Version 0.1
FYS4220/9220 Real time and embedded data systems

- Date: Monday 2. December 2019

- Exam hours: 09:00 - 13:00 (4 hours)

- All exam questions must be answered. Each question may be weighted differently.
For each question the maximum number of points is specified. The maximum
number of points for the complete question set is 100 points

- Permitted material: None

For question where the answer include code, pseudo-code may be accepted if it can clearly
demonstrate an understanding of the functionality.

Question set with suggested answers.

Problem 1 a) [1 point]

The sensitivity list for the process shown below is empty. Which of the following signals is/are missing from the
sensitivity list?

A correct answer will give you 1 point. An incorrect answer will give you 0 points.

process ()
begin
if arst ='1' then
output <= (others =>'0");
elsif rising_edge(clk) then
if input ='0' then
output <= data;
end if;
end if;
end process;

Select one or more alternatives

v clk

/ arst
output
input

data

This is a clocked process with asynchronous reset. Both the clock and the asynchronous
reset shall trigger the process and thus be listed in the sensitivity list. Both signals are
needed to obtain full score.

Problem 1 b) [1 point]

The sensitivity list for the process shown below is empty. Which of the following signals is/are missing from the
sensitivity list?

A correct answer will give you 1 point. An incorrect answer will give you 0 points.

process ()
begin
if rising_edge(clk) then
if rst="1" then
test <= (others =>'0');
else
test <= input;
end if;
end if;

end process;

Select one or more alternatives

rst
test

input

v clk °

Correct. 1 of 1 marks. Try again

This is a synchronous process with synchronous reset. Only the clock signal shall trigger the
process, thus only the clock signals shall be listed in the sensitivity list.

Problem 1 c) [1 point]

The sensitivity list for the process shown below is empty. Which of the following signals is/are missing from the
sensitivity list?

A correct answer will give you 1 point. An incorrect answer will give you 0 points.

process ()
begin
if A="1"then
D <=B;
elsif B ='1' then
D<= C;
else
D <='04
end if;
end process;

Select one or more alternatives:

v C °

JA °
D

7 B °

Correct. 1 of 1 marks. Try again

This is a combinational process and thus all signals which are read by the process shall be
listed in the sensitivity list. A, B, C are all inputs to the process (read by the process) and shall

thus be listed in the sensitivity list. D is an output and shall not trigger the process and shall
therefore not be listed in the sensitivity list.

Problem 1 d) [3 points]

The diagram below shows three different VHDL descriptions next to a matching

matrix. Match the VHDL descriptions with the correct circuit type.

You can get between 0 and 3 points for this problem. 1 point per correct answer.

Please match the values:

Synchronous

process(A, B, C) is
begin

C <= A and B;

D <= not C and A;
end process;

Combinational

- Q@

process(clk) is
begin
if rising_edge(clk) then
C <= A and B;
D <= not C and A; °
end if;
end process;

process(A, B, sel) is

begin
if sel = '1' then
D <= A;
else
D <= A and B;
end if;

end process;

Correct. 3 of 3 marks. Try again

A process which contains conditional statement checking for a rising or falling edge on a
clock signal is a clocked / synchronous process. This is the case for the process in the middle
above. The two others are combinational processes as they are not dependent on a clock

signal.

Problem 1 e) [4 points]
Explain how a register can be created using VHDL?

Answer:

A register can be created using a clocked process (synchronous logic) in VHDL. Every signal
assignment within synchronous process, that is, within an if rising _edge or if falling_edge

conditional statement, will create a register.

A partly correct answer demonstrating that the student has some understanding of this
concept will give 1-3 points depending on the wording. E.g. writing that a clocked process
will generate registers is correct, but a more precise answer is to add that it is the signal
assignment within a clocked process, and within the rising or falling edge condition, that will
result in a register being generated.

Problem 1 f) [1 point]

The signals clk, A, B, C, and D are declared as:
signal clk,A,B,C,D : std_logic;
How many registers are created when implementing the VHDL description shown below?

process(clk) is
begin
if rising_edge(clk) then
C<=AandB;
D <=not C and A;
end if;
end process;

Enter the number of registers: 2 ° :

Correct. 1 of 1 marks. Try again

There are two assignment of std_logic signals within the clocked process and rising edge
condition. Thus, two register will be generated.

Problem 1 h) [1 point]

The signals clk, A, B ,D and SEL are declared as:
signal clk, A,B,D,SEL : std_logic;
How many registers are created when implementing the VHDL description shown below?

process(clk) is

begin
if rising_edge(clk) then
if sel ='1' then
D<=A;
else
D <=AandB;
end if;
end if;
end process;

Enter the number of registers: 1 ° .

