
Basics	
  of	
  diffrac,on	
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Diffraction 

Diffraction refers to the phenomena exhibited by light when 
it interacts with barriers and obstacles (scattering). 



Interference	
  of	
  waves	
  

Construc,ve	
   interference:	
   mutual	
  
reinforcement	
  of	
  the	
  sca9ered	
  rays	
  

-­‐	
   Difference	
   in	
   distances	
   travelled	
   by	
  
various	
  parallel	
  beams	
  are	
  a	
  mul,ple	
  of	
  
wavelength:	
  Δd	
  =	
  n*λ	
  

	
  
Destruc,ve	
   interference:	
   sca9ered	
  
beams	
   are	
   out	
   of	
   phase	
   and	
   cancel	
  
each	
  other.	
  

-­‐  Difference	
  in	
  distances	
  travelled	
  by	
  
various	
  parallel	
  beams	
  are	
  a	
  mul,ple	
  
of	
  wavelength:	
  Δd	
  =	
  n*λ/2	
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Diffrac,on	
  is	
  construc,ve	
  interference	
  of	
  light	
  rays	
  or	
  other	
  types	
  of	
  
radia,on	
  

So? 



Interference vs diffraction 
 

Feynman “Lectures on Physics” Ch. 30. Diffraction 
 
This	
  chapter	
  is	
  a	
  direct	
  con,nua,on	
  of	
  the	
  previous	
  one,	
  although	
  the	
  name	
  has	
  
been	
   changed	
   from	
   Interference	
   to	
   Diffrac,on.	
  No	
   one	
   has	
   ever	
   been	
   able	
   to	
  
define	
   the	
   difference	
   between	
   interference	
   and	
   diffrac5on	
   sa5sfactorily.	
   It	
   is	
  
just	
   a	
   ques,on	
  of	
   usage,	
   and	
   there	
   is	
   no	
   specific,	
   important	
   physical	
   difference	
  
between	
  them.	
  The	
  best	
  we	
  can	
  do,	
  roughly	
  speaking,	
   is	
  to	
  say	
  that	
  when	
  there	
  
are	
   only	
   a	
   few	
   sources,	
   say	
   two,	
   interfering,	
   then	
   the	
   result	
   is	
   usually	
   called	
  
interference,	
   but	
   if	
   there	
   is	
   a	
   large	
   number	
   of	
   them,	
   it	
   seems	
   that	
   the	
   word	
  
diffrac5on	
   is	
   more	
   o<en	
   used.	
   So,	
   we	
   shall	
   not	
   worry	
   about	
   whether	
   it	
   is	
  
interference	
   or	
   diffrac,on,	
   but	
   con,nue	
   directly	
   from	
  where	
   we	
   leL	
   off	
   in	
   the	
  
middle	
  of	
  the	
  subject	
  in	
  the	
  last	
  chapter.	
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Huygen’s	
  principle	
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Every point on a propagating wavefront serves as the source of spherical 
secondary wavelets, such that the wavefront at a later time is the envelope 
of these wavefronts.  
 

The image shows a wavefront, as well as a number of 
spherical secondary wavelets, which after a time t, 
have propagated out to a radius of  vt. The envelop of 
all these wavelets is then asserted to correspond to the 
advanced primary wave.   

Propagation of a wavefront according to Huygens’s 
principle: consistent with diffraction 

 
The wavelets advance with a speed and frequency 
equal to those of the primary wave at each point in 
space. 



Diffrac,on	
  geometry	
  

6 
What can be said about the symmetry of this diffraction pattern?  
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Interference	
   is	
   construc,ve	
   only	
   if	
   the	
  
radia,on	
   is	
   coherent	
   (a	
   way	
   of	
   defining	
  
coherence)	
  
	
  
	
  
	
  

A	
   diffrac,on	
  pa9ern	
   results	
   from	
  diffrac,on	
  
(sca9ering)	
   followed	
   by	
   interference	
  
between	
  the	
  diffracted	
  (sca9ered)	
  beams.	
  	
  
	
  

	
  
Diagram	
   of	
   a	
   distant	
   light	
   source	
   emiRng	
  
coherent	
   wavetrains.	
   When	
   one	
   of	
   these	
  
strikes	
  a	
  screen	
  which	
  has	
  adjacent	
  slits,	
   the	
  
slits	
   act	
   as	
   secondary	
   of	
   light	
   according	
   to	
  
Huygen’s	
   principle,	
   which	
   the	
   meet	
   and	
  
interfere.	
  	
  

Geometry	
  of	
  diffrac,on	
  pa9erns	
  	
  



Geometry	
  of	
  diffrac,on	
  pa9erns	
  	
  

Condi,on	
  for	
  maxima	
  in	
  the	
  

interference	
  plane:	
  
	
  

mλ =	
  d	
  sinθ 

Reciprocal relation between θ and d… 

with	
  m	
  =	
  0,	
  ±1,	
  ±2,	
  …	
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Side	
  view	
  of	
  a	
  diffrac,on	
  gra,ng.	
  
