
Basics	  of	  diffrac,on	  
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Diffraction 

Diffraction refers to the phenomena exhibited by light when 
it interacts with barriers and obstacles (scattering). 



Interference	  of	  waves	  

Construc,ve	   interference:	   mutual	  
reinforcement	  of	  the	  sca9ered	  rays	  

-‐	   Difference	   in	   distances	   travelled	   by	  
various	  parallel	  beams	  are	  a	  mul,ple	  of	  
wavelength:	  Δd	  =	  n*λ	  

	  
Destruc,ve	   interference:	   sca9ered	  
beams	   are	   out	   of	   phase	   and	   cancel	  
each	  other.	  

-‐  Difference	  in	  distances	  travelled	  by	  
various	  parallel	  beams	  are	  a	  mul,ple	  
of	  wavelength:	  Δd	  =	  n*λ/2	  
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Diffrac,on	  is	  construc,ve	  interference	  of	  light	  rays	  or	  other	  types	  of	  
radia,on	  

So? 



Interference vs diffraction 
 

Feynman “Lectures on Physics” Ch. 30. Diffraction 
 
This	  chapter	  is	  a	  direct	  con,nua,on	  of	  the	  previous	  one,	  although	  the	  name	  has	  
been	   changed	   from	   Interference	   to	   Diffrac,on.	  No	   one	   has	   ever	   been	   able	   to	  
define	   the	   difference	   between	   interference	   and	   diffrac5on	   sa5sfactorily.	   It	   is	  
just	   a	   ques,on	  of	   usage,	   and	   there	   is	   no	   specific,	   important	   physical	   difference	  
between	  them.	  The	  best	  we	  can	  do,	  roughly	  speaking,	   is	  to	  say	  that	  when	  there	  
are	   only	   a	   few	   sources,	   say	   two,	   interfering,	   then	   the	   result	   is	   usually	   called	  
interference,	   but	   if	   there	   is	   a	   large	   number	   of	   them,	   it	   seems	   that	   the	   word	  
diffrac5on	   is	   more	   o<en	   used.	   So,	   we	   shall	   not	   worry	   about	   whether	   it	   is	  
interference	   or	   diffrac,on,	   but	   con,nue	   directly	   from	  where	   we	   leL	   off	   in	   the	  
middle	  of	  the	  subject	  in	  the	  last	  chapter.	  
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Huygen’s	  principle	  
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Every point on a propagating wavefront serves as the source of spherical 
secondary wavelets, such that the wavefront at a later time is the envelope 
of these wavefronts.  
 

The image shows a wavefront, as well as a number of 
spherical secondary wavelets, which after a time t, 
have propagated out to a radius of  vt. The envelop of 
all these wavelets is then asserted to correspond to the 
advanced primary wave.   

Propagation of a wavefront according to Huygens’s 
principle: consistent with diffraction 

 
The wavelets advance with a speed and frequency 
equal to those of the primary wave at each point in 
space. 



Diffrac,on	  geometry	  

6 
What can be said about the symmetry of this diffraction pattern?  
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Interference	   is	   construc,ve	   only	   if	   the	  
radia,on	   is	   coherent	   (a	   way	   of	   defining	  
coherence)	  
	  
	  
	  

A	   diffrac,on	  pa9ern	   results	   from	  diffrac,on	  
(sca9ering)	   followed	   by	   interference	  
between	  the	  diffracted	  (sca9ered)	  beams.	  	  
	  

	  
Diagram	   of	   a	   distant	   light	   source	   emiRng	  
coherent	   wavetrains.	   When	   one	   of	   these	  
strikes	  a	  screen	  which	  has	  adjacent	  slits,	   the	  
slits	   act	   as	   secondary	   of	   light	   according	   to	  
Huygen’s	   principle,	   which	   the	   meet	   and	  
interfere.	  	  

Geometry	  of	  diffrac,on	  pa9erns	  	  



Geometry	  of	  diffrac,on	  pa9erns	  	  

Condi,on	  for	  maxima	  in	  the	  

interference	  plane:	  
	  

mλ =	  d	  sinθ 

Reciprocal relation between θ and d… 

with	  m	  =	  0,	  ±1,	  ±2,	  …	  	  
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Side	  view	  of	  a	  diffrac,on	  gra,ng.	  
The	   slit	   separa,on	   is	   d	   and	   the	  
path	  difference	  between	  adjacent	  
slits	  is	  d	  sinθ.	


m is the order of diffraction. 
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Slit	  width (a) several times the wavelength (λ). 

Diffrac,on	  at	  a	  wide	  slit	  (aperture)	  
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Slit	  width (a) several times the wavelength (λ). 