Correct. 1 of 1 marks. Try again

There is one assignment of a std_logic signal within the clocked process and rising edge
condition. Thus, one register will be generated. While there are two lines of code assigning a
value to the output D, these lines are part of one conditional statement and only one is true
at any time.

Problem 1 g) [1 point]

The signals A, B, D, and SEL are declared as:
signal A,B,D,SEL : std_logic;
How many registers are created when implementing the VHDL description shown below?

process(A, B, SEL) is
begin
if SEL ='1' then
D<=A;
else
D <=Aand B;
end if;
end process;

Enter the number of registers: 0 ° .

Correct. 1 of 1 marks. Try again

This is a purely combinational process which is not dependent on a clock signal. Thus, no
register will be generated.

Problem 1 i) [1 point]

The signals clk, A, B ,D and SEL are declared as:

signal clk, SEL : std_logic;
signal A, B, D : std_logic_vector(7 downto 0);

How many registers are created when implementing the VHDL description shown below?

process(clk) is

begin
if rising_edge(clk) then
if sel = '1" then
D <=A;
else
D <=B;
end if;
end if;
end process;

Enter the number of registers: 8 ° .

Correct. 1 of 1 marks. Try again

In this case there is an assignment of an 8-bit wide signal of the type std_logic_vector. This
would be equivalent to assigning 8 individual std_logic signals. A total of 8 register, one for
each bit in the vector, is generated.

Problem 1 j) [3 points]

What will be the main problem with the VHDL code shown below if it is to be synthesised for an FPGA?

-~ SEL is defined as std_logic_vector(l downto 0)
process(A,B,SEL) is
begin
if SEL = "00" then
Y <= A;
elif SEL = "01"
Y <= B;
end if;
end process

Answer:

This is a combinational process where all outputs need to be assigned a value for all possible
combinations / values of the signals that are read by the process. If the output is not
specified for every possible set of input conditions, the option taken by the synthesis tool is
to not change the current output. This is done by adding a latch, which adds an extra path
for the signal to travel through and thus will impact the timing closure of the design. In the
example code given, the output Y is not determined for all possible values of the input
vector SEL.

A partly correct answer demonstrating that the student has some understanding of why an
unintended latch is generated will give 1-2 point depending on the wording. To get full score
the answer must demonstrate both an understanding of that the code has a problem and
why this is a problem. E.g. writing only that the code has a problem because Y is not defined
for all possible values of the inputs is only partly demonstrating and understanding. To get
full score this must be combined with and understanding of that this code will generate an
unintended latch and thus impact timing closure.

The VHDL description in this problem has 3 minor syntax errors.

- elif should have been elsif

- then is missing from the elsif condition

- asemicolon is missing after end process
These syntax errors are however not considered to be significantly misleading from the real
intended and main problem.

Problem 1 k) [3 points]

What is the purpose of an LUT in an FPGA?

Answer:

The Look-up Table (LUT) provides the capability of to implement combinational logic
(Boolean functions) to the FPGA design. By storing the truth table of a Boolean function in
the memory elements of a LUT, the inputs are used to address the various memory
locations. The output will be the value stored at the memory location specified by the input
values, and corresponding to the correct result of the given boolean operation.

A partly correct answer demonstrating that the student has some understanding of what an
LUT is will give 1-3 points depending on the wording. To get full score the answer has to
contain the point on “implementing combinational logic”.

Problem 2 a) [10 points]

The VHDL description for a 16-bit shift register is shown below. The shift register is active when the input
signal enable is high ('1').

library ieee;
use ieee.std_logic_1164.all;

entity module is
port(
clk :in std_logic;
enable :in std_logic;
indata :in std_logic_vector(15 downto 0);
outdata : out std_logic_vector(15 downto 0)
):
end entity;

architecture arch of module is
signal shifreg : std_logic_vector(15 downto 0);
begin
process(clk) is
begin
if rising_edge(clk) then
if enable = '1' then
shiftreg(0) <= indata;
shiftreg(15 downto 1) <= shiftreg(14 downto 0);
end if;
end if;
end process;
outdata <= shiftreg(15);
end architecture;

This module will now be implemented in a system where the input signal enable is controlled from a different and
slower clock domain than the input signal clk.

Explain first why the VHDL description needs to be modified in order to make sure that it will continue to work
correctly?