The	
   slit	
   separa,on	
   is	
   d	
   and	
   the	
  
path	
  difference	
  between	
  adjacent	
  
slits	
  is	
  d	
  sinθ.	



m is the order of diffraction. 
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Slit	
  width (a) several times the wavelength (λ). 

Diffrac,on	
  at	
  a	
  wide	
  slit	
  (aperture)	
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Slit	
  width (a) several times the wavelength (λ). 

Diffrac,on	
  at	
  a	
  wide	
  slit	
  (aperture)	
  

Virtual point sources Pairing two by two rays  separated by a/2 
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Slit	
  width (a) several times the wavelength (λ). 

Diffrac,on	
  at	
  a	
  wide	
  slit	
  (aperture)	
  



Geometry	
  of	
  diffrac,on	
  pa9erns	
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Circular aperture Rectangular aperture 



Geometry	
  of	
  diffrac,on	
  pa9erns	
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Envelope	
  func,ons	
  

Two slits of width much larger than λ	





Geometry	
  of	
  diffrac,on	
  pa9erns	
  
Observa,ons	
  of	
  diffrac,on	
  of	
  light	
  using	
  a	
  laser	
  as	
  a	
  coherent	
  light	
  source.	
  As	
  the	
  aperture	
  size	
  
decreases	
  the	
  diameter	
  of	
  the	
  diffracted	
  disk	
  and	
  rings	
  increases	
  (reciprocal	
  rela,on...)	
  	
  

(a) (c) (b) (e) (d) 
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Reciprocal	
  laRce	
  

	
  	
  
	
  
Any	
  point	
  on	
  the	
  reciprocal	
  laRce	
  can	
  be	
  specified	
  by	
  a	
  vector:	
  dhkl*	
  =	
  ha*	
  +	
  kb*	
  +	
  lc*	
  	
  
This	
  vector	
  is	
  perpendicular	
  to	
  the	
  plane	
  in	
  real	
  space	
  with	
  Miller	
  indices	
  (hkl).	
  The	
  length	
  
of	
  this	
  vector	
  |dhkl*	
  |=	
  1/dhkl	
  where	
  dhkl	
  is	
  the	
  interplanar	
  spacing	
  in	
  real	
  space.	
  	
  

Designations: 
•  Real space 
•  Direct space 

Designations: 
•  Reciprocal space 
•  Fourier space  
•  K-space  
•  Frequency space 
     (spatial not temporal) 

The	
  reciprocal	
  laRce	
  is	
  a	
  set	
  of	
  imaginary	
  points	
  so	
  that	
  the	
  direc,on	
  of	
  a	
  vector	
  from	
  one	
  
point	
  to	
  another	
  coincides	
  with	
  the	
  normal	
  to	
  a	
  family	
  of	
  real	
  space	
  planes.	
  The	
  absolute	
  
value	
  of	
  the	
  vector	
  is	
  given	
  by	
  the	
  reciprocal	
  of	
  the	
  real	
  interplanar	
  distance.	
  

A	
   whole	
   family	
   of	
  
planes	
   in	
   real	
   space	
  
is	
   represented	
   by	
   a	
  
s i n g l e	
   p o i n t	
   i n	
  
reciprocal	
  space 
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Construction of reciprocal lattice 

1.  Identify the basic planes in the direct space lattice, i.e. (001), (010), 
and (001). 

2.  Draw normals to these planes from the origin. 

3.  Mark distances from the origin along these normals proportional to the 
inverse of the distance from the origin to the direct space planes 

Notes	
  on	
  reciprocal	
  laRce	
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•  The	
  points	
  of	
   the	
  direct	
  and	
  reciprocal	
   laRces	
  have	
  the	
  same	
  meaning	
  as	
  the	
  points	
  

defined	
  in	
  geometry:	
  	
  mathema,cal	
  en,,es.	
  	
  

•  The	
  direct-­‐space	
   laEce	
  can	
  be	
  used	
   to	
   indicate	
   the	
   loca,on	
  of	
   real	
  objects	
   (atoms)	
  
and	
  has	
  dimensions	
  of	
  m,	
  whereas	
  the	
  reciprocal	
   laEce	
  can	
  be	
  used	
  to	
   indicate	
  the	
  
posi,on	
  of	
  diffracted	
  light	
  spots	
  and	
  has	
  dimensions	
  of	
  m-­‐1.	
  

•  Reciprocal	
   space	
   is	
   also	
   called	
   Fourier	
   space,	
   k-­‐space	
   (2π/λ)	
   or	
   frequency	
   space,	
   in	
  
contrast	
  to	
  real	
  space	
  or	
  direct	
  space.	
  

•  The	
   diffrac,on	
   pa9erns	
   are	
   visual	
   representa,ons	
   or	
   images	
   of	
   the	
   object	
   (Crystal)	
  
Fourier	
  transforms.	
  

•  The	
   results	
   of	
   diffrac,on	
   experiments	
   can	
   be	
   easily	
   interpreted	
   using	
   the	
   reciprocal	
  
laRce.	
   Useful	
   informa,on	
   about	
   the	
   internal	
   structure	
   of	
   crystalline	
  ma9er	
   can	
   be	
  
obtained	
  through	
  the	
  Ewald	
  construc5on	
  in	
  reciprocal	
  space	
  (see	
  below).	
  

