computer

Cyclone II

FPGA chip

SW7 SW0 LEDG7 LEDG0

Reset_n Clock

LEDs

JTAG Debug

module

Switches

Figure 2. A simple example of a Nios II system.

3

Our example system is given in Figure 2. The system realizes atrivial task. Eight toggle switches on the DE2-
70 board,SW7− 0, are used to turn on or off the eight green LEDs,LEDG7− 0. The switches are connected to
the Nios II system by means of a parallel I/O interface configured to act as an input port. The LEDs are driven by
the signals from another parallel I/O interface configured to act as an output port. To achieve the desired operation,
the eight-bit pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs.
This will be done by having the Nios II processor execute a program stored in the on-chip memory. Continuous
operation is required, such that as the switches are toggledthe lights change accordingly.

We will use the SOPC Builder to design the hardware depicted in Figure 2. Next, we will assign the Cyclone II
pins to realize the connections between the parallel interfaces and the switches and LEDs which act as I/O devices.
Then, we will configure the FPGA to implement the designed system. Finally, we will use the software tool called
theNios II Monitor Programto assemble, download and execute a Nios II program that performs the desired task.

Doing this tutorial, the reader will learn about:

• Using the SOPC Builder to design a Nios II-based system

• Integrating the designed Nios II system into a Quartus II project

• Implementing the designed system on the DE2-70 board

• Running an application program on the Nios II processor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the QuartusII CAD software. It allows the user to easily
create a system based on the Nios II processor, by simply selecting the desired functional units and specifying
their parameters. To implement the system in Figure 2, we have to instantiate the following functional units:

• Nios II processor, which is referred to as a Central Processing Unit (CPU)

• On-chip memory, which consists of the memory blocks in the Cyclone II chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

• Two parallel I/O interfaces

• JTAG UART interface for communication with the host computer

To define the desired system, start the Quartus II software and perform the following steps:

1. Create a new Quartus II project for your system. As shown inFigure 3, we stored our project in a directory
calledsopc_builder_tutorial, and we assigned the namelights to both the project and its top-level design
entity. You can choose a different directory or project name, but be aware that the SOPC Builder software
does not permit the use of spaces in file names. For example, anattempt to use a directory namesopc
builder tutorialwould lead to an error. In your project, choose the EP2C70F896C6 chip as the target device,
because this is the FPGA on the DE2-70 board.

2. SelectTools > SOPC Builder, which leads to the pop-up box in Figure 4. Enternios_systemas the system
name; this will be the name of the system that the SOPC Builderwill generate. Choose VHDL as the target
HDL, in which the system module will be specified. ClickOK to reach the window in Figure 5.

4

Figure 3. Create a new project.

Figure 4. Create a new Nios II system.

3. Figure 5 displays the System Contents tab of the SOPC Builder, which is used to add components to the
system and configure the selected components to meet the design requirements. The available components
are listed on the left side of the window. Before choosing ourcomponents, examine the area in the figure
labeledTarget. Check the setting for theDevice Family and ensure thatCyclone II is selected.

4. The Nios II processor runs under the control of a clock. Forthis tutorial we will make use of the 50-MHz
clock that is provided on the DE2-70 board. As shown in Figure5, it is possible to specify the names and
frequency of clock signals in the SOPC Builder display. If not already included in this list, specify a clock
namedclk_0with the source designated asExternal and the frequency set to 50.0 MHz.

5

Figure 5. The System Contents tab window.

5. Next, specify the processor as follows:

• On the left side of the window in Figure 5 selectNios II Processor and clickAdd, which leads to the
window in Figure 6.

6

Figure 6. Create a Nios II processor.

• Choose Nios II/e which is the simplest version of the processor. Click Finish to return to the window
in Figure 5, which now shows the Nios II processor specified asindicated in Figure 7. There may be
some warnings or error messages displayed in the SOPC Builder Messages window (at the bottom of
the screen), because some parameters have not yet been specified. Ignore these messages as we will
provide the necessary data later.

7

Figure 7. The defined processor.

6. To specify the on-chip memory perform the following:

• SelectMemories and Memory Controllers > On-Chip > On-Chip Memory (RAM or ROM) and
click Add

• In the On-Chip Memory Configuration Wizard window, shown in Figure 8, set the memory width to
32 bits and the total memory size to 4 Kbytes

• Do not change the other default settings

• Click Finish, which returns to the System Contents tab as indicated in Figure 9

8

Figure 8. Define the on-chip memory.