Fill in your answer here

Modify the VHDL description accordingly. You only need to modify the architecture description.

Write your VHDL description here

This question can score 10 points. Each sub-question can score 5 points each.
Answer part 1:

Since the input signal enable is controlled by a different and slower clock domain, it is
necessary to synchronize the enable signal into the new clock domain. Without
synchronization, any change in the enable signal will occur independent of the clock signal
within the design it is used. If this change does not meet the setup and hold time
requirements of the registers it is used to enable, the design may experience a metastable
condition.

The important concept to demonstrate is that 1.) the enable signal can change
independently of the clock signal, and 2.) therefore may not meet the setup and hold time
requirements (e.g. arrive at the register input to close to the clock edge, and 3. therefore
lead to a metastable state. Mentioning only one or two of these will give 1-3 points
depending on the wording. Mentioning two will give 2-4 points depending on the wording,
and mentioning all with clarity will give full score.

Answer part 2:

32 architecture arch_sync of module is

34 signal shifreg : std_logic_vector(15 downto 0);
35 signal enable_r, enable_rr : std_logic;
37 begin

39 p_sync : process(clk) is
begin

1 if rising_edge(clk) then
42 enable_r <= enable;
43 enable_rr <= enable_r;
! end if;

45 end process;

p_shiftreg : process(clk) is
begin

50 if rising_edge(clk) then

51 if enable_rr = '1' then
52 shiftreg(@) <
53 shiftreg(15 downto 1) <
54 end if;

55 end if;

56 end process;

indata;
shiftreg(14 downto 0);

58 outdata <= shiftreg(15);

60 end architecture;

A correct answer is expected to demonstrate that the candidate knows how to implement
synchronization registers (assignment inside process + declaration of signals), and that the

check on the input signal enable also has to be changed to instead check on the
synchronized signal.

The statements adding the two synchronization register can be placed either in a separate
process or within the p_shiftreg process. Both are considered correct answers.

Pseudo-code may give points if it can demonstrate the understanding of that the signal
needs to be synchronized using to registers.

There is no need to add edge-detection in this problem as the shift-register will be active as
long as the enable signal is high/active. In-fact, adding edge detection will change the
functionality of the shift-register and should therefore not give a full score.

The VHDL description presented in the problem has incorrect type declaration of the ports
indata and outdata. In the example these are declared as std_logic_vector(15 downto 0),
while the correct declaration should have been std_logic. However, this is not considered to
be significantly misleading from the real intended and main problem.

Problem 2 b) [10 points]

Write the complete VHDL description for a 4-bit counter with an active low asynchronous reset signal. Your
answer must include relevant library declarations in addition to the entity and architecture descriptions.

Write the VHDL description here:

Answer:

Entity description:
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;

6 entity counter is

7 port(
clk : in std_logic;
C arst_n : in std_logic;
10 counter : out std_logic_vector(3 downto 0)
11)
12 end entity;

Architecture alternative 1: Solved using counter as a signal vector.

14 architecture arch_signal of counter is

16 signal cnt : unsigned(3 downto 0);
17 begin

18

19 p_sig : process(arst_n, clk) is
20 begin

[

if arst_n = '0' then
cnt <= (others => '0');
elsif rising_edge(clk) then
cnt <= cnt + 1;

end if;
end process;

N NN NN NN
S s WN

0~

29 counter <= std_logic_vector(cnt);

31 end architecture;

Architecture alternative 2: Solved using counter as a variable vector.

architecture arch_variable of counter is
begin

n U

p_var : process(arst_n, clk) is
variable cnt : unsigned(3 downto 0);

0 ~J

w w w w w w
& (=)

39 begin

40 if arst.n = '@' then

41 cnt := (others => '0');
42 elsif rising_edge(clk) then
13 cnt := cnt + 1;

44 end if;

n

v

counter <= std_logic_vector(cnt);
end process;

o

~

48 end architecture;

Her er vi pa jakt etter forstaelsen for hvordan skrive grunnleggende VHDL-kode med
eksempelet for en teller, i tillegg ser vi etter dypere forstaelse for at vi trenger unsigned ved
implementasjon av telleren og at denne ma konverters til std_logic_vector.

Det main purpose of this problem question is to check for a basic understanding of how to
write a simple VHDL code from a specification. We are thus looking for structure and
knowledge of how to write the entity, architecture and process VHDL description. For the
process description we are looking for correct implementation of the sensitivity list and a
clocked process with asynchronous reset. Furthermore, we are probing a deeper VHDL
specific knowledge of that arithmetic operations should be carried out using the
numeric_std library and that there is a need to convert from unsigned to the
std_logic_vector output.

