Basics of crystallography



Family of planes

(hkl) - Family of plane: parallel planes and equally spaced. The indices correspond
to the plane closer to the origin which intersects the cell at a/h, b/k and c/I.

Miller indices describe the orientation and spacing of a family of planes.

The spacing between adjacent planes of a family is referred to as the “d-
spacing’.

Three different families Note all (100) planes
of planes: The d- — are members of the
spacing of (300) planes (300) family

is one third of the (100)

spacing

(100) (200} (300)



Planes (and directions) of a form

{hkl} - Planes of a form: equivalent lattice planes related by
symmetry.

For the cubic system all the planes (100), (010), (001), (100),
(010) and (001) belong to the form {100}.

For a tetragonal material a=b#c the form {100} would only
include (100), (010), (100), and (010).

<uvw> - Directions of a form: equivalent lattice directions
related by symmetry



Planes of a zone \\ \ >

Planes of a zone - The planes of a zone axis [uvw] satisfy the Weiss Zone Law:

hu+ kv+lw=0
This law is valid for all lattices, Cartesian or not.

In cubic systems [hkl] is normal to the set of planes (hkl) and the Weiss zone law
can be expressed as the scalar (dot) product of [uvw] and the plane normal [hkl].

The shaded planes in the cubic lattice are
planes of the zone [001].

The planes of zone are not all of the same
form.

Any direction is a zone axis! p




Interplanar distances (d) formulae

In the case of orthogonal systems determination of interplanar distances is simple.

AQNA=9O° AONB=90° AONC=90°

AAON=OL cos a = dy/(a/h)
ABON=[3 > c0s B = dy /(b/k)
ACON=Y cos y = dy/(l/c)

For orthogonal axis: cos?a+cos?+cos?y=1

- 2 24 2 2 + 2 2 —
Intercepts of a lattice plane (hkl) on Hence: (hfa)". ™+ (b)Y dh™* (1)
the unit cell vectors a, b, c. As there is
another plane of the same family
passing through O the interplanar

distance is just: ON=d,

As a result: (h/a)? + (k/b)? + (I/c)? = 1/d,,2



Interplanar distances (d) formulae

] h + k412

Cubic: - - —
1 P+ kK I?
Tetragonal : —_————
g d? a’ ¢?
| 4 (h* + hk + k? 12
Hexago al: —_—= - —
exagon 7 3( - ) + 3
Rhombohedral :
1 _ (4 K+ P)sin® a + 2(hk + kI + hl)(cos® a — cos )
d? a*(1 — 3 cos® 2 4+ 2 cos® 2)
2 2 2
Orthorhombic: L h + Kk + ”

d*  a* b 2

I (hz N k* sin? M I*  2hl cos /3)

Monoclinic: _—= —_
d*> sin® g \a? b? 2 ac

d?
In the equation for triclinic crystals, S5 = a*bh? sin? y,
V' = volume of unit cell (see below), S,, = abc*(cos x cos B — cos y),
S1, = bc? sin? g, S,3 = a*be(cos B cos y — cos ),

S,, = a*c¢? sin? B, S,3 = ab*c(cos y cos x — cos fi).



Symmetry operations

A symmetry element (or operator) when applied to an object
leaves that object unchanged

* An object has translational symmetry if it looks the same after
a particular translation operation (an example is wallpaper,
which has a repeating pattern; if you slide it by the right
amount it looks the same as before).

* A point symmetry operation is specified with respect to a
point in space which does not move during the operation (eg.
inversion, rotation, reflection, improper rotation)



Translational symmetry operations
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Lattice - Infinite array of points in space, in which each point has identical
surroundings.

The simplest way to generate such na array is by using translation
invariance (tranlational symmetry operation).



Unit cell

« The repeat 3d unit in a lattice is called a unit cell
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* A unit cell is defined by six parameters, a, b, ¢, o, 3, and y

e axbec =cxa*b=>bxce*a=volume of the unit cell=V



Why does crystallography need symmetry?

Crystal structure of calcite, a
form of calcium carbonate

Ca+2
The symmetry of a crystal can be used to ECM

reduce the number of unique atom 0-2

positions we have to specify




Point symmetry operations

Symmetry elements:
"'1 (a) Mirror plane, shown as dashed
line, in elevation and plan.