	
  
•  The	
   geometry	
  of	
   the	
  diffrac,on	
  pa9ern	
   is	
   determined	
  by	
   the	
   crystal	
   laRce,	
   but	
   the	
  

diffracted	
  intensity	
  at	
  each	
  reciprocal	
  point	
  is	
  determined	
  by	
  the	
  mo,ve	
  or	
  base.	
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Notes	
  on	
  reciprocal	
  laRce	
  



	
  
The	
  reciprocal	
  laRce	
  is	
  related	
  to	
  the	
  real	
  space	
  laRce	
  by:	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
•  a,	
  b,	
   c	
   are	
   the	
   vectors	
   of	
   the	
   real	
   space	
   laRce	
   and	
  a*,	
  b*,	
   c*	
   are	
   the	
  

vectors	
  of	
  the	
  reciprocal	
  laRce.	
  

•  Note	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (unit	
  cell	
  volume)	
  

•  These	
   rela,ons	
  are	
   symmetrical	
   and	
   show	
   that	
   the	
   reciprocal	
   laRce	
  of	
  
the	
  reciprocal	
  laRce	
  is	
  the	
  direct	
  laRce.	
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a∗ = b× c
a.(b× c)

b∗ = c×a
a.(b× c)

c∗ = a×b
a.(b× c)

V = a.(b∗ × c∗)

Notes	
  on	
  reciprocal	
  laRce	
  



	
  
•  The	
  points	
  of	
   the	
  direct	
  and	
  reciprocal	
   laRces	
  have	
  the	
  same	
  meaning	
  as	
  the	
  points	
  

defined	
  in	
  geometry:	
  	
  mathema,cal	
  en,,es.	
  	
  

•  The	
  direct-­‐space	
   laEce	
  can	
  be	
  used	
   to	
   indicate	
   the	
   loca,on	
  of	
   real	
  objects	
   (atoms)	
  
and	
  has	
  dimensions	
  of	
  m,	
  whereas	
  the	
  reciprocal	
   laEce	
  can	
  be	
  used	
  to	
   indicate	
  the	
  
posi,on	
  of	
  diffracted	
  light	
  spots	
  and	
  has	
  dimensions	
  of	
  m-­‐1.	
  

•  Reciprocal	
   space	
   is	
   also	
   called	
   Fourier	
   space,	
   k-­‐space	
   (2π/λ)	
   or	
   frequency	
   space,	
   in	
  
contrast	
  to	
  real	
  space	
  or	
  direct	
  space.	
  

•  The	
   diffrac,on	
   pa9erns	
   are	
   visual	
   representa,ons	
   or	
   images	
   of	
   the	
   object	
   (Crystal)	
  
Fourier	
  transforms.	
  

•  The	
   results	
   of	
   diffrac,on	
   experiments	
   can	
   be	
   easily	
   interpreted	
   using	
   the	
   reciprocal	
  
laRce.	
   Useful	
   informa,on	
   about	
   the	
   internal	
   structure	
   of	
   crystalline	
  ma9er	
   can	
   be	
  
obtained	
  through	
  the	
  Ewald	
  construc5on	
  in	
  reciprocal	
  space	
  (see	
  below).	
  

	
  
•  The	
   geometry	
  of	
   the	
  diffrac,on	
  pa9ern	
   is	
   determined	
  by	
   the	
   crystal	
   laRce,	
   but	
   the	
  

diffracted	
  intensity	
  at	
  each	
  reciprocal	
  point	
  is	
  determined	
  by	
  the	
  mo,ve	
  or	
  base.	
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Notes	
  on	
  reciprocal	
  laRcec	
  



	
  

•  One	
  set	
  of	
  closely-­‐spaced	
  horizontal	
  lines	
  gives	
  rise	
  
to	
  a	
  widely-­‐spaced	
  ver,cal	
  row	
  of	
  points.	
  	
  

•  A	
   second	
   set	
   of	
   more	
   widely-­‐space	
   diagonal	
   lines	
  
gives	
   rise	
   to	
   a	
   more	
   closely-­‐spaced	
   row	
   of	
   points	
  
perpendicular	
  to	
  these	
  lines.	
  

•  If	
  one	
  mul,plies	
  one	
  set	
  of	
  lines	
  by	
  another,	
  this	
  will	
  
give	
   an	
   array	
   of	
   points	
   at	
   the	
   intersec,ons	
   of	
   the	
  
lines	
  in	
  the	
  bo9om	
  part	
  of	
  the	
  figure.	
  	
  

•  The	
  Fourier	
  transform	
  of	
  this	
  laRce	
  of	
  points,	
  which	
  
was	
  obtained	
  by	
  mul,plying	
  two	
  sets	
  of	
  lines,	
  is	
  the	
  
convolu,on	
   of	
   the	
   two	
   individual	
   transforms	
   (i.e.	
  
rows	
   of	
   points)	
   ,	
   which	
   generates	
   a	
   reciprocal	
  
laRce.	
  