9

Figure 9. The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

• SelectPeripherals > Microcontroller Peripherals > PIO (Parallel I/O) and clickAdd to reach the
PIO Configuration Wizard in Figure 10

• Specify the width of the port to be 8 bits and choose the direction of the port to beInput, as shown in
the figure

• Click Finish to return to the System Contents tab as given in Figure 11

10

Figure 10. Define a parallel input interface.

Figure 11. The parallel input interface is included.

11

8. In the same way, specify the output parallel I/O interface:

• SelectPeripherals > Microcontroller Peripherals > PIO (Parallel I/O) and clickAdd to reach the
PIO Configuration Wizard again

• Specify the width of the port to be 8 bits and choose the direction of the port to beOutput

• Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a means forcommunication between the Nios II system
and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

• SelectInterface Protocols > Serial > JTAG UART and clickAdd to reach the JTAG UART Con-
figuration Wizard in Figure 12

• Do not change the default settings

• Click Finish to return to the System Contents tab

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note that the SOPC Builder automatically chooses names for
the various components. The names are not necessarily descriptive enough to be easily associated with the
target design, but they can be changed. In Figure 2, we use thenames Switches and LEDs for the parallel
input and output interfaces, respectively. These names canbe used in the implemented system. Right-click
on thepio_0 name and then selectRename. Change the name to Switches. Similarly, changepio_1 to
LEDs.

11. The base and end addresses of the various components in the designed system can be assigned by the user,
but they can also be assigned automatically by the SOPC Builder. We will choose the latter possibility. So,
select the command (using the menus at the top of the SOPC Builder window)System > Auto-Assign

12

Base Addresses, which produces the assignment shown in Figure 14.

Figure 13. The complete system.

Figure 14. The final specification.

13

12. The behaviour of the Nios II processor when it is reset is defined by its reset vector. It is the location in
memory device the processor fetches the next instruction when it is reset. Similarly, the exception vector is
the the memory address the processor goes to when an interrupt is raised. To specify these two parameters,
perform the following:

• Right-click on thecpu_0 and then selectEdit to reach the window in Figure 15

• Selectonchip_memory2_0 to be the memory device for both reset vector and exception vector, as
shown in the figure

• Do not change the default setting for offset

• Click Finish to return to the System Contents tab

Figure 15. Define the reset vector and exception vector.

13. Having specified all components needed to implement the desired system, it can now be generated. Select
the System Generation tab, which leads to the window in Figure 16. Turn offSimulation - Create
simulator project files, because in this tutorial we will not deal with the simulation of hardware. Click
Generate on the bottom of the SOPC Builder window. The generation process produces the messages

14

displayed in the figure. When the message “SUCCESS: SYSTEM GENERATION COMPLETED" appears,
click Exit. This returns to the main Quartus II window.

Figure 16. Generation of the system.

Changes to the designed system are easily made at any time by reopening the SOPC Builder tool. Any com-
ponent in the System Contents tab of the SOPC Builder can be selected and deleted, or a new component can be
added and the system regenerated.

3 Integration of the Nios II System into a Quartus II Project

To complete the hardware design, we have to perform the following:

• Instantiate the module generated by the SOPC Builder into the Quartus II project

• Assign the FPGA pins

• Compile the designed circuit

• Program and configure the Cyclone II device on the DE2-70 board

3.1 Instantiation of the Module Generated by the SOPC Builder

The instantiation of the generated module depends on the design entry method chosen for the overall Quartus II
project. We have chosen to use VHDL, but the approach is similar for both Verilog and schematic entry methods.

Normally, the Nios II module is likely to be a part of a larger design. However, in the case of our simple
example there is no other circuitry needed. All we need to do is instantiate the Nios II system in our top-level
VHDL file, and connect inputs and outputs of the parallel I/O ports, as well as the clock and reset inputs, to the
appropriate pins on the Cyclone II device.

The VHDL entity generated by the SOPC Builder is in the filenios_system.vhdin the directory of the project.
Note that the name of the VHDL entity is the same as the system name specified when first using the SOPC Builder.

15

The VHDL code is quite large. Figure 17 depicts the portion ofthe code that defines the port signals for the entity
nios_system. The 8-bit vector that is the input to the parallel portSwitchesis calledin_port_to_the_Switches. The
8-bit output vector is calledout_port_from_the_LEDs. The clock and reset signals are calledclk_0andreset_n,
respectively. Note that the reset signal is added automatically by the SOPC Builder; it is calledreset_nbecause it
is active low.

Figure 17. A part of the generated VHDL entity.