Q ! (b) Twofold axis, lying along broken
line in elevation, passing
m perpendicularly through clasped

hands in plan.
(c) Combination of twofold axis
5N with mirror planes, the position

of the symmetry elements given
only in plan.

O~ (d) Threefold axis, shown in plan
only.
(e) Centre of symmetry (in centre
of clasped hands)
f) Fourfold inversion axis, in

elevation and plan, running
along the dashed line and
through the centre of the clasped
hands (compound point
symmetry operation)

lal

(bl

{¢)
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(Compound point symmetry operations)

Compound operations: Combinations of a rotation with a reflection or inversion. Inversion
takes a locus on points.

Simple rotations are proper; that is, they generate a sequence of objects with the same
handedness. Improper rotations (roto-inversions) produce objects of alternating
handedness.

Roto-inversions involve rotation and inversion. The overbar is used to designate roto-
inversion. The figure below shows the operation of a 3-fold roto-inversion axis.

3
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Point symmetry operations
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In written text mirror planes are given the symbol m, while
axes and the corresponding inversion axes are referred to
as d The symbol 1 (for a onefold
axis) means no symmetry at all, while the corresponding

inversion axis ( 1) is equivalent, as already remarked, to a
centre of symmetry.

Symmetry elements using
conventional symbols. The right-
hand group of (a) is drawn here
in a different orientation, and the
left-hand groups of (c¢) and (f) are
omitted. Symbols + and -
represent equal distances above
and below the plane of the paper:
open circles represent
asymmetric units of one hand,
and circles with commas their
enantiomorphs. (a) Mirror plane
(m), perpendicular to (left) and in
the plane of the paper. (b)
Twofold axis (2) in the plane of
the paper (left) and perpendicular
to it (right). (c) Combination of
twofold axes and mirror planes.
Note that the presence of any
two of these elements creates
the third. (d) Three fold axis (3).
(e) Centre of symmetry (1). (f)

Fourfold inversion axis ( 4). 13



Describing symmetry operations with matrices

Rotation axes,
A 27 /n anti-clockwise rotation about axis r.
(If no ris given, use the principal (2) axis.)

6 = 180 (two-fold):
(X’y’Z) > ('X’ -Ys Z)

Mirror planes
A reflection througn a horizontal plane
perpendicular to axis r.

(va’Z) > (X1 Y; 'Z)

Inversion centres,
Inversion through the centre point.
(X,y,Z) > ('X’ -Y, 'Z)

Improper rotations,

A 27/ n anti-clockwise rotation about axis r
followed by

a reflection through a horizontal plane
perpendicular to r.

Translation,
Translation along one of the lattice vectors.

t = 0*x+0"y+1*z

(
(

(

cost
sinf

0

cost
sinf

0

—8in6 0
cost 0
0

1

(forr = 2)

—8inf 0

cost 0

0 -1
(forr = 2)

)

Determinant of matrix

D = (cosb)? + (sinB)?= 1.0

D =-1
Improper
D=-1 operations
(change of hand)
D =-1

14



Rotations compatible with a lattice

Assume that the minimum lattice spacing is a (unit
translation). B must generate a new point A' which is
rotated from A by an angle a. Applying the rotational
symmetry operation R at A’ must generate a new
point B’. Since R should be a symmetry operation, A'
and B' must both be lattice points. Due to periodicity
of the crystal, the new vector ha which connects B and
B’ must be equal to an integral multiple of a (any
lattice spacing must be a multiple integer of a)

AA = a

BB’ = ha =a + 2x

X = a.sin(0) = - a. cos(6+m/2) = — a.cos(a)

ha = a — 2a.cos(a)

ha — a = - 2a.cos(a)

(h-1)/2= - cosa,

For h integer. h=-1,0,1,2,3

Hence: cosa =0, ¥, +1

o = 0° 60°, 90° 120°, 180°, or 360°

Since an n-fold is 360°n, this constrains a lattice
to containing 1-, 2-, 3-, 4-, or 6-fold symmetry 15
(notSor7, etc.)