	
  	
  
	
  
•  Frequency	
  =	
  1/period	
  =	
  1/dhkl	
  	
  
	
  	
  	
  	
  	
  	
  (in	
  this	
  context	
  the	
  period	
  refers	
  to	
  interplanar	
  distance,	
  not	
  ,me)	
  
•  K	
  are	
  the	
  diffrac,on	
  vectors	
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Op,cal	
  Fourier	
  transform	
  



Op,cal	
  Fourier	
  transform	
  
Both	
  spaces	
  are	
  periodic	
  and	
  with	
  the	
  same	
  symmetry,	
  so:	
  

	
  

21 
Euler’s formula 

eiφ = cosφ + i sinφ  

Amplitude  
(measure of intensity at each point in recirpocal space)) 

Spatial frequency 
(position in the diffraction pattern) 

Summations of sinudoisal functions! 



Bragg's Interpretation 
 

 

 

W. H. Bragg examined Laue's photographs and noticed that the spots were 
elongated.  He surmised that this elongation arose from specular reflection of the 
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in 
phase if the path difference between them equals an integer multiple of the 
wavelength: 

BC = d sinθ CD = d sinθ
BC +CD =  path difference = nλ

nλ = 2d sinθ 22 



Vectorial form of Bragg’s law 
(Ewald or reflecting sphere) 

Postulate:	
  
•  a	
  sphere	
  of	
  radius	
  1/λ,	


•  intersec,ng	
  the	
  origin	
  of	
  the	
  reciprocal	
  laRce,	
  	
  
•  with	
   the	
   star,ng	
   point	
   of	
   the	
   incident	
   (or	
   direct)	
  

beam	
  vector	
  at	
  the	
  sphere	
  center,	
  
•  and	
  unitary	
  incident	
  and	
  diffracted	
  vectors	
  S0	
  and	
  S:	
  

Then:	
  
	
  
|S	
  -­‐	
  S0|	
  =	
  2	
  R	
  sinθ =	
  2	
  sinθ /λ	



	
  

Only	
  when	
  S	
  -­‐	
  S0	
  coincides	
  with	
  a	
  reciprocal	
  laRce	
  point	
  
(i.e.	
   when	
   |S	
   -­‐	
   S0|	
   =	
   |d*hkl|=	
   1/dhkl	
   )	
   is	
   Bragg’s	
   law	
  
sa,sfied:	
  
	
  

2	
  sinθ /λ = 1/dhkl	
  	
  
	
  

Therefore	
   construc,ve	
   interference	
  occurs	
  when	
  S	
   -­‐	
  S0	
  
coincides	
   with	
   the	
   reciprocal	
   vector	
   of	
   the	
   reflec,ng	
  
planes!	
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For	
  this	
  incident	
  angle	
  there	
  is	
  no	
  diffracted	
  intensity	
  !	
  

Notation: d*hkl	
  =	
  ghkl 



A	
  change	
  in	
  the	
  orienta,on	
  of	
  the	
  incident	
  beam	
  rela,ve	
  to	
  the	
  crystal	
  changes	
  the	
  
orienta,on	
  of	
  the	
  reflec,ng	
  sphere.	
  
	
  
Eventually	
  a	
  condi,on	
  where	
  diffrac,on	
  occurs.	
  
	
  
A	
  change	
  in λ	
  changes	
  the	
  sphere	
  radius	
  and	
  may	
  also	
  be	
  used	
  to	
  sa,sfy	
  Bragg’s	
  law.	
  

Vectorial form of Bragg’s law 
Ewald or reflecting sphere 



Vectorial form of Bragg’s law 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

The	
  limi,ng	
  sphere	
  

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere. 
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius 
of Ewald shpere is 1/λ  since S and S0 are unitary): planes with 1/d > 2/λ cannot scatter 
radiation with λ wavelength due to too small interplanar distances… 25 



Bragg ‘reflection’ 

In fact… 
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physically wrong but geometrically right 

Very useful but not a correct description! 



 

 

Derivation of Laue equations 
Assume a row of scatterers separated by constant repeat, a. Radiation of 
wavelength λ is incident on this row at an angle αo. Examine the the scatter from 
this row at an angle αn. 

The path difference of rays scattering from points A and D is just AB-CD.  If the 
incoming rays are in phase, the path difference must be some integer multiple of 
the wavelength for constructive interference to occur.  
This leads to the first Laue equation: 
 

λαα xn naCDAB =−=− )cos(cos 0
27 



In reality the angle αn does not need to be measured only as θ in Bragg’s law 
illustrations. In fact, the diffracted beams of the same order form a conical surface 
(αn in constant on the conical surface). 

Derivation of Laue equations 
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λββ yn nbCDAB =−=− )cos(cos 0

Derivation of Laue equations 

Laue's remarkable idea was that this equation 
must have a simultaneous solution with the 
equation written for the x direction (and the z 
direction as well). The solution to this second 
equation also forms a cone except this time 
about b. The simultaneous solution to these 
two equations can be viewed as the 
intersection of the two cones originating at a 
common apex and which intersect along two 
lines.  

