
FYS 4220/9220 3.07.2011

FYS4220/9220

Lab Exercise 1

VHDL – Switches & LEDs, 7-

segment decoder, counters, and

digital debouncer

FYS 4220/9220 3.07.2011

Introduction

The main purpose of this first lab exercise is to learn the design methodology for

programmable logic (FPGA/CPLD) using the QUARTUS II and Modelsim-Altera design

tools. You will learn the entire process of getting your VHDL program into the FPGA on the

printed circuit board. In addition, you will learn how to perform both functional (RTL level)

and timing (Gate level) simulations using the Altera tools.

The lab also demonstrates several techniques used in digital design (counting, decoding and

synchronization).

An introduction to the QUARTUS II design tool can be found in the pdf document ”Quartus

II Introduction Using VHDL Design”. We will not use the Quartus II simulator described

in section 6. This simulator is based on waveforms only (not testbenches), and because of its

limitations and the fact that this simulator is no longer available in Quartus II (from version

10.0) we will use the Modelsim-Altera VHDL simulator. The setup and use of the Modelsim-

Altera simulator from Quartus II is explained in the note “Quartus_Modelsim_setup”.

For this first lab you should make a main folder called Lab1. In addition, it is recommended

to make sub folders called part1, part2, part3, and part4 for the different parts of the lab, in

order to only have one Quartus II project in each (sub) folder.

A short lab report must be created (e.g. in MS Word), including the required material (answer

to questions, print screens etc.). The required submission (hand-in) for each part of the lab is

specified in the text (e.g. your VHDL files).

FYS 4220/9220 3.07.2011

1. Switches & LEDs

The purpose of this first exercise is to learn how to connect simple input and output devices

to an FPGA chip and implement a circuit that uses these devices. We will use the switches

SW17−0 on the DE2 board as inputs to the circuit. We will use light emitting diodes (LEDs)

as output devices.

The DE2 board provides 18 toggle switches, called SW17−0, which can be used as inputs to a

circuit, and 18 red lights, called LEDR17−0, that can be used to display output values. Figure

1 shows a simple VHDL program that uses these switches and shows their states on the red

LEDs. Since there are 18 switches and lights it is convenient to represent them as arrays in

the VHDL code, as shown. We have used a single assignment statement for all 18

LEDR outputs, which is equivalent to the individual assignments:

LEDR(17) <= SW(17);

LEDR(16) <= SW(16);

. . .

LEDR(0) <= SW(0);

The DE2 board has hardwired connections between its FPGA chip and the switches and

lights. To use SW17−0 and LEDR17−0 it is necessary to include in your Quartus II project

the correct pin assignments, which are given in the DE2 User Manual. For example, the

manual specifies that SW0 is connected to the FPGA PIN_AA23 and LEDR0 is

connected to PIN_AJ6. The procedure for making pin assignments is described in the tutorial

Quartus II Introduction using VHDL Design.

Figure 1

LIBRARY ieee;

USE ieee.std_logic_1164.all;

- - Simple module that connects the SW switches to the LEDR lights

ENTITY part1 IS

PORT (

SW : IN STD_LOGIC_VECTOR (17 DOWNTO 0); -- switches

LEDR : OUT STD_LOGIC_VECTOR(17 DOWNTO 0) -- red LEDs

);

END part1;

ARCHITECTURE Behavior OF part1 IS

BEGIN

LEDR <= SW;

END Behavior;

FYS 4220/9220 3.07.2011

Perform the following steps to implement a circuit corresponding to the

VHDL code in Figure 1 on the DE2 board:

1. Create a new directory called Lab1 (at a suitable location, such as your network M-

drive user area, which is backed up every day).

2. Copy the provided file part1.vhd into this directory

3. Open and look at the provided VHDL file called part1.vhd in a suitable editor of

your choice (using e.g. Quartus II or Notepad++). This is the same VHDL code as

shown in Figure 1.

4. Start the Quartus II program, if not already started.

5. Create a new Quartus II project called Lab1_part1 for your circuit (from File – New

Project Wizard).

Figure 2

FYS 4220/9220 3.07.2011

6. Include the VHDL file called part1.vhd in your project.

Figure 3

7. Select Cyclone II EP2C70F896C6 as the target chip, which is the FPGA chip on the

Altera DE2 board (hint: set Pin count to 896 to easier find the correct chip).