Rotations compatible with a lattice

2-fold

4-fold

Only 2, 3, 4 and 6-fold
rotations can produce
space filling patterns




Point symmetry operations
compatible with a lattice

Roto-Inversions
Rotations (Improper Rotations)
1-fold 360° I Identity e 1-fold 360° 1 ©
2-fold  180° 2 ' e 2-fold 180° 2 |
3-fold 120° 3 A e 3-fold 120° 3 A
4-fold  90° i o + 4-fold 90° 1 P
6-fold 60° 6 & - o _
« 6-fold 60 6 @

17



Crystal systems

Crystals are axiomatically divided in 7 systems according to their symmetry

System Conventional unit cell Defining symmetry
Triclinic a; # ag # ag aF#BF#y monad
Monoclinic a; # ag # ag a=-vy, B>90° 1 diad
Orthorhombic aj # ag # ag a=03=~y=090° 3 diads
Tetragonal a; = ag # ag a=p0F3=~y=90° 1 tetrad
Trigonal a; = ag = ag a=[08=vy%90° 1 triad
Hexagonal a; =azFag a=/[0=90°vy=120° 1 hexad

Cubic a; — ap — ag a=0F3=~y=090° 4 triads

18



Symmetry operations compatible
with the triclinic system

Only translational symmetry, no rotational symmetry
other than 1 or |

lllustrative 2D example (a planar lattice...)
~L T 3‘7 —
=GR )P G i.i-l
N o __._...z“*-
"4 ] /-:'-., T —
o —( $¢,=Z O

(o = —= g o —7
\9 \.'J""P-_—-&' '\’ \" PR p———r

An array of repeating motifs: neither the motif nor the Iattice

contains any elements of symmetry other than 1 or ] .



Symmetry operations compatible
with the cubic system

- {wofold axis

A threefold axis
. fourfold axis

twofold axis threefold axis fourfold axis

20



Crystal systems

Tetragonal Orthorhomblc

Monoclinic Tncllnlc Rhombohedral
(trigonal)

Hexagonal

21



Centering

e What happens when other points are added to each of the previous lattices while
maintaining the rotation symmetry (added at centered positions)

¢ |n each situation is it still a lattice? Is it a new lattice?

N.B. centering involves only translation operations (centering operators).

| ] Centered Unit Cells

' The location of the additional lattice points within the
’ . unit cell is described by a set of centering operators:

—/‘. —e

* Body centered (l) has additional lattice point at
(172,1/2,1/2)

primitive (P} body-centred (I}

 Face centered (F) has additional lattice points at
. f . . (0,12,12), (1/2,0,1/2), and (1/2,1/2,0)

* Side centered (C) has an additional lattice point at

— 7 - (1/2,1/2,0)

fave-centred (F) face-centred A{BorC)

22



Centering

Not all centering possibilities occur for each of the seven crystal systems:
Only 14 unique combinations (Bravais lattices):

 Some centering types are not allowed because they would lower the
symmetry of the unit cell (e.g. side centered cubic is not possible as this
would destroy the three-fold symmetry that is an essential component of
cubic symmetry)

« Some centering types are redundant /@klf

(e.g. C-centered tetragonal can always be
described using a smaller primitive
tetragonal cell, see figure)

I
|
|
|
|
|
1
|
/"’“_
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Bravais lattices

The combination of crystal system and centering gives
14 Bravais lattices

[ I

\h ) —Y - -
triclinic monoclinic

24



Unit cell choice

* There is always more than one possible choice of unit cell

* By convention the unit cell is usually chosen so that it is as small
as possible while reflecting the full symmetry of the lattice

* If the unit cell contains only one lattice point is said to be primitive

« If it contains more than one lattice point it is centered

Face centered cubic
Primitive

Body centred cubic
Primitive

Why? 25




Point symmetry groups

A set of symmetry operations that leave an object invariant.
Generically, there are infinite point symmetry groups. However,
not all can be combined with a lattice.

In crystallography we are interested in objects that can be
combined with the lattices: there are only 32 point groups
compatible with periodicity in 3-D.



Crystallographic point symmetry groups

* A crystallographic point group is a set of symmetry operations, like rotations or
reflections, that leave a central point fixed while moving other directions and
faces of the crystal to the positions of features of the same kind.

 For a true crystal the group must also be consistent with maintenance of the
three-dimensional translational symmetry that defines crystallinity.

« The macroscopic properties of a crystal would look exactly the same before
and after any of the operations in its point group. In the classification of
crystals, each point group is also known as a crystal class.

