

A brief introduction to Field Programmable Gate Arrays

by Ketil Røed

Field Programmable Gate Array

- Integrated circuit including a matrix of general-purpose programmable logic blocks.
- Functions described by a Hardware Description Language (VHDL, Verilog) and mapped into pre-existing programmable logic (Configuration)
- True parallelism (concurrency)

UiO **Department of Physics**

University of Oslo

Programmable logic block

Look-Up Table (LUT)

Two input AND-gate

 UiO : Department of Physics

University of Oslo

Configuration bits

UiO : Department of Physics

University of Oslo

Intel Adaptive Logic Module

More info in Altera white paper "FPGA architecture": https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf

UiO **Department of Physics**

University of Oslo

From design to configuration

High level synthesis (HLS)

- Automated process that interprets an algorithmic description of a desired behavior in a high-level development tool/language and creates digital hardware that implements that behavior.
 - C-code (development tool)
 - Matlab (HDL coder)
 - LabView (FPGA module)
- Advantage:
 - Easy to implement complex designs with e.g. mathematical operations and filters.
- Disadvantage:
 - Less control of the more complex HDL code.

UiO : Department of Physics

University of Oslo

FPGAs and Processors

- Hard-core:
 - Modern FPGAs have Hard Processor Systems embedded in Silicon in addition to the programmable logic part.
- Soft-core:
 - Also possible to implement a CPU in HDL (soft-core)

- Reconfigurable
- Short time to market (quick response to market demands)
- Excellent and low-cost choice for prototyping
- True parallelism with high I/O count
- High reliability, determinism & performance
- Can replace microcontrollers in designs with
 - A demand for high number & flexible I/O lines
 - A need for non-standard user interfaces
- Offers single chip solutions (SoC)

Why FPGAs?

Figur 2. Generell representasjon av et sensorsystem.

The answer is not always FPGAs

- Can be expensive compared to microcontrollers
- Often higher power consumption compared to microcontrollers
- High pin count => complex packaging (BGA)
- Complicated (i.e. clocking and timing)
- Complex tools
- HDL not necessarily easy or intuitive
- Often a microcontroller can do the job!

Main FPGA vendors

Summary

- Introduction to Field Programmable Gate Arrays
- Programmable logic block
- Look-up table
- Hardware Description language and how an FPGA can be configured
- Some advantages and disadvantages