Figure 4

FYS 4220/9220 3.07.2011

8. We will use the Modelsim-Altera simulator – set the EDA simulation toll to

Modelsim-Altera, the others tools (Synthesis and analysis) should be <None>

Figure 5

9. Compile the project (select Processing - Start Compilation), and look at the

compilation messages. The project must compile be without errors in order to

continue.

10. Create a pin assignment (from Assignments – Pins) for the DE2 board, as discussed

above, such that the switches control the red LEDs through the FPGA. (In the Pin

Planner, double clicking a row in the Location column gives a pop-list where you can

select the pin for the node name/port). You find the correct pins from table 5.1 and 5.2

in the DE2 manual. (Hint: you do not have to do all the 18x2 pin assignments, in

order to save some time. If you connect e.g. four switches to the four corresponding

red LEDs you will see and learn the process).

11. Compile the project again, in order to include the new pin assignments.

12. Download the compiled circuit into the FPGA chip on the DE2 board. (Programming

of the DE2 board is described in the DE2 manual section in 5.1. Remember to use AS

– Active Serial programming mode described under the header “Configuring the

EPCS16 in AS Mode”. Note that you have to disable compression for Cyclone II

bitstreams before you compile the design, as explained in “License setup and device

Programming”. See also the Quartus II intro for how to perform the programming

from Quartus II); in general the steps can be as follows:

a. Select Tools – Programmer

b. In the mode list, select Active Serial Programming

c. Select Add device, and select EPCS16

d. Select the line (click on it with the left mouse button)

FYS 4220/9220 3.07.2011

e. Select Change file

f. Select part1.pof, and click Open

g. Select Program/Configure and Verify

h. Clik the Start button to start the programming

Figure 6

13. Test the functionality of the circuit by toggling the switches and observing the LEDs.

Required hand-in:

 None

2. 7-segment decoder

Figure 1 shows a 7-segment decoder module that has the three-bit input C2 C1 C0. This

decoder produces seven outputs that are used to display a character on a 7-segment display.

Table 1 lists the characters that should be displayed for each valuation of C2 C1 C0.

The seven segments in the display are identified by the indices 0 to 6 shown in Figure 7.

Each segment is illuminated by driving it to the logic value 0. You are to write a VHDL

code that implements the logic function that represent circuits needed to activate each of the

FYS 4220/9220 3.07.2011

seven segments in order to produce the eight characters listed in table 1 (outputs) based on

the input from C2, C1 and C0. The VHDL file seg7decoder.vhd is created to assist you with

the assignment. The entity is already finished, but the architect only contains the code for

producing the 0 (zero) character on the 7-segment display when C2 C1 C0 is ”000”.

Complete the architecture such that you can active the characters on the display with the C2

C1 C0 inputs according to table 1.

Figure 7 7-segment display decoder

C2 C1 C0 (input) Display Number (output)

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 1.

Note that 4 inputs would be needed to represent numbers from 0 to 9 and hex numbers from A to F;

however, this is not required for this assignment.

Perform the following steps:

1. Complete the architecture in the file seg7decoder.vhd such that the functionality

described in table 1 is implemented.

2. Create a new Quartus II project called Lab1_part2 for your circuit, and add the

seg7decoder.vhd file to the project.

FYS 4220/9220 3.07.2011

3. Compile the project, and make sure there are no errors in the code.

4. For pin assignment, connect the C2 C1 C0 inputs to switches SW2−0, and connect the

seg7 outputs of the decoder to the HEX0 display on the DE2 board (according to table

5.4 in the DE2 manual)

5. After making the required DE2 board pin assignments, compile the project again.

6. Program the FPGA chip on the DE2 board with your code.

7. Test the functionality of the circuit by toggling the SW2−0 switches and observing the

7-segment display (NB: the other HEX seven segments HEX1 to HEX7 will show a

static “default” value, since we have not given them any particular input).