* There are infinitely many three-dimensional point groups; However, the
crystallographic restriction of the infinite families of general point groups
results in there being only 32 crystallographic point groups.



The 32 point groups in stereographic projection

Triclinic system

28



Point Groups in Stereographic projection
Monoclinic System




Point Groups in Stereographic projection

Orthorhombic System

222




Point Groups in Stereographic projection
Trigonal System

3 32

3m




Point Groups in Stereographic projection
Trigonal System

32



Point Groups in Stereographic projection
Tetragonal System

33



Point Groups in Stereographic projection
Tetragonal System

34



Point Groups in Stereographic projection
Tetragonal System




Point Groups in Stereographic projection
Hexagonal System

Y aa

¢ kY
7N\

'k‘.agl e — —
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Point Groups in Stereographic projection
Hexagonal System

— \\/




Point Groups in Stereographic projection
Hexagonal System

38



Point Groups in Stereographic projection

=m3

2/ m3




Point Groups in Stereographic projection
Cubic System




In short...

Crystal Class Point groups

Cubic 23, m3, 432, 43m, m3m
Hexagonal 6, 6, 6/m, 622

Trigonal 3, 3, 32, 3m, 3m
Tetragonal 4, 4, 4/m, 422, 4mm, 42m, 4/mmm
Orthorhombic 222, 2mm, mmm
Monoclinic 2, m,2/m

Triclinic 1, 1




Space groups

Periodic solids have:
- lattice symmetry (purely translational)

- point symmetry (no translational component)
- possibly glide and/or screw axes (partly translational)

Together all the symmtery operations
make up the space group



Glide planes

Combined reflections and translations (the translation is not a pure translational
symmetry vector):

|
|

T : repeat
I

0

|
: T Step 2: translate
6 -0
1
Step 1: reflect

C — (a temporary position)

Change of hand...

A stylised aerial view of a well coached 'eight', showing a translational symmetry
operation: each rower is related to the next by a combination of translation and i
reflection.



Glide planes

- >
O ® 0
0  -® .0

A glide plane. Translation from left to right across the page is

accompanied by reflection through the plane of the paper. "



Glide operations

* a-glide

- Translate by 3a
+ b-glide

- Translate by 3b
+ c-glide

- Translate by 3¢
* n-glide (L to a)

- Translate by b+ 3¢
* n-glide (L to b)

- Translate by 3a+ 3¢
* n-glide (L to ¢)

- Translate by 3a+ b
+ d-glide

- Translate by za+3b+#¢

The glide translation must always
be parallel to the glide plane. 45



Screw axes

Combined rotations and translations (the translation is not a pure translational
symmetry vector):

(@)
21 1s a 180° rotation
plus 1/2 cell translation .
s o + O -0 ‘0
{ .0 -0 -0
(b) |€— t —=>|
-— VL
' O;.
. :
!
| 5:9.-:#._ ......
| . o

Translational symmetry elementis. (a) A wo-fold screw axis, 2,, shown perpendicular to
the plane of the paper (left) and in the plane of the paper (right). Each half revolution is
accompanied by a transiation through half the repeat distance. (b) A four-fold screw axis, 4,. (¢) 46



In short...

6 6 6 6 6
—= translation
6~ o

6{0

)
reflection

\ng

rotation o
6
P
6 0
N 6
6 glide
plane

screw diad



Limitations on combination of
symmetry elements

* Not all symmetry elements can be combined in the
crystallographic point groups (only 32 point groups are
compatible with periodicity in 3-D)

 Furthermore not all of the 32 point groups can be
combined will all the lattices. For 3-D lattices there are:

