
Version 0.1

FYS4220/9220 Real time and embedded data systems

- Date: Monday 2. December 2019
- Exam hours: 09:00 - 13:00 (4 hours)
- All exam questions must be answered. Each question may be weighted differently.

For each question the maximum number of points is specified. The maximum
number of points for the complete question set is 100 points

- Permitted material: None

For question where the answer include code, pseudo-code may be accepted if it can clearly
demonstrate an understanding of the functionality.

Question set with suggested answers.

This is a clocked process with asynchronous reset. Both the clock and the asynchronous
reset shall trigger the process and thus be listed in the sensitivity list. Both signals are
needed to obtain full score.

This is a synchronous process with synchronous reset. Only the clock signal shall trigger the
process, thus only the clock signals shall be listed in the sensitivity list.

This is a combinational process and thus all signals which are read by the process shall be
listed in the sensitivity list. A, B, C are all inputs to the process (read by the process) and shall
thus be listed in the sensitivity list. D is an output and shall not trigger the process and shall
therefore not be listed in the sensitivity list.

A process which contains conditional statement checking for a rising or falling edge on a
clock signal is a clocked / synchronous process. This is the case for the process in the middle
above. The two others are combinational processes as they are not dependent on a clock
signal.

Answer:
A register can be created using a clocked process (synchronous logic) in VHDL. Every signal
assignment within synchronous process, that is, within an if rising_edge or if falling_edge
conditional statement, will create a register.

A partly correct answer demonstrating that the student has some understanding of this
concept will give 1-3 points depending on the wording. E.g. writing that a clocked process
will generate registers is correct, but a more precise answer is to add that it is the signal
assignment within a clocked process, and within the rising or falling edge condition, that will
result in a register being generated.

There are two assignment of std_logic signals within the clocked process and rising edge
condition. Thus, two register will be generated.

There is one assignment of a std_logic signal within the clocked process and rising edge
condition. Thus, one register will be generated. While there are two lines of code assigning a
value to the output D, these lines are part of one conditional statement and only one is true
at any time.

This is a purely combinational process which is not dependent on a clock signal. Thus, no
register will be generated.

In this case there is an assignment of an 8-bit wide signal of the type std_logic_vector. This
would be equivalent to assigning 8 individual std_logic signals. A total of 8 register, one for
each bit in the vector, is generated.

Answer:
This is a combinational process where all outputs need to be assigned a value for all possible
combinations / values of the signals that are read by the process. If the output is not
specified for every possible set of input conditions, the option taken by the synthesis tool is
to not change the current output. This is done by adding a latch, which adds an extra path
for the signal to travel through and thus will impact the timing closure of the design. In the
example code given, the output Y is not determined for all possible values of the input
vector SEL.

A partly correct answer demonstrating that the student has some understanding of why an
unintended latch is generated will give 1-2 point depending on the wording. To get full score
the answer must demonstrate both an understanding of that the code has a problem and
why this is a problem. E.g. writing only that the code has a problem because Y is not defined
for all possible values of the inputs is only partly demonstrating and understanding. To get
full score this must be combined with and understanding of that this code will generate an
unintended latch and thus impact timing closure.

The VHDL description in this problem has 3 minor syntax errors.

- elif should have been elsif
- then is missing from the elsif condition
- a semicolon is missing after end process

These syntax errors are however not considered to be significantly misleading from the real
intended and main problem.

Answer:
The Look-up Table (LUT) provides the capability of to implement combinational logic
(Boolean functions) to the FPGA design. By storing the truth table of a Boolean function in
the memory elements of a LUT, the inputs are used to address the various memory
locations. The output will be the value stored at the memory location specified by the input
values, and corresponding to the correct result of the given boolean operation.

A partly correct answer demonstrating that the student has some understanding of what an
LUT is will give 1-3 points depending on the wording. To get full score the answer has to
contain the point on “implementing combinational logic”.

