
RTOS: Queues
Post

Pend

Message queue

• Tasks can also communicate by
sending messages via message queues

• While a mailbox is limited to one
meassage, a message queue can
contain several messages

• FIFO*: First message inserted in the
queue is the first message extracted
from the queue

Post

Pend

*FIFO: First In First Out.
uC/OS-II can also be configured to support Last In First Out (LIFO)

Mutual exclusion of queues is
handled by the operating system

Message queues

Message queues (and mailboxes) provide an asynchronous
communications protocol
• the sender and receiver of the message do not need to interact with the

message queue at the same time.
• Messages placed onto the queue are stored until the receiver retrieves them.

Producer
task

Consumer
task

Message queue

A waiting list is associated with each message queue
If queue is empty, requestion task blocked and put on waiting list

Using message queue for DAQ

Timeout of pend for queue
corresponds to sampling
frequency

Message could contain
information about
• Updated sampling

frequency
• Which channel to read

And force an immediate
conversion from another task
if necessary

Message queues

• Generally, three types of operations can be performed on a message
queue
• Initialize (CREATE; always assumed to be empty)
• Deposit a message into the queue(POST)
• Wait for a message (PEND)

Relationship between tasks, ISR, and queues

Source and documentation: https://doc.micrium.com/display/osiidoc/Message+Queue+Management

Timeout

https://doc.micrium.com/display/osiidoc/Message+Queue+Management

Message queue functions in uC/OS-II
• OS_EVENT *OSQCreate(void **start, INT16U size)

• **start: pointer to an array that holds the messages
• Array must be declared as an array of pointers to void

• Void *MyArrayOfMsg[size]
• Pass the address of MyArrayOfMsg[] to OSQCreate()

• void *OSQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err)
• Timeout: integral #ticks (0: wait forever)

• INT8U OSQPost(OS_EVENT *pevent, void *msg)
• FIFO

• INT8U OSQPostFront(OS_EVENT *pevent, void *msg)
• LIFO

• INT8U OSQPostOPT(OS_EVENT *pevent, void *msg, INT8U opt)
• Allows posting of a message to all tasks (i.e. broadcast) waiting on the queue
• Supports both LIFO and FIFO

Data structure for message queues

Before you create a queue, you need to
allocate an array of pointers that contains
the desired number of queue entries.

The starting address of the array is passed
to the OSQCreate() as an argument, as well
as the size of the array

ptr. to next msg in

ptr. to start of queue

ptr. to next msg out