- 14 Bravais lattices
- 32 point groups
- but only 230 space groups



TABLE 3.4 Space Groups in Standard Orientations®

System Point Group Space Group
Triclinic 1 P1
1 P1
Monoclinic 2 P2 P2, c2
m Pm Pc Cm Cc
2/m P2/m P2,/m C2/m P2/c P2,/c C2/c
Orthorhombic 222 P222 P222, P2,2,2 P2,2,2, C222, Cc222
F222 1222 12,2,2,
mm?2 Pmm?2 Pmc2, Pcc2 Pma?2 Pca2, Pnc2
Pmn2, Pba2 Pna2, Pnn2 Cmm?2 Cmc2,
Ccc2 Amm?2 Abm2 Ama?2 Aba2 Fmm?2
Fdd2 Imm?2 Iba2 Ima?2
mmm Pmmm Pnnn Pccm Pban Pmma Pnna
Pmna Pcca Pbam Pccn Pbcm Pnnm
Pmmn Pbcn Pbca Pnma Cmcm Cmeca
Cmmm Ccem Cmma Ccca Fmmm Fddd
Immm Ibam Ibca Imma
Tetragonal 4 P4 P4, P4, P4, I4 14,
4 P4 I4
4/m P4/m P4,/m P4/n P4,/n I4/m I4,/a
422 P422 P42,2 P4,22 P4,2,2 P4,22 P4,2,2
P4,22 P4,2,2 1422 14,22
4mm Padmm P4bm P4,cm P4,nm Pdcc Pdnc
_ P4,mc P4,bc I4mm I4cm I4,md I4,cd
a2m Pa2m P32c Pa2,m P42,c Paim2 Pic2
Pab2 Pan2 Idm2 Iac2 I1a2m 132d
4/ mmm P4/mmm P4/mcc P4/nbm P4/nnc P4/mbm P4/mnc
P4/nmm P4/ncc P4,/mmc P4,/mcm P4,/nbc P4,/nnm
P4,/ mbc P4,/mnm P4,/nmc P4,/ncm I4/mmm I4/mem
I4,/amd 14,/acd
Trigonal/rhombohedral 3 P3 P3, P3, R3
3 P3 R3
32 P312 P321 P3,12 P3,21 P3,12 P3,21
R32
3m P3m1l P31m P3cl P31lc R3m R3c
3m P31m P31c P3m1 P3c1 R3m R3c
Hexagonal 6 P6 P6, P6 P6, P6, P6,
6 P6
6/m P6/m P6;/m
622 P622 P6,22 P6,22 P6,22 P6,22 P6,22
6mm P6mm Pécc P6scm P6;mc
6m?2 Pé6m2 P6c2 P62m P62c¢
6/mmm P6/mmm P6/mcc P6,/mcm P65/mmc
Cubic 23 P23 F23 123 P2,3 12,3
m3 Pm3 Pn3 Fm3 Fd3 Im3 Pa3
Ia3
432 P432 P4,32 F432 F4,32 1432 P4,32
_ P4,32 14,32 _ _ _ _
43m P43m F43m I43m P43n F43c 143d
m3m Pm3m Pn3n Pm3n Pn3m Fm3m Fm3c
Fd3m Fd3c Im3m Ia3d

“The 11 Laue symmetries are separated by horizontal lines.

49



Interpretation of space group symbols

All space group symbols start with a letter corresponding to the
lattice centering, followed by a collection of symbols for symmetry | Lattice cenfering

operations in the three lattice directions.
- Primitive

There are sometimes short notations for space groups symbols: . Base cenTerin
« P121is usually written as P2 - X,Y,12
- primitive cell - iy +3
- two-fold rotation along the b axis X*7. Y%7, 1
* Body centering
« P2,2,2,(cannot be abbreviated) - XY, 12

- primitive cell
- 2, screw along each axis, orthorhombic

*  Cmma (full symbol: C2/m2/m2/a)

- X¥3, Y43, 20
Face centering

- XY, 2
- C-centered cell :s .3
, : - X*3,.¥*7. 1
- mirror plane perpendicular to a R
- mirror plane perpendicular to b T Xt Y. 2%
- glide plane perpendicular to ¢ - X, Y+, 2%

- other implied symmetry elements (e.g. 2-fold rotations)

Rhombohedral cen'rer‘in

* Pnma - XY, 2
- primitive cell - x+/y, y¥2/s, 24/
- n glide plane perpendicular to a - x*2/3, y+1/3, z+2/3

- mirror plane perpendicular to b

- glide plane perpendicular to c
- other implied elements

50



Interpretation of space group symbols

Point Groups (Crystal Classes)

 Hermann-Mauguin Symbols (three positions)
— Tniclinic & monoclinic systems: one position
— / means ‘perpendicular to” as 2/m
— Orthorhombic: three positions for a, b, c

— Tnigonal, Hexagonal, Tetragonal: 3 positions: c,
a, |110]

— Cubic: 3 positions: [100] (a), [111], [110]