29 

Next consider another row of scatterers at some angle γ, to the first with repeat distance, b.  A 
second Laue equation can be written for this direction.  The incident rays will make angle β0 to 
this row and the scattered rays βn. This equation must also result in some integer multiple of 
the wavelength, ny, for constructive interference to occur. 



AB−CD = a(cosαn − cosα0 ) = nxλ

AB−CD = b(cosβn − cosβ0 ) = nyλ

AB−CD = c(cosγn − cosγ0 ) = nzλ

Derivation of Laue equations 

30 

Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This 
results in a set of equations with one simultaneous solution.  By analogy with the previous 
results this solution will be a single vector lying at the intersection of three cones sharing a 
common apex. 



a•S = a(cosαn )
a•S0 = a(cosα0 )
a•(S−S0 ) = nxλ

This equation can be restated in vector terms. The repeat distance a, becomes a 
unit cell vector a. Define a unit vector parallel to the incoming ray, S0, and a unit 
vector parallel to the scattered ray, S.  Then: 

The first Laue equation is valid for any scattered ray that makes an angle αn with the 
unit cell axis. Thus the Laue condition is consistent with a cone of scattered rays 
centered about the a axis.  
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Vectorial form of Laue equations 



Postulate that  S-S0\λ represents any vector g in reciprocal space.   

 

 

a•g = pa•a∗ + qa•b∗ + ra•c∗

b•g = pb•a∗ + qb•b∗ + rb•c∗

c•g = pc•a∗ + qc•b∗ + rc•c∗

= p
= q
= r z

y

x

n
n
n

=

=

=

The Laue conditions require that p, q, r be integers (nx, ny, nz). So they are 
the just Miller indices, h, k, and l! Hence the Laue equations are consistent 
with the concept of reciprocal lattice vector. 
 

xnλ
−

• =0(S S )aLook at first Laue condition in vector form 

Ewald sphere: vectorial form of Laue equations 
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1st Laue eq.: 

2nd Laue eq.: 

3rd Laue eq.: 

g = S−S0
λ

"

#
$

%

&
'= pa∗ + qb∗ + rc∗



g = S−S0
λ

"

#
$

%

&
'= ha∗ + kb∗ + lc∗ = dhkl

∗

So there is diffraction when the scattering vector g equals a reciprocal lattice vector d*: 

Ewald was responsible for first interpreting Laue's results in terms of reciprocal lattices. He 
devised a simple geometric construction that demonstrates the relationship in quite 
elegant but simple way. 

Ewald sphere: vectorial form of Laue equations 
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g = S−S0
λ

"

#
$

%

&
'= dhkl

∗ =
1
dhkl

=
2
λ
sinθ

λ = 2dhkl sinθ

Consistent with Bragg’s law too! 



X-ray diffraction methods 
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In XRD the Ewald sphere radius is short so the coincidence between 
reciprocal lattice points and the sphere is rare.  

In order to record a diffraction pattern some reciprocal lattice points must 
lie on or pass through the Ewald sphere. This can be achieved in several 
different ways: 

•  Use “white” radiation and a single crystal:  Laue method 

•  Use monochromatic radiation and rotate a single crystal: Rotation 
method and similar techniques 

•  Use monochromatic radiation and a sample containing crystals with 
many different orientations (a powder): Powder diffraction 



The Laue method (single crystal diffraction) 
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As in Laue’s original experiment: 

•  Using “white” Bremsstrahlung radiation from an X-ray tube so that many different 
wavelengths are scattered by the sample 

•  Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal  

 



Appearance of Laue diffractograms 

36 



Ewald construction for Laue method 
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Rotating crystal method (single crystal method) 

relps = reciprocal lattice points 

Aligned crystal is rotated around one axis so relps pass through the Ewald 
sphere: 
 
•  Produces spots lying on lines  
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Ewald	
  construc,on	
  for	
  rota,ng	
  crystal	
  method	
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Powder diffraction method 

Diffractometer 

Bragg-Brentano-geometry 



Reciprocal	
  laRce	
  of	
  a	
  powder	
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In a powder we have a large number of 

crystals all at different orientations  
 
The reciprocal space no longer has one set of 
points, but many sets of points at different 
orientations. All of these points lie on the 
surface of spheres or shells.  
 
– Reciprocal lattice shells – rel shells  
 



Ewald	
  construc,on	
  for	
  powder	
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Ewald	
  construc,on	
  for	
  powder	
  

43 
The powder rotates (θ) to increase the probably of diffraction and the detector rotates 
(2θ) to intersect the diffracting cones. 

A diffracted cone is formed every time Bragg’s law is satisfied. We may use a 
photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.  