Figure 18 shows a top-level VHDL entity that instantiates the Nios II system. This entity is namedlights,
because this is the name we specified in Figure 3 for the top-level design entity in our Quartus II project. Note that
the input and output ports of the entity use the pin names for the 50-MHz clock,CLOCK_50, pushbutton switches,
KEY, toggle switches,SW, and green LEDs,LEDG, that are specified in the DE2-70 User Manual. Type this code
into a file calledlights.vhd. Add this file and all the *.vhd files produced by the SOPC Builder to your Quartus II
project. Also, add the necessary pin assignments on the DE2-70 board to your project. The procedure for making
pin assignments is described in the tutorialQuartus II Introduction Using VHDL Design. Note that an easy way
of making the pin assignments when we use the same pin names asin the DE2-70 User Manual is to import the
assignments given in the file calledDE2_70_pin_assignments.csvin the directoryDE2_70_tutorials\design_files,
which is included on the CD-ROM that accompanies the DE2-70 board and can also be found on Altera’s DE2-70
web pages. You may also need to change operating mode of thenCEO pin to regular I/O. This can be done by
going toAssignments->Device->Device and Pin Options->Dual-Purpose Pins and double-clicking on the
Value field of thenCEO pin and changing it toUse as regular I/O.

Since the system we are designing needs to operate at a 50-MHzclock frequency, add the needed timing as-
signment in your Quartus II project. The tutorialTiming Considerations with VHDL-Based Designsshows how
this is done.

16

−− Implements a simple Nios II system for the DE2-70 board.
−− Inputs: SW7−0 are parallel port inputs to the Nios II system
−− CLOCK_50 is the system clock
−− KEY0 is the active-low system reset
−− Outputs: LEDG7−0 are parallel port outputs from the Nios II system
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (

SW : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50 : IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system

PORT (
clk_0 : IN STD_LOGIC;
reset_n : IN STD_LOGIC;
out_port_from_the_LEDs : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
in_port_to_the_Switches : IN STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END COMPONENT;

BEGIN
−− Instantiate the Nios II system entity generated by the SOPC Builder

NiosII: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW);
END Structure;

Figure 18. Instantiating the Nios II system.

Having made the necessary settings compile the code. You maysee some warning messages associated with
the Nios II system, such as some signals being unused or having wrong bit-lengths of vectors; these warnings can
be ignored.

3.2 Programming and Configuration

Program and configure the Cyclone II FPGA in the JTAG programming mode as follows:

1. Connect the DE2-70 board to the host computer by means of a USB cable plugged into the USB-Blaster
port. Turn on the power to the DE2-70 board. Ensure that the RUN/PROG switch is in the RUN position.

2. SelectTools > Programmer to reach the window in Figure 19.

3. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster is not chosen by
default, press theHardware Setup... button and select the USB-Blaster in the window that pops up.

4. The configuration filelights.sofshould be listed in the window. If the file is not already listed, then click
Add File and select it.

17

5. Click the box underProgram/Configure to select this action.

6. At this point the window settings should appear as indicated in Figure 19. PressStart to configure the
FPGA.

Figure 19. The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA device, it is now necessary to create and execute an appli-
cation program that performs the desired operation. This can be done by writing the required program either in
the Nios II assembly language or in a high-level language such as C. We will illustrate both approaches.

A parallel I/O interface generated by the SOPC Builder is accessible by means of registers in the interface.
Depending on how the PIO is configured, there may be as many as four registers. One of these registers is called
the Data register. In a PIO configured as an input interface, the data read from the Data register is the data
currently present on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios
II processor) into the Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface,
then the PIO inputs and outputs use the same physical lines. In this case there is a Data Direction register included,
which determines the direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have
the Data register. The addresses assigned by the SOPC Builder are 0x00003000 for the Data register in the PIO
called Switches and 0x00003010 for the Data register in the PIO called LEDs, as indicated in Figure 14.

4.1 Using a Nios II Assembly Language Program

Figure 20 gives a Nios II assembly-language program that implements our trivial task. The program loads the
addresses of the Data registers in the two PIOs into processor registersr2 andr3. It then has an infinite loop that
merely transfers the data from the input PIO,Switches, to the output PIO,LEDs.

The program includes the assembler directive

.include "nios_macros.s"

which informs the Assembler to use the Nios II macros that specify how themovia pseudoinstructions can be
assembled.

18

.include "nios_macros.s"

.equ Switches, 0x00003000

.equ LEDs, 0x00003010

.global _start
_start:

movia r2, Switches
movia r3, LEDs

loop: ldbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 20. Assembly language code to control the lights.

