
FYS 4220/9220 Version 2, 3.7.2011

FYS4220/9220

Lab Exercise 2

VHDL – Use of components and

packages, LMPs, State machines

(Vending machine)

FYS 4220/9220 Version 2, 3.7.2011

Introduction

The purpose of the first part of this second lab exercise is to learn to include packages,

components and Altera Megafunctions (IPs)/LPMs (Library of Parameterized modules) into

the VHDL design. In the second part of the lab you are going to implement a state machine in

VHDL given a state diagram.

How to use LPMs is described in the pdf file ”Using Library Modules in VHDL Designs”.

You should also read the text “Debugging of VHDL Hardware Designs on Altera’s DE2

Boards”.

NOTE:

For this second lab you should make a main folder called Lab2. In addition, it is highly

recommended to make sub folders called part1_1, part1_2, part2 etc for the different parts of

the lab, in order to only have one Quartus II project in each (sub) folder. It is possible to

add/remove files to a project and to change the top level entity file. However, just changing

the top level entity file in an already defined project can cause problems (more setup is

required). The safest procedure is to make a new folder, copy files to this folder, and start

the New Project Wizard to create a new project.

A short lab report must be created (e.g. in MS Word), including the required material (answer

to questions, print screens etc.). The required submission (hand-in) for each part of the lab is

specified in the lab text (e.g. your VHDL files). In addition to including the *.vhd files you

should also paste your VHDL code into your lab report (in order to get comments on your

VHDL code from the teaching assistant).

FYS 4220/9220 Version 2, 3.7.2011

1. Use of components, packages and LMPs

1.1 Perform the following steps:

1. Create a folder (preferably on your M:\ disk) called Lab2 and a sub folder called

part1_1, and use it for your design files in this part of the lab.

2. Write a 3-bit counter in VHDL(entity and architecture) based on the symbol in Figure

1. The VHDL file should be named counter_lab2.vhd (remember that the entity must

have the same name as the file). The reset should be implemented to be a synchronous

reset (to the Clock signal), and the counter should increment on the rising Clock edge.

The Enable input must be high („1‟) in order for the counter to count (increment the

C_out value).

Figure 1 3-bit counter

3. Create a new Quartus II project called Lab2_part1_1 for your circuit. Select Cyclone

II EP2C70F896C6 as the target chip, which is the FPGA chip on the Altera DE2

board. Add your file counter_lab2.vhd to the project

4. Write a testbench for the counter; name the testbench tb_counter_lab2.vhd.

a. Use a 1 MHz clock in the simulation of the counter

b. Remember to reset the counter in the start of the simulation, in order to set the

C_out value to “000” (important for functional simulations). Before the reset

the output will be undefined („X‟) in the functional simulation.

5. Perform a functional (RTL level) simulation of the counter using Modelsim-Altera,

to verify correct behaviour, and make a Print Screen of the simulation.

1.2 Perform the following steps:

1. To avoid problems create a new sub folder/directory under the Lab2 folder and name

it part1_2, see the note in the introduction to the lab.

2. Copy the counter you made in section 1.1 (counter_lab2.vhd) and the 7-segment

decoder that you made in lab1 (seg7decoder.vhd) to this new project folder/directory.

3. Make a new VHDL file with the name main_lab2.vhd. This will be the top file of the

design. The functionality of the design is described in Figure 2, and the details of the

implementation are as follows:

a. The entity I/O and architecture are described by Figure 2.

FYS 4220/9220 Version 2, 3.7.2011

b. Include counter_lab2.vhd as a component in the top vhdl file

(main_lab2.vhd)

c. Include seg7decoder.vhd as a component in the top vhdl file.

d. Make sure that the files main_lab2.vhd, seg7decoder.vhd and

counter_lab2.vhd are in the same directory (your project folder).

e. Connect the two components by an internal signal called ”C_int” and the

components input/output to the top entity I/O ports (by port mapping)

Figure 2 Block diagram

4. Create a new Quartus II project called Lab2_part1_2, set the main_lab2.vhd as the

top-level entity and add the files main_lab2.vhd, counter_lab2.vhd and

seg7decoder.vhd to your project (Note: files can also later be added/removed from a

project from the menu Project – Add/Remove files in Project).