Diffrac,on	  at	  a	  wide	  slit	  (aperture)	  

Virtual point sources Pairing two by two rays  separated by a/2 
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Slit	  width (a) several times the wavelength (λ). 

Diffrac,on	  at	  a	  wide	  slit	  (aperture)	  



Geometry	  of	  diffrac,on	  pa9erns	  
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Circular aperture Rectangular aperture 



Geometry	  of	  diffrac,on	  pa9erns	  	  
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Envelope	  func,ons	  

Two slits of width much larger than λ	




Geometry	  of	  diffrac,on	  pa9erns	  
Observa,ons	  of	  diffrac,on	  of	  light	  using	  a	  laser	  as	  a	  coherent	  light	  source.	  As	  the	  aperture	  size	  
decreases	  the	  diameter	  of	  the	  diffracted	  disk	  and	  rings	  increases	  (reciprocal	  rela,on...)	  	  

(a) (c) (b) (e) (d) 
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Reciprocal	  laRce	  

	  	  
	  
Any	  point	  on	  the	  reciprocal	  laRce	  can	  be	  specified	  by	  a	  vector:	  dhkl*	  =	  ha*	  +	  kb*	  +	  lc*	  	  
This	  vector	  is	  perpendicular	  to	  the	  plane	  in	  real	  space	  with	  Miller	  indices	  (hkl).	  The	  length	  
of	  this	  vector	  |dhkl*	  |=	  1/dhkl	  where	  dhkl	  is	  the	  interplanar	  spacing	  in	  real	  space.	  	  

Designations: 
•  Real space 
•  Direct space 

Designations: 
•  Reciprocal space 
•  Fourier space  
•  K-space  
•  Frequency space 
     (spatial not temporal) 

The	  reciprocal	  laRce	  is	  a	  set	  of	  imaginary	  points	  so	  that	  the	  direc,on	  of	  a	  vector	  from	  one	  
point	  to	  another	  coincides	  with	  the	  normal	  to	  a	  family	  of	  real	  space	  planes.	  The	  absolute	  
value	  of	  the	  vector	  is	  given	  by	  the	  reciprocal	  of	  the	  real	  interplanar	  distance.	  

A	   whole	   family	   of	  
planes	   in	   real	   space	  
is	   represented	   by	   a	  
s i n g l e	   p o i n t	   i n	  
reciprocal	  space 
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Construction of reciprocal lattice 

1.  Identify the basic planes in the direct space lattice, i.e. (001), (010), 
and (001). 

2.  Draw normals to these planes from the origin. 

3.  Mark distances from the origin along these normals proportional to the 
inverse of the distance from the origin to the direct space planes 

Notes	  on	  reciprocal	  laRce	  
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•  The	  points	  of	   the	  direct	  and	  reciprocal	   laRces	  have	  the	  same	  meaning	  as	  the	  points	  

defined	  in	  geometry:	  	  mathema,cal	  en,,es.	  	  

•  The	  direct-‐space	   laEce	  can	  be	  used	   to	   indicate	   the	   loca,on	  of	   real	  objects	   (atoms)	  
and	  has	  dimensions	  of	  m,	  whereas	  the	  reciprocal	   laEce	  can	  be	  used	  to	   indicate	  the	  
posi,on	  of	  diffracted	  light	  spots	  and	  has	  dimensions	  of	  m-‐1.	  

•  Reciprocal	   space	   is	   also	   called	   Fourier	   space,	   k-‐space	   (2π/λ)	   or	   frequency	   space,	   in	  
contrast	  to	  real	  space	  or	  direct	  space.	  

•  The	   diffrac,on	   pa9erns	   are	   visual	   representa,ons	   or	   images	   of	   the	   object	   (Crystal)	  
Fourier	  transforms.	  

•  The	   results	   of	   diffrac,on	   experiments	   can	   be	   easily	   interpreted	   using	   the	   reciprocal	  
laRce.	   Useful	   informa,on	   about	   the	   internal	   structure	   of	   crystalline	  ma9er	   can	   be	  
obtained	  through	  the	  Ewald	  construc5on	  in	  reciprocal	  space	  (see	  below).	  

	  
•  The	   geometry	  of	   the	  diffrac,on	  pa9ern	   is	   determined	  by	   the	   crystal	   laRce,	   but	   the	  

diffracted	  intensity	  at	  each	  reciprocal	  point	  is	  determined	  by	  the	  mo,ve	  or	  base.	  
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Notes	  on	  reciprocal	  laRce	  



	  
The	  reciprocal	  laRce	  is	  related	  to	  the	  real	  space	  laRce	  by:	  
	  
	  
	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
•  a,	  b,	   c	   are	   the	   vectors	   of	   the	   real	   space	   laRce	   and	  a*,	  b*,	   c*	   are	   the	  

vectors	  of	  the	  reciprocal	  laRce.	  

