RTOS: Mailbox

Message mailbox

e Tasks can also communicate by sending messages via mailboxes

Mailbox
POST ’I PEND >
X0

e Mutual exclusion of the mailbox is handled by the operating system

Message mailboxes

* A mailbox is a special memory location that one or more tasks can use to
transfer data, or more generally for synchronization.

* The tasks rely on the kernel to allow them to
* write to the mailbox via a post operation
e Orread from it via a pend operation

* Direct access to any mailbox is not allowed

* A mailbox can only contain one message

Mailboxes

* The important difference between the pend operation and simply
polling the mailbox location is that the pending task is suspended
while waiting for the data to appear. (no CPU time is wasted for

polling the mailbox)

* The mail that is passed via the mailbox can be

* asingle piece of data,

® Oord pointer to a data structure Pointer

/m

Although several tasks can pend on the same mailbox,
only one task can receive the message
except for broadcast mode offered by uC/0S-II

A waiting list is associated with each mailbox pend
A task desiring a message from an empty mailbox is
suspended and placed on the waiting list until a message is

received. pend

pend

Mailboxes

* Generally, three types of operations can be performed on a mailbox
* |nitialize (with or without a message)
e Deposit a message (POST)
* Wait for a message (PEND)

Mailbox

POST >I PEND
X0
\ Optional timeout; number of
clock ticks the the task will wait

for a message

Relationship between task, ISR and mailbox

OSMboxCreate()
OSMboxDel () OSMboxAccept()

OSMboxPost () x OSMboxPend ()

/ W)‘
[ISR] Mailbox [ISR]

OSMboxPost ()
OSMboxPostOpt()

Message

Mailbox functions in uc/OS-II

 OS_EVENT *OSMboxCreate(void *msg)

* void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err)

* Timeout: integral #ticks (0: wait forever)
* INT8U OSMboxPost(OS_EVENT *pevent, void *msg)

e INT8U OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt)

* Allows posting of a message to all tasks (i.e. OS_POST_OPT_BROADCAST)
waiting on the mailbox

Data structure used for mailboxes

OS_EVENT

pevent —— 0OS_EVENT TYPE MBOX .OSEventType
0x00 .OSEventCnt
Pointer to message msg .OSEventPtr
0x00 .OSEventGrp

716 |54 |32 (|1]0 .OSEventTbl][]

ALL
initialized
Waiting list of events to

0x00

63162 |61(60|59|58|57 |56

Mailbox example for uC/OS-Il

#1include <stdio.h>
#1include "includes.h"

/* Definition of Task Stacks */

#define TASK_STACKSIZE 2048
0S_STK taskl_stk[TASK_STACKSIZE];
0S_STK task?Z_stk[TASK_STACKSIZE];
0S_STK task3_stk[TASK_STACKSIZE];

/* Definition of Task Priorities */

#define TASK1_PRIORITY 6
#define TASK2_PRIORITY 7
#define TASK3_PRIORITY 8

//Semaphore to protect jtag uart
OS_EVENT *shared_jtag_sem;

//Message mailbox OS_EVENT structure
OS_EVENT *MSG_box;

int main(void)

{
//Initialize uc/0S-II
0SInit();
printf(" \n");
printf(" Starting mailbox example\n");
printf("=== \n");

//Create semaphore to protect jtag uart
shared_jtag_sem = 0SSemCreate(1);
//Create an empty mailbox

msg_box = 0SMboxCreate((voidk)NULL);

//Create the various tasks
0STaskCreateExt (taskl,

NULL,

&taskl_stk[TASK_STACKSIZE-1],
TASK1_PRIORITY,

TASK1_PRIORITY,

&taskl_stk([0],

TASK_STACKSIZE,

NULL,

0S_TASK_OPT_STK_CHK | O0S_TASK_OPT_STK_CLR

’

0STaskCreateExt (task2,

NULL,

&task2_stk [TASK_STACKSIZE-1],
TASK2_PRIORITY,

TASK2_PRIORITY,

&task2_stk[0],

TASK_STACKSIZE,

NULL,

0S_TASK_OPT_STK_CHK | O0S_TASK_OPT_STK_CLR

’

0STaskCreateExt (task3,

NULL,

&task3_stk [TASK_STACKSIZE-1],
TASK3_PRIORITY,

TASK3_PRIORITY,

&task3_stk[o],

TASK_STACKSIZE,

NULL,

0S_TASK_OPT_STK_CHK | 0S_TASK_OPT_STK_CLR

’

//Start multitasking under ucosii

0SStart();

return @;

Mailbox example for uC/OS-Il

void taskl(void* pdata) .
{ Sending task
INT8U error_code = OS_NO_ERR;
int ti;
while (1)
{

tl = 0STimeGet();

0SSemPend(shared_jtag_sem,d,&error_code);

printf("Taskl sending message: %d ms\n",tl);
0SSemPost(shared_jtag_sem);

//Post the message with broadcast to all pending tasks

error_code = 0SMboxPostOpt(MSG_box,(void *)&t1,0S_POST_OPT_BROADCAST);
OSTimeDlyHMSM(@, @, 1, @);

}

}
| | * . .

\{/md task2(void* pdata) Recelvmg task
INT8U error_code = OS_NO_ERR; (Similar for task3)
int t1;

int *msg_rx;

while (1)

{
//Pend messages sent from taskl
msg_rx = (int*)0SMboxPend(MSG_box,@,&error_code);
tl = OSTimeGet();

0SSemPend(shared_jtag_sem,d,&error_code);
printf("Task2 received message: %d ms (at %d ms)\n",*msg_rx ,tl);
0SSemPost(shared_jtag_sem);

Running application with broadcast

sending message: 1071 ms
received message: 1071 ms (at 1076 ms)
received message: 1071 ms (at 1079 ms)

sending message: 2076 ms
received message: 2076 ms (at 2081 ms)
received message: 2076 ms (at 2083 ms)

Running application w/o broadcast

sending message: 1097 ms
received message: 1097 ms (at 1100 ms)

sending message: 2100 ms
received message: 2100 ms (at 2104 ms)

error_code = 0WboxPost(MSG_box, (void *)étl);

Mailbox example for uC/OS-Il

* OSMboxPend returns a pointer to the
message sent through the mailbox

* If that messages is updated before the
receiving task has processed the sending message: 171 ms
message, the data will be overwritten received message: 171 ms (at 174 ms)

sending message: 274 ms

. received message: 274 ms (at 277 ms)
* Solution: create a local copy of the received message: 274 ms (at 176 ms)
received message

void task3(void* pdata)

{

INT8U error_code = OS_NO_ERR;
int tl1;
int *msg_rx;

: sending message: 170 ms
int msg_local;

while (1) received message: 170 ms (at 173 ms)
{ sending message: 273 ms
msg_rx = (int*)0SMboxPend(MSG_box,®,&error_code); received messaage: 273 ms (at 276 ms)

msg_local = *msg_rx;

tl = OSTimeGet();

usleep(110000) ;
0SSemPend(shared_jtag_sem,@,&error_code);
printf("Task3 received message: %d ms (at %d ms)\n",msg_local ,tl1);
0SSemPost(shared_jtag_sem);

received message: 170 ms (at 175 ms)