Problem 2 c) [10 points]

Write a the VHDL description for a basic test bench that can be used to simulate the VHDL description of the 4-bit
counter from Problem 1 h).

The test bench shall fulfil the following requirements:

generate the input stimuli signals for the clock and reset input of the 4-bit counter.

the clock period shall be 25 ns

a reset pulse of 100 ns shall be used to reset the counter

the counter shall run long enough for all possible values of the counter to be displayed on the output,
including the roll over to zero.

fay

library IEEE;
use ieee.std_logic_1164.all;

N

B W

entity tb_counter is
end entity;

~N o ow

8 architecture tb of tb_counter is

10 signal clk ¢ std_logic := '0';

11 signal arst_n : std_logic;

12 signal counter : std_logic_vector(3 downto 0);
13

14 signal clk_ena : boolean := false;
15 signal clk_period : time = 25 ns;
16

17 begin

18

19 counter_i : entity work.counter

20 port map (

21 clk => clk,

22 arst_n => arst_n,
counter => counter

24);

25

26 clk <= not clk after clk_period/2 when clk_ena else '0';
27

28 p_stimuli : process is

29 begin

30 default values

31 clk_ena <= true;

32 arst.n <= 'l' after 0 ns, '0' after 10 ns, 'l' after 110 ns;
33 wait for 25%clk_period;

34 clk_ena <= false;

35 wait;

36 end process;

38 end architecture;
The important part of this question is to demonstrate the key concepts/structure of how to
write a test bench in VHDL. It is expected that the candidate shall demonstrate the
knowledge about
- the need for an empty entity description
- component declaration or direct instantiation, and port map of the device under test
- how to generate a running clock of period 25 ns
- the need for a stimuli process without a sensitivity list, and correct ordering of
statements to generate the reset signals and the number of clock cycles need for the
counter to reach all possible values.
- The need to stop all signals transitions and end the process with a wait statement.

Problem 3 a) [3 points]

Can you briefly explain what is meant by an embedded system?

An embedded system is a computing system designed to perform one or more specific
functions with specific system constraints.

Both the aspect of being a system with

- A specific task, and

- with specific system constraints
must be included/demonstrated in the answer. Only one of them will give 1-2 points
depending on the wording.

Problem 3 b) [3 points]

Can you mention three constraints which are often associated with embedded systems and briefly explain why?

Constraints that are often associated with embedded systems are:

- Physical (size, weight). As embedded systems tend to be small, there is often limited
space for electronics or mechanical components. Likewise, there may be weight
constraints for wearables and flight-based systems.

- Power. As embedded systems often run on batteries, there may be requirements to
use as little power as possible to extend the life-time before a battery needs to be
exchanged or charged.

- Cost. Embedded systems are commercial consumer products and to increase sales,
there may be a requirement to keep the cost of the product low.

- Time. Some systems may control time critical functions and may have a requirement
to be time deterministic. As such, they may be considered to the a Real-time
embedded system.

Other constraints which are mentioned and explain in a convincing manner may also be
accepted. 1 point will be given for each constraint. Only listing the constrain without an
explanation will give 0.5 points per constraint.

Problem 3 c) [2 points]

Which of the following statements are valid for the Nios-Il CPU from Intel (former Altera)?
Select one or more alternatives:

The Nios-Il is a CISC type processor.
71 The Nios-Il CPU has a separate address space for the data memory and instruction memory. °
71 The Nios-Il is a RISC type processor. °

The Nios-Il CPU has a common address space for the data memory and the instruction memory.

Correct. 2 of 2 marks. Try again

There are two correct answers, each correct answer will give 1 point each.

Problem 3 d) [2 point]

The Harvard and von Neuman processor architectures can be classified by how they use memory. Please match
the these processor architectures two their respective memory usage in the matching diagram below.

You can get between 0 and 2 points for this problem. 1 point per correct answer.
Please match the values:

von Neuman architecture Harvard architecture

Separate data and instruction bus ‘ . °

Common data and instruction bus . ° ‘

Correct. 2 of 2 marks. Try again

There are two correct answers, each correct answer will give 1 point each.

Problem 3 e) [2 points]

The block diagram below shows an example of an abstraction hierarchy for an embedded system with its
respective labels. Drag and drop the text labels to their corresponding box area.