•  Note	  	   	  	  	  	  	  	  	  	  	  	  	  	  (unit	  cell	  volume)	  

•  These	   rela,ons	  are	   symmetrical	   and	   show	   that	   the	   reciprocal	   laRce	  of	  
the	  reciprocal	  laRce	  is	  the	  direct	  laRce.	  
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a∗ = b× c
a.(b× c)

b∗ = c×a
a.(b× c)

c∗ = a×b
a.(b× c)

V = a.(b∗ × c∗)

Notes	  on	  reciprocal	  laRce	  



	  
•  The	  points	  of	   the	  direct	  and	  reciprocal	   laRces	  have	  the	  same	  meaning	  as	  the	  points	  

defined	  in	  geometry:	  	  mathema,cal	  en,,es.	  	  

•  The	  direct-‐space	   laEce	  can	  be	  used	   to	   indicate	   the	   loca,on	  of	   real	  objects	   (atoms)	  
and	  has	  dimensions	  of	  m,	  whereas	  the	  reciprocal	   laEce	  can	  be	  used	  to	   indicate	  the	  
posi,on	  of	  diffracted	  light	  spots	  and	  has	  dimensions	  of	  m-‐1.	  

•  Reciprocal	   space	   is	   also	   called	   Fourier	   space,	   k-‐space	   (2π/λ)	   or	   frequency	   space,	   in	  
contrast	  to	  real	  space	  or	  direct	  space.	  

•  The	   diffrac,on	   pa9erns	   are	   visual	   representa,ons	   or	   images	   of	   the	   object	   (Crystal)	  
Fourier	  transforms.	  

•  The	   results	   of	   diffrac,on	   experiments	   can	   be	   easily	   interpreted	   using	   the	   reciprocal	  
laRce.	   Useful	   informa,on	   about	   the	   internal	   structure	   of	   crystalline	  ma9er	   can	   be	  
obtained	  through	  the	  Ewald	  construc5on	  in	  reciprocal	  space	  (see	  below).	  

	  
•  The	   geometry	  of	   the	  diffrac,on	  pa9ern	   is	   determined	  by	   the	   crystal	   laRce,	   but	   the	  

diffracted	  intensity	  at	  each	  reciprocal	  point	  is	  determined	  by	  the	  mo,ve	  or	  base.	  
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Notes	  on	  reciprocal	  laRcec	  



	  

•  One	  set	  of	  closely-‐spaced	  horizontal	  lines	  gives	  rise	  
to	  a	  widely-‐spaced	  ver,cal	  row	  of	  points.	  	  

•  A	   second	   set	   of	   more	   widely-‐space	   diagonal	   lines	  
gives	   rise	   to	   a	   more	   closely-‐spaced	   row	   of	   points	  
perpendicular	  to	  these	  lines.	  

•  If	  one	  mul,plies	  one	  set	  of	  lines	  by	  another,	  this	  will	  
give	   an	   array	   of	   points	   at	   the	   intersec,ons	   of	   the	  
lines	  in	  the	  bo9om	  part	  of	  the	  figure.	  	  

•  The	  Fourier	  transform	  of	  this	  laRce	  of	  points,	  which	  
was	  obtained	  by	  mul,plying	  two	  sets	  of	  lines,	  is	  the	  
convolu,on	   of	   the	   two	   individual	   transforms	   (i.e.	  
rows	   of	   points)	   ,	   which	   generates	   a	   reciprocal	  
laRce.	  

	  	  
	  
•  Frequency	  =	  1/period	  =	  1/dhkl	  	  
	  	  	  	  	  	  (in	  this	  context	  the	  period	  refers	  to	  interplanar	  distance,	  not	  ,me)	  
•  K	  are	  the	  diffrac,on	  vectors	  
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Op,cal	  Fourier	  transform	  



Op,cal	  Fourier	  transform	  
Both	  spaces	  are	  periodic	  and	  with	  the	  same	  symmetry,	  so:	  

	  

21 
Euler’s formula 

eiφ = cosφ + i sinφ  

Amplitude  
(measure of intensity at each point in recirpocal space)) 

Spatial frequency 
(position in the diffraction pattern) 

Summations of sinudoisal functions! 