Electron	
  diffrac,on	
  (TEM)	
  of	
  single	
  crystal	
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Fourier transforms again: 
Crystal Thin disc 

multiplication 

convolution 

Real  
space 

Reciprocal  
space 

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 
larger perpendicular to the disc due to finite and small thickness 



C O 

S 

S0 

Diffrac,on	
  from	
  a	
  single	
  crystal	
  (TEM)	
  

45 

S0 is the transmitted beam 

S is the diffracted beam 

ZOLZ is the zeroth order Laue zone 
FOLZ is the first order Laue zone 
SOLZ is the second order Laue zone 

The reciprocal space is an artificial, mathematical construction – it 
doesn’t really exist; however, we can see it in single crystal 
diffraction.  



Geometry	
  of	
  diffrac,on	
  pa9erns	
  	
  

(also called near-field) 

(also called far-field) 

Fraunhofer diffraction pattern:  the rays leave the diffracting object in parallel directions: 
•  Screen very far from the object 
•  Converging lenses may be used to make the rays converge in smaller distances 



Geometry	
  of	
  diffrac,on	
  pa9erns	
  	
  

n = 0 

n= 1 

n = -1 

 w
av

e 
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Diffraction intensity 
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What can be said about the intensity of the “reflections” in this diffraction pattern?  
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Scattering by electrons 

•  Electrons and other charged particles scatter X-rays.  

Interaction of a X-ray front with an 
isolated electron, which becomes a 
new X-ray source, producing the X-
rays waves in a spherical mode. 

The spherical waves produced 
by two electrons interact with 
each other, producing positive 
and negative interferences.

  
 



),( 00 νλ
Sets	
  electron	
  into	
  oscilla/on	
  

Sca0ered	
  beams	
  ),( 00 νλ
Coherent	
  

(definite	
  phase	
  rela/onship)	
  

§  The	
  electric	
  field	
  (E)	
  is	
  the	
  main	
  cause	
  for	
  the	
  accelera,on	
  of	
  the	
  electron	
  	
  
§  The	
  moving	
  par,cle	
  radiates	
  most	
  strongly	
  in	
  a	
  direc5on	
  perpendicular	
  to	
  its	
  

mo5on	
  
§  The	
  radia,on	
  will	
  be	
  polarized	
  along	
  the	
  direc,on	
  of	
  its	
  mo,on	
  

Scattering by an electron 



Scattering by an electron 
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I = I0
e4

m2c4
sin2θ
r2

!

"
#

$

%
&The	
  reason	
  we	
  are	
  able	
  to	
  

neglect	
  sca9ering	
  from	
  the	
  
protons	
  in	
  the	
  nucleus	
  

Intensity	
  of	
  the	
  sca9ered	
  beam	
  due	
  to	
  an	
  electron	
  at	
  a	
  point	
  P	
  such	
  that	
  r	
  >>	
  λ	
  
	
  

x 

z 

r 

P 

For	
  a	
  wave	
  oscilla/ng	
  in	
  z	
  direc/on	
  
θ	
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Scattering by atoms 
•  The atom can be considered to be a collection of electrons. This electron 

density scatters radiation. 
•  For radiation to remain coherent the interference between x-rays scattered 

from different points within the atom has to be considered.  
•  This leads to a strong angle dependence of the scattering. 



Scattering by atoms 

53 
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The scattering power of an atom is given by the atomic form factor (f): ratio of 
scattering from the atom to what would be observed from a single electron  

Scattering by atoms 

•  Form factor is expressed as a function of (sinθ)/λ 
as the interference depends on both λ and the 
scattering angle  

•  Form factor is equivalent to the atomic number at 
low angles, but it drops rapidly at high (sinθ)/λ  

 

Atomic scattering factors calculated for 
atoms and ions with different numbers of 
electrons. Note that the single electron of 
the hydrogen atom (H) scatters very little 
as compared with other elements, 
especially with increasing θ. Hydrogen will 
therefore be "difficult to see" ..   
 



Coherent scattering from crystals 
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•  Due	
  to	
  crystal	
  periodicity	
  sca9ering	
   from	
  atoms	
   in	
  one	
  unit	
  cell	
  can	
  be	
  used	
  to	
  determine	
  
the	
  intensi,es	
  of	
  the	
  diffracted	
  beams	
  

•  The	
  posi,ons	
  of	
  the	
  atoms	
  in	
  a	
  unit	
  cell	
  determine	
  the	
  intensi,es	
  of	
  the	
  reflec,ons.	
  
•  Consider	
  diffrac,on	
  from	
  (001)	
  planes	
  in	
  body	
  centered	
  cells:	
  

(a)  If	
  the	
  path	
  length	
  between	
  rays	
  1	
  and	
  2	
  differs	
  by	
  λ,	
  the	
  diffrac,on	
  angle	
  is	
  sa,sfied	
  and	
  the	
  
diffracted	
  intensity	
  corresponds	
  to	
  that	
  of	
  1	
  atom	
  (in	
  primi,ve	
  cells	
  we	
  have	
  1	
  atom/cell).	
  