51



Interpretation of space group symbols

TABLE 3.3 Symbols for Symmetry Elements

Designation If Parallel Designation If Perpendicular

Symmetry Symbol to Plane of Projection to Plane of Projection
Center 1 O O
2-Fold axis 2 —> w
3-Fold axis 3 — A
4-Fold axis 4 - 5
6-Fold axis 6 — %
2-Fold screw axis 2, —— ¢
3-Fold screw axis 3, — A
3-Fold screw axis 3, — A
4-Fold screw axis 4, — g "
4-Fold screw axis 4, — -
4-Fold screw axis 4, — .
6-Fold screw axis 6, — ? 4
6-Fold screw axis 6, - A
6-Fold screw axis 64 — -
6-Fold screw axis 64 — »
6-Fold screw axis 65 - L
Mirror m ) —
a Glide plane a K’ -——--
b Glide plane b I
¢ Glide plane c — e
n Glide plane n ~ o e
d Glide plane d e R IR bt

8 52




Interpretation of space group symbols

TABLE 3.2 Some Symmetry Elements and Their Equivalent Positions

Equivalent Positions

Axis 2 Parallel to a X ¥,2 X, 5,2
2 b 38 M s 3 0 4
2 C X; Y2 X N2
p a X,¥,2 X+3,¥,2
2, b X,y,2 X,y+3,2
2, c X, 9,2 % ¥, 2+3
Plane m Perpendicular to a N Voz RS
m b s S vy s P P
m c N2 A
a b X, 9,2 X+3,¥,2
a c X, 9,2 X+3,¥,2
b a X, 9,2 X, y+3,2
b c X, 9,2 X, y+3,2
c a X, 9,2 X,y,z+3
c b X, 9,2 X, ¥,z2+3
n a X,y,z X, y+3z+3
n b X, 9,2 X+3,9,2+3
n c X, 9,2 Xx+3,y+3,2
d a X, 9,2 X, y+3,z+;3
d b X, 9,z x+3, 9, z+3
d c X, 9,z x+3,y+3, 2 53




Interpretation of space group symbols

Pl

9+ 9+
(1)

a
9 + %+

P1, equivalent positions: (1) x, y, z

X,y,z are fractions of the length along each unit cell edge (values
ranging from 0 to 1.0)
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Interpretation of space group symbols

P2, (2
R O a- b —
o 9+
{))
P - S
o -
- -
a 94+ 9+

P2,, equivalent positions: (1) x, y, z; (2) -x, y+1/2, -z

55



International Tables for Crystallography - Volume A
Entry for Space Group P2,/c (#14)

Page 1

P 21 / C Czsh 2/m Monoclinic
No. 14 Pl 2|/C 1 Patterson symmetry P12/m1

UNIQUE AXIS b, CELL CHOICE 1

= = T T a
/ / I |
L] ' ' — I I —
O’ o OI l o I
j ] \ |
Y —| -
] o d L i e
i
/ ; i
bc\o ,
— )
Oo\o
/ \o
J ‘/ a,/
i

Origin at 1

Asymmetricunit 0<x<l; 0<y<!; 0<z<1

Symmetry operations

(1 (2) 2(0,1,0) O.y.! 31 000 4 e xl..z

Page 2

CONTINUED No. 14

Generators selected  (1): ¢(1,0,0); £(0,1.0); ¢(0,0,1); (2); (3)

P2,/c

Positions
Multiplicity, Coordinates Reflection conditions
Wyckol! leter,
Site symmetry General:
4 e | () x,yz Q) Ry+42+4 (3) 9,2 @ x.y+4tz2+4 ROI: 1 =2n
00 k=2n
0 : I=2n
Special: as above, plus
2 d 1 £,0,2 :,:.0 Rkl : k+1=2n
2 ¢ 1 0,0,: 0,:.0 Rkl k+1=2n
2 b 1 1,00 Rkl k+1=2n
2 al 0,0,0 0,:,: Rkl k+1=2n
Symmetry of special projections
Along [001] p2gm Along [100] p2gg Along 010] p2
a=a =b a=>hb b =c, a=.c b=a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0

Maximal non-isomorphic subgroups

1 [2]Plel(Pe,T) I 4
21P12,1(P2.4) ;2
[21P1(2) 1;3

Ha none

b none

Maximal isomorphic subgroups of lowest index
e [2]P12 /cl(a =2aora =2a,c¢ =2a+c) (P2 [e, 14); [3]1 P12 /el (b =3b)(P2 [c, 14)

