
FYS 4220/9220 Version 1 18.10.2010

FYS4220/9220

Lab Exercise 3

VHDL – ADC control

FYS 4220/9220 Version 1 18.10.2010

Introduction to the lab

The purpose of this third lab exercise is to get experience with a complete VHDL design,

including the design of the ASM chart for your state machine. You will also have to extract

some of the information from a data sheet.

You are going to design an ADC (analog-to-digital converter) controller, using a state

machine in VHDL.

Timing analysis is described in the document called “tut_timing.pdf”.

A lab report must be created, including the required material. The required hand-in for each

part of the lab is specified in the lab text.

FYS 4220/9220 Version 1 18.10.2010

1. ADC control using a state machine

In this assignment you are going to make a controller for the analog-to-digital converter

(ADC) MCP3204 from Microship, see the datasheet for this ADC. This is a 4 channel, 12-bit

successive approximation (SAR) ADC.

The Communication with the ADC is accomplished using a simple serial interface

compatible with the SPI protocol, and the serial interface timing is shown in Figure1.

Figure 1

The serial communication for controlling the ADC (setup) and reading data from the ADC is

described in section 5.0 of the data sheet, and illustrated in Figure 5-1 (Figure 2 below).

Figure 2

FYS 4220/9220 Version 1 18.10.2010

The ADC is going to work with the following setup:

 Single ended configuration (Single/Diff set to ‟1‟)

 The controller must read data from CH0, CH1 and CH2 (3 channels)

 When a conversion is initiated CH2 should be read first, then CH1 and finally CH0

The entity of the controller is shown below:

entity MCP3204 is

 port

 (

 sclk : in std_logic; -- System clock 50 MHz

 start_conv : in std_logic; -- Start conversion when high

 Dout : in std_logic; -- Serial data from ADC

 nCS : out std_logic; -- CS is active low

 Din : out std_logic; -- Data in to ADC (setup)

 clk : out std_logic; -- ADC clock 1 MHz

 data_CH0 : out std_logic_vector(11 downto 0); -- Data from ADC CH0

 data_CH1 : out std_logic_vector(11 downto 0); -- Data from ADC CH1

 data_CH2 : out std_logic_vector(11 downto 0); -- Data from ADC CH2

 DataReady : out std_logic -- High when all data CH ready

);

end MCP3204;

The system clock called sclk (input to the controller) is assumed to be 50 MHz, and it is

assumed that the required ADC clock (clock signal out to the ADC) called clk is 1 MHz.

(You can see in the data sheet that the maximum input clock frequency of this ADC is 2

MHz). Therefore, a clock divider must be inserted between the sclk input and the clk output.

The start_conv input is an active high signal that is used to start the conversion. Therefore,

the controller must wait for this input to go high, and then make the ADC start the conversion

process. Since the data from the ADC is on a serial format with 12 bits per sample a 12 bit

shift register has to be used on the Dout input (serial data from the ADC). When all 12 bits

from a sample are loaded into the shift register these data are to be made available at the

output signals called data_CHO, data_CH1 and data_CH2 , respectively. In addition, the

signal DataReady has to be set to a logic high value (‟1‟), in order to indicate that a new set

of data samples are ready from the three data channels. DataReady should not be set to a

logic high value before data are available at all three channels (data_CHO, data_CH1 and

data_CH2). DataReady should be logic high („1‟) only for one clock period, and then go

back to logic low („0‟).

A block diagram of the ADC controller implementation is shown in Figure 3. The data from

the ADC, which has been read into the serial-in-parallel-out shift register called

SR_SerIn_redge (see Figure 3) can be routed to the parallel data outputs of the controller in

the following way (in a state in the FSM):

Data_CH0 <= Pdata;

DataReady <= ‘1’;

FYS 4220/9220 Version 1 18.10.2010

The controller is going to be implemented as a state machine, and the state machine has to

reproduce the waveform in Figure 5-1 in the data sheet (Figure 2 in the lab text) with the

requirements as described above. Note that nCS should be pulled high again when the last bit

(B0) of a 12 bit sample has been read, see Figure 5.1

.

Figure 3

Perform the following steps:

1. Open the provided files SR_SerIn_redge (a generic shift register reading data in on

the rising clock edge, when enabled). The shift register uses the rising edge of the

clock signal, such that the serial data from the ADC are read (shifted in) ”in the

middle of the converted data bit”. Make sure that you understand how the shift

register works, based on the VHDL code.

2. Create a clock divider component, and name the file ClockDiv.vhd. The input clock

is assumed to be 50 MHz, and the output clock should be a 1 MHz clock with a duty

cycle of close to 50 %.

3. Perform a functional simulation to verify the design of the clock divider.

4. Read the data sheet for the ADC (mcp3204.pdf)

5. Design the state machine (by drawing the ASM chart with pen and paper) for the

ADC controller, according to the specification in the lab text (Figure 2 and the

explanation of the signals) and the Data sheet for the ADC. Specify the output for

each state e.g. in the ASM chart or in a table. (Hint: should the process in the FSM

FYS 4220/9220 Version 1 18.10.2010

trigger on the rising edge or falling edge, based on Figure 5.1 and the datasheet for the

ADC?).

6. Create a VHDL file called MCP3204.vhd and write the code for the ADC controller,

based on your ASM chart and the block diagram in Figure 3. Include the serial shift

register SR_SerIn_redge.vhd and the clock divider ClockDiv.vhd as components in

your design.

7. Create a new Quartus II project called Lab3, and add your design files.

8. Check your design (MCP3204.vhd) for errors (Start Compiling or Start Analysis &

Elaboration), and correct any errors.

9. Make a testbench to test your ADC controller; name the file tb_MCP3204.vhd

10. Perform a functional (RTL level) simulation using the Modelsim-Altera simulator, in

order to verify the correct behaviour of the circuit (according to Figure 5.1/Figure 2

and the specification given in the lab).

11. Timing analysis:

a. Q1: What is the maximum clock frequency of your design?

Required hand-in:

 ClockDiv.vhd

 A Print screen image of the clock divider simulation

 ASM chart for the state machine (the yellow component in the block

diagram of Figure 3)

 MCP3204.vhd

 tb_MCP3204.vhd

 A screen shot of the functional simulation of the ADC controller

(MCP3204.vhd)

 Answer to Question Q1