Match text label with corresponding box area Help

Device drivers I

Hardware Abstraction Layer

Register interface | |

Custom logic

Software application l

Each correct placing of the text labels will give 0.4 points to a total of 2 points. If the ordering
is correct but slightly shifted, an overriding of the automatic score may be considered.

Problem 3 e) [2 points]

The block diagram below shows an example of an abstraction hierarchy for an embedded system with its
respective labels. Drag and drop the text labels to their corresponding box area.

Match text label with corresponding box area

Software application

Hardware Abstraction Layer

Device drivers

)

Register interface
Custom logic

O

Correct. 2 of 2 marks. Try again

Problem 3 f) [3 points]

Can you briefly explain what a Hardware Abstraction Layer (HAL) is?

Answer:

The HAL is an abstraction layer implemented in software, between the physical hardware
and the application software which runs on that computer. The HAL allows the computer
operating system to interact with a hardware device at a general or abstract level rather
than at a detailed level. It allows for device- independent programming by providing a simple
device driver interface for programs to connect to the underlying hardware. It can be seen
as the “glue” between the low-level devices and the standard libraries found on most system
that provide c-compiles.

The answer shall demonstrate an understanding of that
1. the HALis used as a middle/abstraction layer between the software and the
hardware,
2. and that it provides a device-independent programming functionality. That is, the
software designer does not need to have low-lever knowledge of the hardware.

Both of these aspects must be mentioned to get full score.

Problem 3 g) [10 points]

In this problem you will write the c-code to interface a module which is memory mapped to the Nios-Il CPU. The
module is used to read the data from a temperature sensor.

The module's base address in the CPU memory is:
#define MODULE_BASE_ADDR 0x00002000

Table 1 shows the register map description for the module's data and control register.

Table 1: Register map description

Register Address/ Type Description
Regnum
Data register [31:16] 0x0 Not in use
[15:0] Read Sensor data: Data from sensor.

Stored as two’s complement value
Control register [31:4] Ox1 Not in use

[2:3] Write Resolution: 2-bit resolution value
00: 0.5 degrees C/LSB
01: 0.25 degrees C/LSB
10: 0.125 degrees C/LSB
11: 0.0625 degrees C/LSB

1] Read Complete: ‘1’ — Transaction
complete. This bit will be reset
when read.

[0] Write Run: ‘1’ — Start measurement. This

bit will automatically be reset when
the measurement has started.

The temperature is stored as a 16-bit two's complement value in the Sensor data register, and thus capable of
representing both positive and negative values.

The IORD and IOWR macros in table 2, which are provided by the Nios-Il Hardware Abstraction Layer (HAL), can
be used to communicate with the memory mapped module.

Table 2: Definition of IORD and IOWR macro functions.

rites the value DATA to the register at the offset REGNUM in a
IOWR(BASE, REGNUM, DATA) evice with base address BASE. Registers are assumed to be
ffset by the address width of the bus.
eads the value of the register REGNUM in a device with base

ddress BASE. Registers are assumed to be offset by the address
ORIEAE LECIRE idth of the bus. IORD returns the 32-bit value of the register being
ead.

Your task is to write the c-code for the function read_data(). The function is defined below:
float read_data(alt_u8 resolution);

Function description:

* The function shall configure the temperature sensor to use the value of the resolution variable which is
provided as an argument to the function.

« The function shall then request a measurement to be performed by the sensor

* When the Complete bit is set, the function shall return a floating point value of the temperature.

Answer:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

float read_data(alt_u8 resolution){

alt_u32 ctrl_reg = 0;

alt_u32 data = 0;

float value = 0;

//Set resolution and request measurment

//Must be performed in the same IOWR operation
ctri_reg = ((resolution & 0x3) << 2) | 0x1;
IOWR(MODULE_BASE_ADDR,0x1,ctrl_reg)

//Wait for complete bit to be set
while (data !'= 1) {

data = (IORD(MODULE_BASE_REG,®@x1) >> 1) & 0x1;
}

// read temperature data (16-bit)

data = IORD(MODULE_BASE_REG,0x0) & Oxffff;

// cast to signed 16 bit in order to convert from two's complement
value = (alt_16)data;

// Set resolution

// any other conditional sentence doing the same operation 1s also considered correct.
// E.g. use of an if-sentence
switch(resolution)

{

case 0:
value = value % 0.5;
break;

case 1:
value = value % 0.25;
break;

case 2:
value = value * 0.125;
break;

case 3:
value = value % 0.0625;
break;

}

return value;
}

This question is meant to demonstrate a basic understanding of how to write low-level /
hardware close c-code. That is, how to manipulate data on a register level. To get full score
the required functionality needs to be implemented:

write operation to control register (both resolution bits and run bit must be set in
one operation)

check and wait for complete bit to be set

read data from data register and casting to 16-bit signed value

apply resolution to read data to return float value

Problem 4 a) [3 points]

Can you briefly explain the most important characteristic of a real-time operating system when compared to a
regular embedded system?