Minimal non-isomorphic supergroups

1 [2]) Prna(52); [2] Pmna(53); [2) Peca(54): [2) Pbam (55); [2]) Pecen (56); [2) Pbem(5T); (2] Pnnm (58); [2] Phen (60),

[2] PBea(61): [2] Prma(62). [2)Cmce(64)

n [2]A12/m1(C2/m, 12); [2]C12/c1(C2/c, 15); [2]112/ec 1 (C2/c, 15); 21 P12 /m] (' = i) (P2, /m, 11);

[21P12/e1(b = :b) (P2/c, 13)
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— P2|/C gb 2/m l Monoclinic
No. 14 Pl12Jcl Patierson symmetry P 2/m |
UNIQUE AXIS b, CELL CHOICE | ?
| :
Herman- q ’ ‘7 T 1
Mauguin Space o VT
6roup Symbols f f S
(Short & Long) [ e I
@ -®
o |
{ / {
Origin = |
Asymmetric snit 0<:<|- Osy<). 05:<1
Symmetry operations

m D 20,400 0.y.¢ i ooo ) ¢ x.b.z

Schoenflies Space Group Crystal System

Point Group



i
[ .a b,
P 12 / C 1 T T °
1 ( | |
[ o
|
— |
Axes parallel to or .l @ )i = : : =
planes perpendicular € ol | cc
to the b-axis
@ Glide translation in the
lane of the projection
b= O P
Glide translation  * -

e,
...
veq
..
........
“ves
_____

dicular t
perpendicular to ©

the plane of the ' “©
projection i + +
C [T . )
O+

I}

a O+
Origin at | I -
Asymmetric unit 0<x<|; 0<y<i;, 0<:z<d Cenfer'on
Symmetry operations ‘ c-glide plane
(1 (2) 2(0,4,0) 0,y.! 3) 1 0,00 @) ¢ xi.zle ? P
t 2, Screw Axis
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Wyckoff positions

A useful piece of information contained in the International Tables are the
Wyckoff positions that tell us where the atoms in a crystal can be found.

The letter is simply a label and has no physical meaning. They are assigned
alphabetically from the bottom up.

The multiplicity tells us how many atoms are generated by symmetry if we
place a single atom at that position.

The symmetry tells us what symmetry elements the atom resides upon. The
uppermost Wyckoff position, corresponding to an atom at an arbitrary
position never resides upon any symmetry elements. This Wyckoff position is
called the general position. The coordinates column tells us the coordinates of
all of the symmetry related atoms

All of the remaining Wyckoff positions are called special positions. They
correspond to atoms which lie upon one of more symmetry elements, because
of this they always have a smaller multiplicity than the general position.
Furthermore, one or more of their fractional coordinates must be fixed
otherwise the atom would no longer lie on the symmetry element. 59



Asymmetric Unit

* Definition: smallest part of the unit cell which will
generate the whole cell if all symmetry operators are

applied to it

 Knowing the asymetric unit and the symmetry of the
structure allows generating the unit cell.



Generators selected (1); 1(1,0,0); (0,1,0); 1(00.1); @2y )
Positions
Multiplscity, Coordinates
Wyckall lestes.
Site symmetry
4 ¢ '[(l)x.y.z (2) £, y+4,2+14 (3) 1.9.2 (4) x.5+i.z+¢
J
General position
2 d 1 404 410
: Wyckoff
2 ¢ 1 003 040 .
Sites
2 b 1 100 444
2 a 1 000 0,44

Symmetry of special projections
Along [001] p2gm

a'=a, b'=b

Origin at 0,0,z

Along [100] p2gg
a'=b b'=c
Ongin &t 2,00

Reflection Conditions/
Systematic Absences

Reflection cond:itions

General:

hOl: | =2n

0k0: k=2n

00l: I =2n

Special: as above, plus
hkl :
hkl ;
hkl :

hkl

k+1=2n
k+1=2n
k+l=2n
k+l=2n

Along [010] p2
a'=ic b'=a
Origin at 0,y.0

Maximal non-isomorphic subgroups
I [21P12,1(P2,) 1.2

[21P1 ;3
(2)P1c1(Pc) 1;4
Ila none
IIb  none

Maximal isomorphic subgroups of lowest index

e (3)P12,/c)1(b'=3b)(P2/c):;[2IP12Jcl(a"=2a o &'= 2a.¢'=2a+¢c)(P2jc)