(b)  For	
   the	
  centred	
  cell,	
   in	
   the	
  same	
  configura,on,	
   the	
  path	
   length	
  between	
  rays	
  1	
  and	
  3	
  will	
  
differ	
  by	
  λ/2	
  and	
  destruc,ve	
  interference	
  in	
  (b)	
  will	
  lead	
  to	
  NO	
  diffracted	
  intensity	
  for	
  (001)	
  
in	
  any	
  body-­‐centered	
  (BC)	
  laRce	
  (I-­‐cubic,	
  I-­‐	
  tetragonal,	
  or	
  I-­‐orthorhombic).	
  	
  

	
  
	
  
	
  

Extinctions from centered cells or different atoms in the unit cell 

These (001) planes diffract? 



•   Unit Cell (UC) is representative of the crystal structure 
•   Scattered waves from various atoms in the UC interfere to create the 

diffraction pattern 

The wave scattered from the middle plane is out of phase with the ones scattered 
from top and bottom planes 

Extinctions from centered cells and/or  

Coherent scattering from crystals 



d(h00) 

θB θ 

R1 

R2 

R3 

Unit Cell 

x 

M 

C 

N 

R 
B 

S 

A 

'
1R

'
2R

'
3R

(h00) plane 
a 

Change in phase due to atoms in fractional coordinates 
(revisiting the structure factor concept) 



AC = dh00 =
a
h

MCN :: AC = dh00
RBS :: AB = x

AB
AC

=
x
dh00

=
x
a
h

δR1R2 =MCN = 2dh00 sin(θ ) = λ

δR1R3 = RBS =
AB
AC

MCN =
AB
AC

λ =
x
a
h
λ

δ
λ
π

ϕ
2

=

a
xh

h
a
x

RR πλ
λ
π

ϕ 22
31

== xcoordinatefractional
a
x

ʹ′→→  xhRR ʹ′= πϕ 2
31

Extending to 3D 2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + + Independent of the shape of UC 

Change in phase due to atoms in fractional coordinates 

Note: R1 corresponds 
to corner atoms and 
R3 to from atoms in 
additional positions in 
the Unit Cell (UC) 
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Revisiting the complex notation 
The phase difference between rays scattered from the origin and rays scattered 
from an atom at fraction coordinates (x’v’w’) is: 
 
 
 
•  Each atom within the unit cell may produce a scattered wave of different 

amplitude.  
•  The amplitude is given by the form factor f for the atom. 
•  All of the scattered waves from individual atoms sum together to produce a 

wave whose amplitude can be measured (the phase is more difficult to retrieve). 
 
Tool to handle the summation of waves scattered from different atoms: 

 
The most convenient way to represent the amplitude 
and phase of a scattered wave is by a vector in the 
complex plane. 
 

 Wave of amplitude A and phase φ: 
  Aeiφ = A(cosφ + i sinφ)  

 

-  Real when φ is multiple of 2 π	


-  1 for even multiples 
-  -1 for odd multiples 

 

2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + +



Fhkl = f j
j=1

n

∑
.

eiϕ j = f j
j=1

n

∑
.

e
i 2π h x j

' +k yj
' +l z j

'( )"
#$

%
&'

wave equation in 
complex notation 

§  If  atom B is different from atom A → the amplitudes must be weighed by the respective 
atomic scattering factors (f) 

§  The resultant amplitude of all the waves scattered by all the atoms in the UC is the 
scattering factor for the unit cell 

§  The unit cell scattering factor is called the Structure Factor (F) 

Scattering by an unit cell = function (position of the atoms, atomic scattering factors) 

F = Structure Factor = Amplitude of wave scattered by all atoms in UC
Amplitude of wave scattered by an electron

[2 ( )]i i h x k y l zE Ae feϕ π ʹ′ ʹ′ ʹ′+ += =2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + +

I ∝Fhkl
2

The structure factor is independent of the shape and size  of the unit cell !!! 

for n atoms in the UC: 

Change in phase due to atoms in fractional coordinates 

Intensity of the diffracted wave: 



nnie )1(−=π

eiθ + e−iθ = 2cos(θ )

Atom at (0,0,0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

[2 ( 0 0 0)] 0i h k lF f e f e fπ ⋅ + ⋅ + ⋅= = =

22 fF = ⇒ F is independent of the scattering plane (h k l) 

ππ nini ee −=

e(odd  n) iπ = −1
1) ( +=πinevene

Structure factor calculations 

Simple cubic 



Atom	
  at	
  (0,0,0)	
  &	
  (½,	
  ½,	
  0)	
  and	
  equivalent	
  posi,ons	
  

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

1 1[2 ( 0)][2 ( 0 0 0)] 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h ki i h k

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+
+

= +

= + = +

⇒ F is independent of the ‘l’ index 

Real 

]1[ )( khiefF ++= π

fF 2=

0=F

22 4 fF =

02 =F

Both even or both odd 

Mixture of odd and even 

e.g. (001), (110), (112); (021), (022), (023) 

e.g. (100), (101), (102); (031), (032), (033) 

(h + k) even 

(h + k) odd 

Structure factor calculations 
C centered orthorhombic 



§  If the blue planes are scattering in phase then on C- centering the red planes will 
scatter out of phase (with the blue planes - as they bisect their normal) and hence 
the (210) reflection will become extinct 

§ This analysis is consistent with the extinction rules: (h + k) odd is absent 

Structure factor calculations 
C centered orthorhombic 



§  In case of the (310) planes no new translationally equivalent planes are added on 
lattice centering ⇒ this reflection cannot go missing. 