5. Compile the project, and correct any errors.

6. Make the pin assignment (against the DE2 board) to use the pushbutton KEY0 as the

Clock input, switches SW1 and SW0 as respectively Enable and Reset inputs, and the

7-segment displays HEX0 to display the counting (from Seg7 output).

7. Compile the project (with the pin assignment)

8. Download (Program) the compiled circuit into the FPGA chip.

9. Test and verify the circuit functionality by operating the implemented switches.

1.3 Perform the following steps:

1. Make a new sub folder called part1_3 for this part of the lab.

2. Make a new top file with the name main_lab2_v2.vhd

3. The circuit design of the main_lab2_v2.vhd should implement the circuit in Figure 3

in the following way:

a. Make a three-bit wide 2-to-1 multiplexer to enable the selection of two

different count values; name the VHDL file mux_lab2.vhd

b. Make a package called lab2_package.vhd, and add the components

mux_lab2.vhd, counter_lab2.vhd and seg7decoder.vhd to the package

(include their component declaration).

c. Include the package lab2_package.vhd (in the VHDL code in the top file)

FYS 4220/9220 Version 2, 3.7.2011

d. Use an LPM from the Library of Parameterized modules to implement a 3-bit

counter in VHDL (Tools - MegaWizard Plug-in Manager).

i. Select “create new …..”

ii. Select VHDL output

iii. Select device family

iv. Select LPM_counter.

v. Choose the LPM options to be consistent with the counter_lab2.vhd,

i.e. with enable and synchronous reset. Name the counter generated

from the LPM as LPM_cnt.vhd.

e. Include the different blocks (components) of the design by including the

package lab2_package.vhd that you made in point 3.b. Note that the

LPM_cnt.vhd file (your generated LPM counter) is not part of this package,

such that you are to take it into your design as a separate component.

4. Check that all your design files are located in your project directory

Figure 3 Block diagram of the new circuit

5. Create a new Quartus II project, select main_lab2_v2.vhd as the top entity file, and

add the necessary files to the project.

6. Remember to include the package lab2_package.vhd to your project.

FYS 4220/9220 Version 2, 3.7.2011

7. Make the pin assignments. Clock, Enable, Reset and Seg7 should have the same pin

assignments that you made under part 1.2 of the lab. The new assignments are as

follows:

a. Clock2 : KEY1

b. Enable2 : SW3

c. Reset2 : SW2

d. Select : SW4 (selects which counter to show on the seven segment

display)

8. Compile the project (for the FPGA on the DE2 board).

9. Download (Program) the compiled circuit into the FPGA chip.

10. Verify the operation of the circuit programmed into the FPGA on the DE2 board

Required hand-in for part 1(1.1 – 1.3):

 counter_lab2.vhd

 tb_counter_lab2.vhd

 A Print Screen of the counter_lab2.vhd simulation

 main_lab2.vhd

 mux_lab2.vhd

 lab2_package.vhd

FYS 4220/9220 Version 2, 3.7.2011

 LPM_cnt.vhd

 main_lab2_v2.vhd

 Answer to the following questions:

o Q1: Did you in any way verify the different components you made

(like the mux and the LPM counter) before you used the

components in your top (main) design?

o Q2: Did you discover any errors in your different components

when you tested the main designs programmed into the FPGA on

the DE2 board?

o Q3: What would be the recommended design strategy for this

design and all other designs, regarding what and when to simulate?

2. Vending machine

A possible simplified implementation of a Coke (Pepsi) vending machine is shown in the

state diagram in Figure 4. The cost of a Coke is assumed to be 50 cents, and the machine

accepts quarter (25 cents), dime (10 cents) and nickel (5 cents). When the machine has

received 50 cents or more it goes to the state called “Vend”, and it returns a Coke (Pepsi). If

the machine has received exactly 50 cents it then goes from the “Vend” state to the “Exit”

state. If the machine has received more than 50 cents it goes to the “Change” state before the

“Exit” state, in order to give the buyer back the change above 50 cents. The user can at any

time before he has given the machine 50 cents push the “Change” button (which set the

ChangeRequest signal high) in order to cancel the order and request his money back.