The directive

.global _start

indicates to the Assembler that the label_start is accessible outside the assembled object file. This label is the
default label we use to indicate to the Linker program the beginning of the application program.

For a detailed explanation of the Nios II assembly language instructions see the tutorialIntroduction to the
Altera Nios II Soft Processor.

Enter this code into a filelights.sand place the file into a working directory. We placed the file into the
directorysopc_builder_tutorial\app_software. The program has to be assembled and converted into an S-Record
file, lights.srec, suitable for downloading into the implemented Nios II system.

Altera provides themonitor software, calledAltera Monitor Program, for use with the DE2-70 board. This
software provides a simple means for compiling, assemblingand downloading of programs into a Nios II system
implemented on a DE2-70 board. It also makes it possible for the user to perform debugging tasks. A description
of this software is available in theAltera Monitor Programtutorial.

Open the Altera Monitor Program, which leads to the window inFigure 21. This software needs to know the
characteristics of the designed Nios II system, which are given in the ptf filenios_system.ptf. Click theFile > New
Project menu item to display the New Project Wizard window, shown in Figure 22, and perform the following
steps:

1. Enter thesopc_builder_tutorialdirectory as the Project directory by typing it directly into the Project direc-
tory field, or by browsing to it using theBrowse... button.

2. Enterlightsas the Project name and clickNext >, leading to Figure 23.

3. From theSelect a System drop down box, select<Custom System>.

4. Click Browse... beside theSystem Description field to display a file selection window and choose the
nios_system.ptffile. Note that this file is in the design directorysopc_builder_tutorial.

5. Specifying the .sof file in the Quartus II Programming (SOF) File field allows the user to download the
programming file onto the board from the Altera Monitor Program. Note that we need not specify this file
as we have already downloaded the programming file onto the board.

6. Click Next >.

7. SelectAssembly Program as the program type from the drop down menu and clickNext >, leading to
Figure 24.

19

8. Click Add... to display a file selection window and choose thelights.sfile and clickNext >. Note that this
file is in the directorysopc_builder_tutorial\app_software.

9. Ensure that theHost Connection is set to the USB-Blaster, theProcessor is set tocpu_0and theTerminal
Device is set to the JTAG UART, and clickNext >

10. The Altera Monitor Program also needs to know where to load the application program. In our case, this is
the memory block in the FPGA device. The SOPC Builder assigned the nameonchip_memory2_0to this
block. As shown in Figure 25, the Monitor Program has alreadyselected the correct memory device.

11. Having provided the necessary information, clickFinish to confirm the system configuration.

Figure 21. The Altera Monitor Program window on startup.

20

Figure 22. Specify the project directory and name.

Figure 23. The System Specification window.

21

Figure 24. Specify the binary file to use.

Figure 25. The program memory settings window.

22

Next, to assemble and download thelight.s program, click theActions > Compile & Load menu item. The
Altera Monitor Program will invoke an assembler program, followed by a linker program. The commands used to
invoke these programs, and the output they produce, can be viewed in theInfo & Errors window of the Monitor
Program window. After the program has been downloaded onto the board, the program is displayed in theDis-
assembly window of the Monitor Program as illustrated in Figure 26. Observe thatmovia is apseudoinstruction
which is implemented as two separate instructions.

Click theActions > Continue menu item to execute the program. With the program running, you can now
test the design by turning the switches,SW7 to SW0 on and off; the LEDs should respond accordingly.

Figure 26. Display of the downloaded program.

The Monitor Program allows a number of useful functions to beperformed in a simple manner. They include:

• single stepping through the program

• examining the contents of processor registers

• examining the contents of the memory

• setting breakpoints for debugging purposes

• disassembling the downloaded program

A description of this software and all of its features is available in theAltera Monitor Programtutorial.

4.2 Using a C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 25. Enter this code into a file calledlights.c.

23

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010

void main()
{ while (1)

*LEDs = *Switches;
}

Figure 27. C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by clicking theActions > Disconnect menu item.

2. Click theSettings > Program Settings... menu item to launch the Project settings window with the
Program settings tab selected.

3. SelectC Programas theProgram Type in the drop-down list. The Monitor Program may prompt you to
clear any currently selected source files. ClickYes to proceed. Note thatlights.shas been removed from
the list of source files.

4. Click Add... and choose thelights.cfile.

5. Click Ok to confirm the new program configuration.

The steps to compile, load, and run the program are the same asfor an assembly language program.

Copyright c©2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and allother words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of itssemiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version ofdevice specifications before relying on any published
information and before placing orders for products or services.
This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

24