§ This analysis is consistent with the extinction rules: (h + k) even is present 

Structure factor calculations 
C centered orthorhombic 



Atom at (0,0,0) & (½, ½, ½) and equivalent positions 
[2 ( )]j j j ji i h x k y l z

j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

1 1 1[2 ( )][2 ( 0 0 0)] 2 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h k li i h k l

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+ +
+ +

= +

= + = +

Real 

]1[ )( lkhiefF +++= π

fF 2=

0=F

22 4 fF =

02 =F

(h + k + l) even 

(h + k + l) odd 

e.g. (110), (200), (211); (220), (022), (310) 

e.g. (100), (001), (111); (210), (032), (133) 

Structure factor calculations 
Body centered orthorhombic 



Atom at (0,0,0) & (½, ½, 0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

]1[    )()()(

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

hlilkikhi

hlilkikhii

eeef

eeeefF

+++

+++

+++=

⎥
⎦

⎤
⎢
⎣

⎡
+++=

πππ

ππππ

Real 

fF 4=

0=F

22 16 fF =

02 =F

(h, k, l) unmixed 

(h, k, l) mixed 

e.g. (111), (200), (220), (333), (420) 

e.g. (100), (211); (210), (032), (033) 

(½, ½, 0), (½, 0, ½), (0, ½, ½) 

]1[ )()()( hlilkikhi eeefF +++ +++= πππ

Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Structure factor calculations 
Face centred cubic 



Mixed indices CASE h k l 
A o o e 
B o e e 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 0i e i o i oe e eπ π π+ + + = + − − =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 0i o i e i oe e eπ π π+ + + = − + − =

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

Unmixed indices 

fF 4= 22 16 fF =(h, k, l) unmixed 

e.g. (111), (200), (220), (333), (420) 

All odd (e.g. 111); all even (e.g. 222) 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =



Na+	
  at	
  (0,0,0)	
  +	
  Face	
  Centering	
  Transla,ons	
  →	
  (½,	
  ½,	
  0),	
  (½,	
  0,	
  ½),	
  (0,	
  ½,	
  ½)	
  	
  
Cl−	
  at	
  (½,	
  0,	
  0)	
  +	
  FCT	
  →	
  (0,	
  ½,	
  0),	
  (0,	
  0,	
  ½),	
  (½,	
  ½,	
  ½)	
  

⎥
⎦

⎤
⎢
⎣

⎡
+++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

++

+++

−

+

)]
2

(2[)]
2

(2[)]
2

(2[)]
2

(2[

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

       
lkhilikihi

Cl

hlilkikhii
Na

eeeef

eeeefF

ππππ

ππππ

][      

]1[
)()()()(

)()()(

lkhilikihi
Cl

hlilkikhi
Na

eeeef

eeefF
++

+++

+++

++++=

−

+

ππππ

πππ

]1[      

]1[
)()()()(

)()()(

+++

++++=
−−−−−−++

+++

−

+

khihlilkilkhi
Cl

hlilkikhi
Na

eeeef

eeefF
ππππ

πππ

]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

NaCl 
Face Centered Cubic 

Structure factor calculations 



]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

Zero for mixed indices 

Mixed indices CASE h k l 
A o o e 
B o e e 

F = factor1. factor2

CASEA : factor2 = [1+ eiπ (e) + eiπ (o) + eiπ (o) ]= [1+1−1−1]= 0

CASEB: factor2 = [1+ eiπ (o) + eiπ (e) + eiπ (o) ]= [1−1+1−1]= 0

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices 



(h, k, l) unmixed ][4 )( lkhi
ClNa effF ++

−+ += π

][4 −+ += ClNa ffF If (h + k + l) is even 22 ][16 −+ += ClNa ffF

][4 −+ −= ClNa ffF If (h + k + l) is odd 22 ][16 −+ −= ClNa ffF

e.g. (111), (222); (133), (244) 

e.g. (222),(244) 

e.g. (111), (133) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

CASEA : factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

CASEB: factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

Unmixed indices 
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Extinctions due to centering and/or 
different atomic form factors 



Generic case? Consult the Tables of Crystallography 
Scattering by a unit cell 
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Reciprocal space and intensities  
 

The scattered intensity distribution in 

reciprocal space is sometimes represented 

by weighting the points of a reciprocal 

lattice drawing: 

•  Larger points indicate higher intensity  

•  Crosses ind ica te absences o r 

extinctions 
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Section of weighted reciprocal space for NaCl 
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Reciprocal space of a powder with 
intensities  
 

•  Rel shells for powders 
 
•  Representation of the scattered 

intensity for a powder in 
reciprocal space 

Section of weighted reciprocal space 
for a NaCl powder showing the 
reciprocal lattice shells (rel shells) 
 

A radial profile is 
similar to a XRD 
diffraction pattern 