The state machine has the following inputs and outputs:

Inputs:

 Clock

 Nickel

 Dime

 Quarter

 ChangeRequest

Outputs:

 ReturnDime

 ReturnNickel

 DropCoke

It is assumed that this machine only has Coke (Pepsi), and when the user insert the coins into

the machine it recognises the coins and set then signals Nickel, Dime or Quarter high,

respectively. These inputs are used by the control state machine. (When 50 cents is received

the machine drops the Coke without any other user interaction). In a similar way it is

FYS 4220/9220 Version 2, 3.7.2011

assumed that in order to drop the Coke the output signal “DropCoke” is set to a high value,

and to return the money the correct “Return signals” are set to logic high values. If e.g. the

user adds one quarter and 3 dimes he has given the machine 55 cents, and the machine should

set the “ReturnNickel” output high. Note that it would be possible to give the machine 70

cent; 25 + 10 + 10 + 25 = 70. Then 20 cent should be returned. However, we are assuming

that this is not going to happen, such that it is sufficient to give back only one of each coin.

We are also assuming that the user is not adding more than 15 cents before he change his

mind and presse the Change button to get his money back from the machine. If 15 cent

should be returned both the ReturnDime and the ReturnNickel outputs should be set high

(„1‟). The outputs should be set according to Table 1 when the state machine is in the

“Change” state.

Table 1: Outputs in the Change state

Cent ReturnNickel ReturnDime

5 1 0

10 0 1

15 1 1

55 1 0

60 0 1

65 1 1

It is assumed that it is sufficient to set the signals high for one clock period for all the

output signals. This corresponds to e.g. setting the ReturnDime output signal high in the

Change state, and then go to the Exit state and set all output signals to low. In the

Initialize state all outputs should be set to a logic low (‘0’) value.

Optional:

In order to make a more correct machine you could loop around in the Change state and give

back one and one coin until the correct amount of money is returned. This would also take

care of the 70 cent case. If the ChangeRequest signal is high all the money should be

returned, and if the amount of money is more than 50 cent the machine should give back the

change above 50 cents .

FYS 4220/9220 Version 2, 3.7.2011

Figure 4: Vending machine state diagram

Perform the following steps:

1. Create a file called vending_machine.vhd. The entity of the VHDL program should

use the 5 listed input names and the 3 listed output names.

2. Create the ASM chart from the state diagram in Figure 4 (to make the VHDL

implementation easier). The ASM chart should have the same number of states (8)

and the same state names as given in Figure 4.

3. Write the VHDL code for the state machine (in the architecture part of the VHDL

file). Your VHDL code should have the same number of states and the same state

names as used in the ASM chart. Remember that the ASM chart is the documentation

of your VHDL code for the state machine! Therefore, a change in the VHDL code

requires a change in the ASM chart!

4. Create a new Quartus II project called Lab2_part2.

5. Add your design file called vending_machine.vhd to the project, and check for errors

(and correct any errors).

6. Create a testbench to test your state machine, and name the file

tb_vending_machine.vhd
7. Add the testbench file tb_vending_machine.vhd to your project.

8. Compile or Analyze the files in the project (vending_machine.vhd and

tb_vending_machine.vhd), and correct any errors.

9. Simulate your vending machine (Functional simulation)

10. Verify that the functionality of the vending machine is according to the description in

the text and in the state diagram

FYS 4220/9220 Version 2, 3.7.2011

11. Program the vending machine into the FPGA on the DE2 board (and do

changes/additions to the code if needed), and verify the implementation.

a. Use LEDs to indicate the status of the output signals.

b. Use a KEY pushbutton switch as clock input (since these are debounced).

Note the functionality of the switches from the DE2 manual.

c. Use the toggle switches (sliders) to set the level of the other inputs (Nickel,

Dime, Quarter, ChangeRequest).

d. (To monitor the present state and the state transitions you could add test

outputs to LEDs on the DE2 board, in order to show the state number as a

binary number).

Required hand-in:

 Your vending_machine.vhd design file

 Your tb_vending_machine.vhd testbench file

 A suitable screen shot of the simulated vending machine

 Answer to the following questions:

o Q1: When this vending machine has returned a Coke and given

back any change it goes to an “Exit” state. How is this not usable

for a real vending machine, and how to improve the machine by

adding new state transitions? (Hint: do you need the “Exit” state?)

o Q2: Did you do any change to your vending machine (state

machine) code to test the code in the DE2 board?