Bragg's Interpretation 
 

 

 

W. H. Bragg examined Laue's photographs and noticed that the spots were 
elongated.  He surmised that this elongation arose from specular reflection of the 
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in 
phase if the path difference between them equals an integer multiple of the 
wavelength: 

BC = d sinθ CD = d sinθ
BC +CD =  path difference = nλ

nλ = 2d sinθ 22 



Vectorial form of Bragg’s law 
(Ewald or reflecting sphere) 

Postulate:	  
•  a	  sphere	  of	  radius	  1/λ,	

•  intersec,ng	  the	  origin	  of	  the	  reciprocal	  laRce,	  	  
•  with	   the	   star,ng	   point	   of	   the	   incident	   (or	   direct)	  

beam	  vector	  at	  the	  sphere	  center,	  
•  and	  unitary	  incident	  and	  diffracted	  vectors	  S0	  and	  S:	  

Then:	  
	  
|S	  -‐	  S0|	  =	  2	  R	  sinθ =	  2	  sinθ /λ	


	  

Only	  when	  S	  -‐	  S0	  coincides	  with	  a	  reciprocal	  laRce	  point	  
(i.e.	   when	   |S	   -‐	   S0|	   =	   |d*hkl|=	   1/dhkl	   )	   is	   Bragg’s	   law	  
sa,sfied:	  
	  

2	  sinθ /λ = 1/dhkl	  	  
	  

Therefore	   construc,ve	   interference	  occurs	  when	  S	   -‐	  S0	  
coincides	   with	   the	   reciprocal	   vector	   of	   the	   reflec,ng	  
planes!	  
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For	  this	  incident	  angle	  there	  is	  no	  diffracted	  intensity	  !	  

Notation: d*hkl	  =	  ghkl 



A	  change	  in	  the	  orienta,on	  of	  the	  incident	  beam	  rela,ve	  to	  the	  crystal	  changes	  the	  
orienta,on	  of	  the	  reflec,ng	  sphere.	  
	  
Eventually	  a	  condi,on	  where	  diffrac,on	  occurs.	  
	  
A	  change	  in λ	  changes	  the	  sphere	  radius	  and	  may	  also	  be	  used	  to	  sa,sfy	  Bragg’s	  law.	  

Vectorial form of Bragg’s law 
Ewald or reflecting sphere 



Vectorial form of Bragg’s law 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

The	  limi,ng	  sphere	  

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere. 
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius 
of Ewald shpere is 1/λ  since S and S0 are unitary): planes with 1/d > 2/λ cannot scatter 
radiation with λ wavelength due to too small interplanar distances… 25 



Bragg ‘reflection’ 

In fact… 

26 

physically wrong but geometrically right 

Very useful but not a correct description! 



 

 

Derivation of Laue equations 
Assume a row of scatterers separated by constant repeat, a. Radiation of 
wavelength λ is incident on this row at an angle αo. Examine the the scatter from 
this row at an angle αn. 

The path difference of rays scattering from points A and D is just AB-CD.  If the 
incoming rays are in phase, the path difference must be some integer multiple of 
the wavelength for constructive interference to occur.  
This leads to the first Laue equation: 
 

λαα xn naCDAB =−=− )cos(cos 0
27 



In reality the angle αn does not need to be measured only as θ in Bragg’s law 
illustrations. In fact, the diffracted beams of the same order form a conical surface 
(αn in constant on the conical surface). 

Derivation of Laue equations 
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λββ yn nbCDAB =−=− )cos(cos 0

Derivation of Laue equations 

Laue's remarkable idea was that this equation 
must have a simultaneous solution with the 
equation written for the x direction (and the z 
direction as well). The solution to this second 
equation also forms a cone except this time 
about b. The simultaneous solution to these 
two equations can be viewed as the 
intersection of the two cones originating at a 
common apex and which intersect along two 
lines.  

29 

Next consider another row of scatterers at some angle γ, to the first with repeat distance, b.  A 
second Laue equation can be written for this direction.  The incident rays will make angle β0 to 
this row and the scattered rays βn. This equation must also result in some integer multiple of 
the wavelength, ny, for constructive interference to occur. 



AB−CD = a(cosαn − cosα0 ) = nxλ

AB−CD = b(cosβn − cosβ0 ) = nyλ

AB−CD = c(cosγn − cosγ0 ) = nzλ

Derivation of Laue equations 
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Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This 
results in a set of equations with one simultaneous solution.  By analogy with the previous 
results this solution will be a single vector lying at the intersection of three cones sharing a 
common apex. 



a•S = a(cosαn )
a•S0 = a(cosα0 )
a•(S−S0 ) = nxλ

This equation can be restated in vector terms. The repeat distance a, becomes a 
unit cell vector a. Define a unit vector parallel to the incoming ray, S0, and a unit 
vector parallel to the scattered ray, S.  Then: 

The first Laue equation is valid for any scattered ray that makes an angle αn with the 
unit cell axis. Thus the Laue condition is consistent with a cone of scattered rays 
centered about the a axis.  
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Vectorial form of Laue equations 



Postulate that  S-S0\λ represents any vector g in reciprocal space.   