Compared to a regular embedded system, a real-time operating system also has time
requirements. For a real-time system the correctness of the system does not only depend on
the logical result of the computation, but also on the time when the result is generated.

The answer needs to demonstrate that the timing requirement is the essential characteristic
that differentiates a real time system compared to a regular embedded system.

Problem 4 b) [3 points]

Can you briefly explain the difference between a hard real-time system and a soft real-time system?

Answer:

A hard real-time system is one in which failure to meet a single deadline or timing
requirement may lead to a complete and catastrophic system failure. In contrast a soft real-
time system is a system in which performance is degraded but not destroyed by failure to
meet the deadline.

Describing only what a hard or soft real time system is not considered a correct answer but
may give 1 point. It is essential to demonstrate the difference between the two types.

Problem 1 c) [1 point]

Which of the following systems/applications should be considered a hard real-time system? Choose one or
multiple answers.

Select one or more alternatives:

Digital Camera
Vending machine

/I Automated car driving O
Washing machine

7! Aircraft attitude control system °

Correct. 1 of 1 marks. Try again

Both an automated car driving system or an aircraft attitude control system may have
serious or fatal consequences if failing. If failing, this is not acceptable. However, one can
accept some degradation in the performance of digital camera, vending machine or washing
machine for shorter periods.

Problem 1 d) [1 point]

Which of the following statements are true for a real-time operating system?

A hard real-time operating system has jitter than a soft real-time operating system.
Select one alternative as the missing word in the sentence above

- less °

more
none of the mentioned

equal

Correct. 1 of 1 marks. Try again

Jitter is a measure of the error in the timing of subsequent iterations of a program loop. As a
hard real-time system should be more time deterministic than a soft real-time system, a
hard real-time system should have less error and therefore less jitter.

Problem 4 e) [3 points]

Can you briefly explain the term jitter and why it is an important performance measure for a real-time operating
system?

Answer:

Jitter is the amount of error in the timing of a task over subsequent iterations of a program
loop. Jitter is an important performance measure since it gives information about
punctuality/accuracy of the system. Low jitter means that a task will take very close to the
same amount of time to execute each time it runs.

Explaining only what jitter is, or only why it is important gives 1-2 points depending on the
wording. Both needs to be included to get full score.

Problem 3 f) [3 points]

Can you explain the term context switch in relation to a real-time operating system?

Answer:

A context switch takes place when the system suspends the current running task in order to
execute another higher priority task. In this case the RTOS must save all the information
needed to eventually resume the suspended task. This is an essential part of an RTOS since it
allows a system to multitask.

Explaining only that a context switch is suspending one task to run another task gives 1-2
points depending on the wording. To get full score the answer should also mention that a
context switch also involves saving the state of the currently running task with the intention
of eventually resuming this task.

Problem 4 g) [3 points]

Can you briefly explain how a semaphore can be used to synchronise to tasks in a real-time operating system like
for example uC/OS-I1?

Answer:
A semaphore can be used to synchronize two tasks if one task is pending the semaphore and

another task is posting the semaphore. If the semaphore is initialized as 0, the task pending
the semaphore will only be executed whenever the other task posts the same semaphore.

Problem 4 h) [1 point]

Which of the following statements are true for real-time operating systems?
In rate monotonic scheduling

- shorter duration job has higher priority (v)
none of the mentioned
longer duration job has higher priority

priority does not depend on the duration of the job

Correct. 1 of 1 marks. Try again

Problem 4 i) [3 points]

What is the main purpose of the scheduler in a real-time operating system?
The main purpose of the scheduler is to determine which task to run at any given moment.

A less precise answer may give 1-2 points depending on the wording. But the essential part
is to demonstrate the understanding of that it is responsible to decided which tasks to run.

Problem 1 j) [4 points]

Can you briefly explain the priority based pre-emptive scheduling technique?

Using a priority based pre-emptive scheduling technique, ensures that at a given time the
processor executes the highest priority task of all tasks which are currently ready to be
executed. Here, pre-emption is the act of temporarily interrupting a task being carried out
by the real-time kernel, in order to run a task with a higher priority.