Minimal non-isomorphic supergroups

Subgroups = Space group symmetry if
certain symmetry operations are eliminated

Supergroups = Space group symmetry if
certain symmetry operations are added

1 (2)Pnna;[2)Pmna;(2)Pcca;(2)Pbam (2)Pccn; 21Pbem;(2)Pnnm;(2)|Pbcn,[2)Pbca;(2)Pnma,

[2]Cmca

N R21C12c (CYe):12)A 1 2Um L(CUm ) 2U12c HCUc): 2P 2m 1 (2" =e)(P2im),

(2)P12/c 1 (2b"= b)(P2/c)
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...................

.........

.........

....................

..........

16
2h

P2/n2,/m2;/a

2,22
PRR%

4
Ty

Orthorhombic

:Tq
W= == )
‘?

P — P = — A & — — — —— —--l ]._—.
~IE
~E
&= :
Q |

. ———

.‘_—[-— —_—— ==

P2,/n2,/m 2;/a
‘ T T

2, screw axis| | 2, screw axis| |

to the b-axis + to the c-axis +

mirror plane L to  a-glide plane L
the b-axis to the c-axis

2, screw axis| |

to the a-axis +

n-glide plane L
to the a-axis
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Tetragonal

4
*‘;‘ | ;;‘ |
) s (A
t-— ——‘ ‘ A A T
| . _/*
[ ] 4, screw axis || 2, screw axis || to 2-fold axes || to the

N o
—— A
N N | W ® to the c-axis, @ the a- & b-axes, face diagonals in the
i 1 No glides or No glides or ab plane ([110]),
a | mirrors L to the mirrors L to these No glides or mirrors
c-axis axes 1 to these axes
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Trigonal

~ 3 axis || to the c-axis,
P3ml DV \t |

No. 164 P32/m1

2-fold axis || to
the a- & b-axes,

Mirror planes L to
these axes no axes || to the

face diagonals in the
ab plane ([110]),

No glides or mirrors
1 to the diagonals

P§1m D;d

No. 162 P312/m

3-fold rotoinversion
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Hexagonal

4
D

P 6s/mmc

No. 194

P6s/m2/m?2/c

Directions and conventions for naming space group are the same as

for trigonal.
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Cubic

Pa 3 Tg m3 Cubic
No. 205 P2/a3 Patterson symmetry Pm 3
| o
X
N _\3‘_;___§
AT
I
2, screw axis || to 2
the a-, b- & c-axes, 4 :
a-glide L to these §'_--f_-—'§ ————— ;Z -
axes y( :

| — : 4, =4
| =% | ¥
P2,/a .3 1 Gicgonais Nogidesor

/ mirrors L to these axes
3-fold rotoinversion

axes || to the body

diagonals o6



Describing crystals structures

- Full symmetry of a crystal is described by its space group

- The location of all atoms in a crystalline solid can be
specified by a combination of all the symmetry elements
and the fractional coordinates for a unique set of atoms
(asymmetric unit)

We specify the atomic coordinates for a small number of atoms. Then we apply all
the symmetry elements including the lattice symmetry to build up the full 3D
structure.

N.B.: Each lattice point may be associated with many atoms



Space Group = Fm3m (225) |

a=5.64 A4
Atom Site x y z
Na 4a 0 0 0
Cl 4b 5 0 0

Atom Site x

Cs
Cl

Examples CsC)

{

Space Group = Pm3m (221)
a=4.12 A

la 0
1b =

v O X

Z
0
1
2

Asymmetric units...
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Examples

Ta adopts theTa-type structure with space group Im3m
(229) with atoms at 2a (0,0,0) and a=0.33 nm.

Ti adopts the Mg-type structure with space group pé6;/mmc

(194) with atoms at 2c¢ (1/3,2/3,1/4) and a=0.295 nm and
¢c=0,4686 nm.

Si adopts the structure with space group
Fd3m (227) with atoms at (16c) 1/8,1/8,1/8 and a=0.543 nm.

FeO adopts the NaCl-fype structure with O in Cl sites (only

lattice parameter missing...).
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