 

 

a•g = pa•a∗ + qa•b∗ + ra•c∗

b•g = pb•a∗ + qb•b∗ + rb•c∗

c•g = pc•a∗ + qc•b∗ + rc•c∗

= p
= q
= r z

y

x

n
n
n

=

=

=

The Laue conditions require that p, q, r be integers (nx, ny, nz). So they are 
the just Miller indices, h, k, and l! Hence the Laue equations are consistent 
with the concept of reciprocal lattice vector. 
 

xnλ
−

• =0(S S )aLook at first Laue condition in vector form 

Ewald sphere: vectorial form of Laue equations 
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1st Laue eq.: 

2nd Laue eq.: 

3rd Laue eq.: 

g = S−S0
λ

"

#
$

%

&
'= pa∗ + qb∗ + rc∗



g = S−S0
λ

"

#
$

%

&
'= ha∗ + kb∗ + lc∗ = dhkl

∗

So there is diffraction when the scattering vector g equals a reciprocal lattice vector d*: 

Ewald was responsible for first interpreting Laue's results in terms of reciprocal lattices. He 
devised a simple geometric construction that demonstrates the relationship in quite 
elegant but simple way. 

Ewald sphere: vectorial form of Laue equations 
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g = S−S0
λ

"

#
$

%

&
'= dhkl

∗ =
1
dhkl

=
2
λ
sinθ

λ = 2dhkl sinθ

Consistent with Bragg’s law too! 



X-ray diffraction methods 

34 

In XRD the Ewald sphere radius is short so the coincidence between 
reciprocal lattice points and the sphere is rare.  

In order to record a diffraction pattern some reciprocal lattice points must 
lie on or pass through the Ewald sphere. This can be achieved in several 
different ways: 

•  Use “white” radiation and a single crystal:  Laue method 

•  Use monochromatic radiation and rotate a single crystal: Rotation 
method and similar techniques 

•  Use monochromatic radiation and a sample containing crystals with 
many different orientations (a powder): Powder diffraction 



The Laue method (single crystal diffraction) 
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As in Laue’s original experiment: 

•  Using “white” Bremsstrahlung radiation from an X-ray tube so that many different 
wavelengths are scattered by the sample 

•  Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal  

 



Appearance of Laue diffractograms 
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Ewald construction for Laue method 
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Rotating crystal method (single crystal method) 

relps = reciprocal lattice points 

Aligned crystal is rotated around one axis so relps pass through the Ewald 
sphere: 
 
•  Produces spots lying on lines  
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Ewald	  construc,on	  for	  rota,ng	  crystal	  method	  
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Powder diffraction method 

Diffractometer 

Bragg-Brentano-geometry 



Reciprocal	  laRce	  of	  a	  powder	  
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In a powder we have a large number of 

crystals all at different orientations  
 
The reciprocal space no longer has one set of 
points, but many sets of points at different 
orientations. All of these points lie on the 
surface of spheres or shells.  
 
– Reciprocal lattice shells – rel shells  
 



Ewald	  construc,on	  for	  powder	  
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Ewald	  construc,on	  for	  powder	  

43 
The powder rotates (θ) to increase the probably of diffraction and the detector rotates 
(2θ) to intersect the diffracting cones. 

A diffracted cone is formed every time Bragg’s law is satisfied. We may use a 
photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.  



Electron	  diffrac,on	  (TEM)	  of	  single	  crystal	  	  
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Fourier transforms again: 
Crystal Thin disc 

multiplication 

convolution 

Real  
space 

Reciprocal  
space 

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 
larger perpendicular to the disc due to finite and small thickness 



C O 

S 

S0 

Diffrac,on	  from	  a	  single	  crystal	  (TEM)	  
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S0 is the transmitted beam 

S is the diffracted beam 

ZOLZ is the zeroth order Laue zone 
FOLZ is the first order Laue zone 
SOLZ is the second order Laue zone 

The reciprocal space is an artificial, mathematical construction – it 
doesn’t really exist; however, we can see it in single crystal 
diffraction.  