This question can score 10 points. Each sub-question can score 5 points each.
Answer part 1:

Since the input signal enable is controlled by a different and slower clock domain, it is
necessary to synchronize the enable signal into the new clock domain. Without
synchronization, any change in the enable signal will occur independent of the clock signal
within the design it is used. If this change does not meet the setup and hold time
requirements of the registers it is used to enable, the design may experience a metastable
condition.

The important concept to demonstrate is that 1.) the enable signal can change
independently of the clock signal, and 2.) therefore may not meet the setup and hold time
requirements (e.g. arrive at the register input to close to the clock edge, and 3. therefore
lead to a metastable state. Mentioning only one or two of these will give 1-3 points
depending on the wording. Mentioning two will give 2-4 points depending on the wording,
and mentioning all with clarity will give full score.

Answer part 2:

A correct answer is expected to demonstrate that the candidate knows how to implement
synchronization registers (assignment inside process + declaration of signals), and that the

check on the input signal enable also has to be changed to instead check on the
synchronized signal.

The statements adding the two synchronization register can be placed either in a separate
process or within the p_shiftreg process. Both are considered correct answers.

Pseudo-code may give points if it can demonstrate the understanding of that the signal
needs to be synchronized using to registers.

There is no need to add edge-detection in this problem as the shift-register will be active as
long as the enable signal is high/active. In-fact, adding edge detection will change the
functionality of the shift-register and should therefore not give a full score.

The VHDL description presented in the problem has incorrect type declaration of the ports
indata and outdata. In the example these are declared as std_logic_vector(15 downto 0),
while the correct declaration should have been std_logic. However, this is not considered to
be significantly misleading from the real intended and main problem.

Answer:

Entity description:

Architecture alternative 1: Solved using counter as a signal vector.

Architecture alternative 2: Solved using counter as a variable vector.

Her er vi på jakt etter forståelsen for hvordan skrive grunnleggende VHDL-kode med
eksempelet for en teller, i tillegg ser vi etter dypere forståelse for at vi trenger unsigned ved
implementasjon av telleren og at denne må konverters til std_logic_vector.

Det main purpose of this problem question is to check for a basic understanding of how to
write a simple VHDL code from a specification. We are thus looking for structure and
knowledge of how to write the entity, architecture and process VHDL description. For the
process description we are looking for correct implementation of the sensitivity list and a
clocked process with asynchronous reset. Furthermore, we are probing a deeper VHDL
specific knowledge of that arithmetic operations should be carried out using the
numeric_std library and that there is a need to convert from unsigned to the
std_logic_vector output.

The important part of this question is to demonstrate the key concepts/structure of how to
write a test bench in VHDL. It is expected that the candidate shall demonstrate the
knowledge about

- the need for an empty entity description
- component declaration or direct instantiation, and port map of the device under test
- how to generate a running clock of period 25 ns
- the need for a stimuli process without a sensitivity list, and correct ordering of

statements to generate the reset signals and the number of clock cycles need for the
counter to reach all possible values.

- The need to stop all signals transitions and end the process with a wait statement.

An embedded system is a computing system designed to perform one or more specific
functions with specific system constraints.

Both the aspect of being a system with

- A specific task, and
- with specific system constraints

must be included/demonstrated in the answer. Only one of them will give 1-2 points
depending on the wording.

Constraints that are often associated with embedded systems are:

- Physical (size, weight). As embedded systems tend to be small, there is often limited
space for electronics or mechanical components. Likewise, there may be weight
constraints for wearables and flight-based systems.

- Power. As embedded systems often run on batteries, there may be requirements to
use as little power as possible to extend the life-time before a battery needs to be
exchanged or charged.

- Cost. Embedded systems are commercial consumer products and to increase sales,
there may be a requirement to keep the cost of the product low.

- Time. Some systems may control time critical functions and may have a requirement
to be time deterministic. As such, they may be considered to the a Real-time
embedded system.

Other constraints which are mentioned and explain in a convincing manner may also be
accepted. 1 point will be given for each constraint. Only listing the constrain without an
explanation will give 0.5 points per constraint.