Required hand-in:

 Your (completed) seg7decoder.vhd file

3 Bit counter and word counter

Telemetry systems used for space applications, such as sounding rockets, often use a

telemetry format referred to as a “fixed frame format”. An example of this is shown in Figure

8. In this format the different instruments onboard the payload are given dedicated words in

the format for transmission of the data to the spacecraft encoder, before transmission back to

the ground station. In order for the instrument to transmit the correct data in the correct word

a common method applied is to have a bit counter and a word counter in the instrument, such

that the instrument knows when to transmit the data. In order to make sure that the counters

in the instrument and the counters in the encoder of the spacecraft are synchronized (agrees

on the counting values) the counters have a reset input signal in order to reset the counters

based on a synchronization signal logic that creates a reset pulse based on a synchronization

signal from the encoder (this is not implemented this lab, only the counters and the possibility

to reset them using a reset signal).

Figure 8 – Telemetry format

FYS 4220/9220 3.07.2011

The VHDL program counters_lab1.vhd takes in a clock signal (clk) and a reset signal. A

BITCOUNTER increments a bit counter on every falling clock edge, counting from 0 to 7

and then wraps back to 0 again. In order to count the words a process called WORDSTROBE

will set a WordStrobe output high („1‟) when the bit counter has the value 7, otherwise the

WordStobe output is low („0‟). The WORDCOUNTER looks at the WordStrobe signal, and

increases the word counter if the WordStrobe signal is high at a falling clock edge.

The clock signal called clk should be a 1 MHz clock. The reset signal should be low during

the entire simulations except for 5 clock periods starting from 5 ms into the simulation. In

addition, the counters are to be reset shortly after power up. (This is coded into the testbench

file). Simulate the circuit for 10 ms.

Perform the following steps:

1. Create a new Quartus II project called Lab1_part3

2. Add the file counters_lab1.vhd file to your project.

3. Open the VHDL file called counters_lab1.vhd. Make sure that you understand the

VHDL code.

4. Add the testbench file tb_counters_lab1.vhd to the project (Project – Add/Remove

Files in project)

5. Open the testbench file and take a look. The file has been generated by the Quartus II

testbench templar writer, and edited to add the wanted stimuli (in the process with the

label stimuli, in addition to a clock (clk) generation and initial value on the clk signal).

6. Perform a functional (RTL level) simulation using Modelsim-Altera simulator (as

explained in the “Quartus_Modelsim_setup.pdf” note. Simulate the circuit for 10 ms.

Figure 9

FYS 4220/9220 3.07.2011

Figure 10

7. Look at the simulation results, and verify correct behaviour of the circuit.

a. If you click symbol next to the Wave label in the upper left corner of the wave

window you can zoom (and unzoom) the wave window, such that it is easier

to look at the waveforms.

b. To change the value of the bit and word counter in the simulations from binary

to decimal you can select the signal names, right click and select Radix –

Unsigned, se Figure 11.

FYS 4220/9220 3.07.2011

Figure 11

8. Perform a timing (gate level) simulation using the Modelsim-Altera simulator, and

compare the result with the functional simulation. (Hint: you should now see delays

and also some non-valid counting values just after the clock transition. This should

give you a good idea of why asynchronous sequential designs in general are not

recommended!).

Required hand-in:

 A print screen of both the functional simulation and the timing simulation

(you can paste the result after PrntScrn into the Paint program, and cut

out only the wave part of the simulator window). Adjust the zoom level in

the simulator such that it is possible to see that both the bit counter and

the word counter are counting .

 Answer the following questions:

FYS 4220/9220 3.07.2011

o Q1: In the timing (gate level simulation), what is the delay (in ns)

between the falling edge of the clock (clk) and the change of the bit

counter (bit_cnt) output value to the next valid value? (Hint: Press

the new cursor button (below the New File icon in the top left

corner), such that you get two cursors in the wave window. Then

drag one of the cursors to a falling edge of the clock, and place the

other at the closest change in bit counter value.

4 Digital debouncer

If you want to input a manual switch signal into a digital circuit you'll need to debounce the

signal so a single press doesn't appear like multiple presses. The left-hand image in Figure 12

shows a simple push switch with a pull-up resistor. The right hand image shows the trace at

the output terminal, Vout, when the switch is pressed.