Geometry	  of	  diffrac,on	  pa9erns	  	  

(also called near-field) 

(also called far-field) 

Fraunhofer diffraction pattern:  the rays leave the diffracting object in parallel directions: 
•  Screen very far from the object 
•  Converging lenses may be used to make the rays converge in smaller distances 



Geometry	  of	  diffrac,on	  pa9erns	  	  

n = 0 

n= 1 

n = -1 

 w
av

e 
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Diffraction intensity 
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What can be said about the intensity of the “reflections” in this diffraction pattern?  
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Scattering by electrons 

•  Electrons and other charged particles scatter X-rays.  

Interaction of a X-ray front with an 
isolated electron, which becomes a 
new X-ray source, producing the X-
rays waves in a spherical mode. 

The spherical waves produced 
by two electrons interact with 
each other, producing positive 
and negative interferences.

  
 



),( 00 νλ
Sets	  electron	  into	  oscilla/on	  

Sca0ered	  beams	  ),( 00 νλ
Coherent	  

(definite	  phase	  rela/onship)	  

§  The	  electric	  field	  (E)	  is	  the	  main	  cause	  for	  the	  accelera,on	  of	  the	  electron	  	  
§  The	  moving	  par,cle	  radiates	  most	  strongly	  in	  a	  direc5on	  perpendicular	  to	  its	  

mo5on	  
§  The	  radia,on	  will	  be	  polarized	  along	  the	  direc,on	  of	  its	  mo,on	  

Scattering by an electron 



Scattering by an electron 
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I = I0
e4

m2c4
sin2θ
r2

!

"
#

$

%
&The	  reason	  we	  are	  able	  to	  

neglect	  sca9ering	  from	  the	  
protons	  in	  the	  nucleus	  

Intensity	  of	  the	  sca9ered	  beam	  due	  to	  an	  electron	  at	  a	  point	  P	  such	  that	  r	  >>	  λ	  
	  

x 

z 

r 

P 

For	  a	  wave	  oscilla/ng	  in	  z	  direc/on	  
θ	
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Scattering by atoms 
•  The atom can be considered to be a collection of electrons. This electron 

density scatters radiation. 
•  For radiation to remain coherent the interference between x-rays scattered 

from different points within the atom has to be considered.  
•  This leads to a strong angle dependence of the scattering. 



Scattering by atoms 
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The scattering power of an atom is given by the atomic form factor (f): ratio of 
scattering from the atom to what would be observed from a single electron  

Scattering by atoms 

•  Form factor is expressed as a function of (sinθ)/λ 
as the interference depends on both λ and the 
scattering angle  

•  Form factor is equivalent to the atomic number at 
low angles, but it drops rapidly at high (sinθ)/λ  

 

Atomic scattering factors calculated for 
atoms and ions with different numbers of 
electrons. Note that the single electron of 
the hydrogen atom (H) scatters very little 
as compared with other elements, 
especially with increasing θ. Hydrogen will 
therefore be "difficult to see" ..   
 



Coherent scattering from crystals 
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•  Due	  to	  crystal	  periodicity	  sca9ering	   from	  atoms	   in	  one	  unit	  cell	  can	  be	  used	  to	  determine	  
the	  intensi,es	  of	  the	  diffracted	  beams	  

•  The	  posi,ons	  of	  the	  atoms	  in	  a	  unit	  cell	  determine	  the	  intensi,es	  of	  the	  reflec,ons.	  
•  Consider	  diffrac,on	  from	  (001)	  planes	  in	  body	  centered	  cells:	  

(a)  If	  the	  path	  length	  between	  rays	  1	  and	  2	  differs	  by	  λ,	  the	  diffrac,on	  angle	  is	  sa,sfied	  and	  the	  
diffracted	  intensity	  corresponds	  to	  that	  of	  1	  atom	  (in	  primi,ve	  cells	  we	  have	  1	  atom/cell).	  

(b)  For	   the	  centred	  cell,	   in	   the	  same	  configura,on,	   the	  path	   length	  between	  rays	  1	  and	  3	  will	  
differ	  by	  λ/2	  and	  destruc,ve	  interference	  in	  (b)	  will	  lead	  to	  NO	  diffracted	  intensity	  for	  (001)	  
in	  any	  body-‐centered	  (BC)	  laRce	  (I-‐cubic,	  I-‐	  tetragonal,	  or	  I-‐orthorhombic).	  	  

	  
	  
	  

Extinctions from centered cells or different atoms in the unit cell 

These (001) planes diffract? 