There are two correct answers, each correct answer will give 1 point each.

There are two correct answers, each correct answer will give 1 point each.

Each correct placing of the text labels will give 0.4 points to a total of 2 points. If the ordering
is correct but slightly shifted, an overriding of the automatic score may be considered.

Answer:
The HAL is an abstraction layer implemented in software, between the physical hardware
and the application software which runs on that computer. The HAL allows the computer
operating system to interact with a hardware device at a general or abstract level rather
than at a detailed level. It allows for device- independent programming by providing a simple
device driver interface for programs to connect to the underlying hardware. It can be seen
as the “glue” between the low-level devices and the standard libraries found on most system
that provide c-compiles.

The answer shall demonstrate an understanding of that

1. the HAL is used as a middle/abstraction layer between the software and the
hardware,

2. and that it provides a device-independent programming functionality. That is, the
software designer does not need to have low-lever knowledge of the hardware.

Both of these aspects must be mentioned to get full score.

Answer:

This question is meant to demonstrate a basic understanding of how to write low-level /
hardware close c-code. That is, how to manipulate data on a register level. To get full score
the required functionality needs to be implemented:

- write operation to control register (both resolution bits and run bit must be set in
one operation)

- check and wait for complete bit to be set
- read data from data register and casting to 16-bit signed value
- apply resolution to read data to return float value

Compared to a regular embedded system, a real-time operating system also has time
requirements. For a real-time system the correctness of the system does not only depend on
the logical result of the computation, but also on the time when the result is generated.

The answer needs to demonstrate that the timing requirement is the essential characteristic
that differentiates a real time system compared to a regular embedded system.

Answer:

A hard real-time system is one in which failure to meet a single deadline or timing
requirement may lead to a complete and catastrophic system failure. In contrast a soft real-
time system is a system in which performance is degraded but not destroyed by failure to
meet the deadline.

Describing only what a hard or soft real time system is not considered a correct answer but
may give 1 point. It is essential to demonstrate the difference between the two types.

Both an automated car driving system or an aircraft attitude control system may have
serious or fatal consequences if failing. If failing, this is not acceptable. However, one can
accept some degradation in the performance of digital camera, vending machine or washing
machine for shorter periods.

Jitter is a measure of the error in the timing of subsequent iterations of a program loop. As a
hard real-time system should be more time deterministic than a soft real-time system, a
hard real-time system should have less error and therefore less jitter.

Answer:
Jitter is the amount of error in the timing of a task over subsequent iterations of a program
loop. Jitter is an important performance measure since it gives information about
punctuality/accuracy of the system. Low jitter means that a task will take very close to the
same amount of time to execute each time it runs.

Explaining only what jitter is, or only why it is important gives 1-2 points depending on the
wording. Both needs to be included to get full score.

Answer:
A context switch takes place when the system suspends the current running task in order to
execute another higher priority task. In this case the RTOS must save all the information
needed to eventually resume the suspended task. This is an essential part of an RTOS since it
allows a system to multitask.

Explaining only that a context switch is suspending one task to run another task gives 1-2
points depending on the wording. To get full score the answer should also mention that a
context switch also involves saving the state of the currently running task with the intention
of eventually resuming this task.

Answer:
A semaphore can be used to synchronize two tasks if one task is pending the semaphore and
another task is posting the semaphore. If the semaphore is initialized as 0, the task pending
the semaphore will only be executed whenever the other task posts the same semaphore.

The main purpose of the scheduler is to determine which task to run at any given moment.

A less precise answer may give 1-2 points depending on the wording. But the essential part
is to demonstrate the understanding of that it is responsible to decided which tasks to run.

Using a priority based pre-emptive scheduling technique, ensures that at a given time the
processor executes the highest priority task of all tasks which are currently ready to be
executed. Here, pre-emption is the act of temporarily interrupting a task being carried out
by the real-time kernel, in order to run a task with a higher priority.