Figure 12: Left: Simple push switch circuit. Right: Output form the switch

As can be seen, pressing the switch does not provide a clean edge. If this signal was used as

an input to a digital counter, for example, you'd get multiple counts rather than the expected

single count. Note that the same can also occur on the release of a switch. The problem is that

the contacts within the switch don't make contact cleanly, but actually slightly 'bounce'

There are many different approaches to cleaning up switch bounce. Below in Figure 13 is a

debouncing circuit. The basic idea is to use a capacitor to filter out any quick changes in the

switch signal.

FYS 4220/9220 3.07.2011

Figure 13 External debouncer citcuit

If no debouncing circuit is available a digital debouncer can be programmed into the FPGA

(or CPLD) using VHDL. The digital switch debouncing circuit shown in Figure 14 is a basic

switch debouncer.

Figure 14 Digital debouncer block diagram

The three main parts are in the block diagram of Figure 14 is:

Sample Pulse Generator - A counter that increments every clock edge. When the maximum

is reached a sample pulse is generated and the count value resets to zero. The sample pulse is

used to sample the switch input.

Synchronizer - The Synchronizer makes sure the switch signal is synchronized with the

system clock, the double flip-flop minimizes the chance of metastability.

FYS 4220/9220 3.07.2011

Debouncer - A counter that is incremented every sample pulse while the switch is pressed.

When the switch is not pressed the counter is reset to zero. If the counter is at its maximum,

the debouncer output is high, otherwise it is low.

The timing of this circuit needs some consideration. The maximum values of the two

counters need to be set depending upon a) the system clock frequency, b) the shortest

expected press time and c) the longest bounce time.

The two circuit parameters are set as follows:

SAMPLE COUNT MAX - Set this value to give a sensible switch sampling rate, something

around a pulse every 500 us is fine. Higher values mean the pulse counter needs to be bigger,

too low and you'll miss short switch presses. Given a system clock frequency of 50 MHz:

SAMPLE COUNT MAX = (Clock Frequency / 2000) – 1 = (50000000 / 2000) - 1 = 24999

PULSE COUNT MAX - Set this high enough that bouncing regions are ignored, but low

enough that the shortest button press will still cause the counter to saturate at this value.

Given a pulse timing of 500 us a good value is 20, this equates to 10 ms. Bounces shorter

than 10 ms are ignored and switch presses longer than this are detected

In this lab we are assuming that the available system clock that we will use is 1 MHz

Perform the following steps:

1. Create a new Quartus II project called Lab1_part4 for your circuit.

2. Add the debouncer.vhd file to your project.

3. Open the VHDL file called debouncer.vhd.

4. Make sure that you understand the VHDL code for the debouncer (compare the

VHDL code with the block diagram in Figure 14).

5. Create a VHDL testbench for the debouncer

a. Create a testbench for the deboncer.vhd file by using the Testbench template

writer in Quartus II (See Quartus_Modelsim_setup.pdf)

b. Create suitable stimuli in the test bench to test the debouncer circuit.

c. The clock signal called clk should be a 1 MHz clock

d. The reset signal must be high in the beginning (for a few clock periods) in

order to reset the counters in the circuit. After this the reset signal can stay low

for the rest of the simulation time.

e. To test the circuit the input signal (SwitchIn) should have some high periods

that are shorter than the required high period (10 ms), and then one period that

is longer such that the debouncer output (SwitchOut) goes high, see Figure 15

for an example.

Figure 15

6. Perform a functional simulation of the debouncer circuit. Simulate the circuit for 100

ms.

7. Look at the simulation results, and verify correct behaviour of the circuit.

8. In order to look at other internal signals in the circuit do the following:

FYS 4220/9220 3.07.2011

a. In the Modelsim-altera sim-window, mark the unit under test which is called

i1 in this case

b. Select other signals to watch, e.g sample_cnt and debounce_cnt, and add them

to the wave; see Figure 16.

c. Type restart in the command (Transcript window), to restart the simulation

d. Click OK on the box that opens.

e. To simulate again with the added signals type run 100 ms (in the Transcript

window), and press enter.

f. Look at the counting values.

Figure 16

Required hand-in:

 Print screen of the functional simulation result. Adjust the zoom level

such that it is possible to see that the debouncer is working properly.

 Your testbench file tb_debouncer.vhd