•   Unit Cell (UC) is representative of the crystal structure 
•   Scattered waves from various atoms in the UC interfere to create the 

diffraction pattern 

The wave scattered from the middle plane is out of phase with the ones scattered 
from top and bottom planes 

Extinctions from centered cells and/or  

Coherent scattering from crystals 



d(h00) 

θB θ 

R1 

R2 

R3 

Unit Cell 

x 

M 

C 

N 

R 
B 

S 

A 

'
1R

'
2R

'
3R

(h00) plane 
a 

Change in phase due to atoms in fractional coordinates 
(revisiting the structure factor concept) 



AC = dh00 =
a
h

MCN :: AC = dh00
RBS :: AB = x

AB
AC

=
x
dh00

=
x
a
h

δR1R2 =MCN = 2dh00 sin(θ ) = λ

δR1R3 = RBS =
AB
AC

MCN =
AB
AC

λ =
x
a
h
λ

δ
λ
π

ϕ
2

=

a
xh

h
a
x

RR πλ
λ
π

ϕ 22
31

== xcoordinatefractional
a
x

ʹ′→→  xhRR ʹ′= πϕ 2
31

Extending to 3D 2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + + Independent of the shape of UC 

Change in phase due to atoms in fractional coordinates 

Note: R1 corresponds 
to corner atoms and 
R3 to from atoms in 
additional positions in 
the Unit Cell (UC) 
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Revisiting the complex notation 
The phase difference between rays scattered from the origin and rays scattered 
from an atom at fraction coordinates (x’v’w’) is: 
 
 
 
•  Each atom within the unit cell may produce a scattered wave of different 

amplitude.  
•  The amplitude is given by the form factor f for the atom. 
•  All of the scattered waves from individual atoms sum together to produce a 

wave whose amplitude can be measured (the phase is more difficult to retrieve). 
 
Tool to handle the summation of waves scattered from different atoms: 

 
The most convenient way to represent the amplitude 
and phase of a scattered wave is by a vector in the 
complex plane. 
 

 Wave of amplitude A and phase φ: 
  Aeiφ = A(cosφ + i sinφ)  

 

-  Real when φ is multiple of 2 π	

-  1 for even multiples 
-  -1 for odd multiples 

 

2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + +



Fhkl = f j
j=1

n

∑
.

eiϕ j = f j
j=1

n

∑
.

e
i 2π h x j

' +k yj
' +l z j

'( )"
#$

%
&'

wave equation in 
complex notation 

§  If  atom B is different from atom A → the amplitudes must be weighed by the respective 
atomic scattering factors (f) 

§  The resultant amplitude of all the waves scattered by all the atoms in the UC is the 
scattering factor for the unit cell 

§  The unit cell scattering factor is called the Structure Factor (F) 

Scattering by an unit cell = function (position of the atoms, atomic scattering factors) 

F = Structure Factor = Amplitude of wave scattered by all atoms in UC
Amplitude of wave scattered by an electron

[2 ( )]i i h x k y l zE Ae feϕ π ʹ′ ʹ′ ʹ′+ += =2 ( )h x k y l zϕ π ʹ′ ʹ′ ʹ′= + +

I ∝Fhkl
2

The structure factor is independent of the shape and size  of the unit cell !!! 

for n atoms in the UC: 

Change in phase due to atoms in fractional coordinates 

Intensity of the diffracted wave: 



nnie )1(−=π

eiθ + e−iθ = 2cos(θ )

Atom at (0,0,0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

[2 ( 0 0 0)] 0i h k lF f e f e fπ ⋅ + ⋅ + ⋅= = =

22 fF = ⇒ F is independent of the scattering plane (h k l) 

ππ nini ee −=

e(odd  n) iπ = −1
1) ( +=πinevene

Structure factor calculations 

Simple cubic 



Atom	  at	  (0,0,0)	  &	  (½,	  ½,	  0)	  and	  equivalent	  posi,ons	  

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

1 1[2 ( 0)][2 ( 0 0 0)] 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h ki i h k

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+
+

= +

= + = +

⇒ F is independent of the ‘l’ index 

Real 

]1[ )( khiefF ++= π

fF 2=

0=F

22 4 fF =

02 =F

Both even or both odd 

Mixture of odd and even 

e.g. (001), (110), (112); (021), (022), (023) 

e.g. (100), (101), (102); (031), (032), (033) 

(h + k) even 

(h + k) odd 

Structure factor calculations 
C centered orthorhombic 



§  If the blue planes are scattering in phase then on C- centering the red planes will 
scatter out of phase (with the blue planes - as they bisect their normal) and hence 
the (210) reflection will become extinct 

§ This analysis is consistent with the extinction rules: (h + k) odd is absent 

Structure factor calculations 
C centered orthorhombic 



§  In case of the (310) planes no new translationally equivalent planes are added on 
lattice centering ⇒ this reflection cannot go missing. 

§ This analysis is consistent with the extinction rules: (h + k) even is present 

Structure factor calculations 
C centered orthorhombic 



Atom at (0,0,0) & (½, ½, ½) and equivalent positions 
[2 ( )]j j j ji i h x k y l z

j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

1 1 1[2 ( )][2 ( 0 0 0)] 2 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h k li i h k l

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+ +
+ +

= +

= + = +

Real 

]1[ )( lkhiefF +++= π

fF 2=

0=F

22 4 fF =

02 =F

(h + k + l) even 

(h + k + l) odd 

e.g. (110), (200), (211); (220), (022), (310) 

e.g. (100), (001), (111); (210), (032), (133) 

Structure factor calculations 
Body centered orthorhombic 



Atom at (0,0,0) & (½, ½, 0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ′ ʹ′ ʹ′+ += =

]1[    )()()(

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

hlilkikhi

hlilkikhii

eeef

eeeefF

+++

+++

+++=

⎥
⎦

⎤
⎢
⎣

⎡
+++=

πππ

ππππ

Real 

fF 4=

0=F

22 16 fF =

02 =F

(h, k, l) unmixed 

(h, k, l) mixed 

e.g. (111), (200), (220), (333), (420) 

e.g. (100), (211); (210), (032), (033) 

(½, ½, 0), (½, 0, ½), (0, ½, ½) 

]1[ )()()( hlilkikhi eeefF +++ +++= πππ

Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Structure factor calculations 
Face centred cubic 



Mixed indices CASE h k l 
A o o e 
B o e e 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 0i e i o i oe e eπ π π+ + + = + − − =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 0i o i e i oe e eπ π π+ + + = − + − =

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

Unmixed indices 

fF 4= 22 16 fF =(h, k, l) unmixed 

e.g. (111), (200), (220), (333), (420) 

All odd (e.g. 111); all even (e.g. 222) 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =



Na+	  at	  (0,0,0)	  +	  Face	  Centering	  Transla,ons	  →	  (½,	  ½,	  0),	  (½,	  0,	  ½),	  (0,	  ½,	  ½)	  	  
Cl−	  at	  (½,	  0,	  0)	  +	  FCT	  →	  (0,	  ½,	  0),	  (0,	  0,	  ½),	  (½,	  ½,	  ½)	  

⎥
⎦

⎤
⎢
⎣

⎡
+++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

++

+++

−

+

)]
2

(2[)]
2

(2[)]
2

(2[)]
2

(2[

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

       
lkhilikihi

Cl

hlilkikhii
Na

eeeef

eeeefF

ππππ

ππππ

][      

]1[
)()()()(

)()()(

lkhilikihi
Cl

hlilkikhi
Na

eeeef

eeefF
++

+++

+++

++++=

−

+

ππππ

πππ

]1[      

]1[
)()()()(

)()()(

+++

++++=
−−−−−−++

+++

−

+

khihlilkilkhi
Cl

hlilkikhi
Na

eeeef

eeefF
ππππ

πππ

]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

NaCl 
Face Centered Cubic 

Structure factor calculations 



]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

Zero for mixed indices 

Mixed indices CASE h k l 
A o o e 
B o e e 

F = factor1. factor2

CASEA : factor2 = [1+ eiπ (e) + eiπ (o) + eiπ (o) ]= [1+1−1−1]= 0

CASEB: factor2 = [1+ eiπ (o) + eiπ (e) + eiπ (o) ]= [1−1+1−1]= 0

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices 



(h, k, l) unmixed ][4 )( lkhi
ClNa effF ++

−+ += π

][4 −+ += ClNa ffF If (h + k + l) is even 22 ][16 −+ += ClNa ffF

][4 −+ −= ClNa ffF If (h + k + l) is odd 22 ][16 −+ −= ClNa ffF

e.g. (111), (222); (133), (244) 

e.g. (222),(244) 

e.g. (111), (133) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

CASEA : factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

CASEB: factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

Unmixed indices 
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Extinctions due to centering and/or 
different atomic form factors 



Generic case? Consult the Tables of Crystallography 
Scattering by a unit cell 
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Reciprocal space and intensities  
 

The scattered intensity distribution in 

reciprocal space is sometimes represented 

by weighting the points of a reciprocal 

lattice drawing: 

•  Larger points indicate higher intensity  

•  Crosses ind ica te absences o r 

extinctions 
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Section of weighted reciprocal space for NaCl 
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Reciprocal space of a powder with 
intensities  
 

•  Rel shells for powders 
 
•  Representation of the scattered 

intensity for a powder in 
reciprocal space 

Section of weighted reciprocal space 
for a NaCl powder showing the 
reciprocal lattice shells (rel shells) 
 

A radial profile is 
similar to a XRD 
diffraction pattern 


