Basics of diffraction




Diffraction

Diffraction refers to the phenomena exhibited by light when
it interacts with barriers and obstacles (scattering).




Interference of waves

Diffraction is constructive interference of light rays or other types of
radiation
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Interference vs diffraction

Feynman “Lectures on Physics” Ch. 30. Diffraction

This chapter is a direct continuation of the previous one, although the name has
been changed from Interference to Diffraction. No one has ever been able to
define the difference between interference and diffraction satisfactorily. It is
just a question of usage, and there is no specific, important physical difference
between them. The best we can do, roughly speaking, is to say that when there
are only a few sources, say two, interfering, then the result is usually called
interference, but if there is a large number of them, it seems that the word
diffraction is more often used. So, we shall not worry about whether it is
interference or diffraction, but continue directly from where we left off in the
middle of the subject in the last chapter.



Huygen'’s principle

Every point on a propagating wavefront serves as the source of spherical
secondary wavelets, such that the wavefront at a later time is the envelope
of these wavefronts.

The wavelets advance with a speed and frequency

equal to those of the primary wave at each point in
space.

The image shows a wavefront, as well as a number of
spherical secondary wavelets, which after a time t,
have propagated out to a radius of vt. The envelop of
all these wavelets is then asserted to correspond to the
advanced primary wave.

Propagation of a wavefront according to Huygens’ s
principle: consistent with diffraction
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Diffraction geometry

What can be said about the symmetry of this diffraction pattern? A



Geometry of diffraction patterns

A diffraction pattern results from diffraction

(scattering) followed by interference l"
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Geometry of diffraction patterns

Side view of a diffraction grating.
The slit separation is d and the
path difference between adjacent
slits is d sin0.

Condition for maxima in the

interference plane:

mA = d sinf

m is the order of diffraction.
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Diffraction at a wide slit (aperture)

Slit width (a) several times the wavelength (A).

Incoming
wave

Slit

Viewing screen

(b)

n, and J. C. Thierr

M. Cagnet, M. Franco



Diffraction at a wide slit (aperture)

Slit width (a) several times the wavelength (A).

Virtual point sources Pairing two by two rays separated by a/2
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Diffraction at a wide slit (aperture)

Slit width (a) several times the wavelength (A).
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Geometry of diffraction patterns

Circular aperture Rectangular aperture
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Geometry of diffraction patterns

Envelope functions

,_%_&

wd shit

Two slits of width much larger than A /\ f\f\
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Geometry of diffraction patterns

Observations of diffraction of light using a laser as a coherent light source. As the aperture size
decreases the diameter of the diffracted disk and rings increases (reciprocal relation...)

o,
®

Diffracting apertures (reproduced as black dots on a white background) (left) and their
corresponding diffraction patterns (or optical transforms) (right) taken using a laser. (a), (b) and (c¢)
show the diffraction patterns (Airy discs and surrounding haloes or rings) from circular apertures of
increasing diameters, (d) shows the diffraction pattern from a4 x 5 net of small apertures (as in (a)). Note
the reciprocal relationship between the net and the diffraction pattern, the 2 x 3 number of subsidiary
peaks in each direction and the overall variation in intensity of the diffraction pattern in accordance with
that for a single aperture (a), (e) shows that for a net of many apertures the subsidiary maxima are not
discernible. (From Atlas of Optical Transforms by G. Harburn, C. A. Taylor and T. R. Welberry, Bell

and Hyman, 1983, an imprint of HarperCollins.) 14



Reciprocal lattice

The reciprocal lattice is a set of imaginary points so that the direction of a vector from one
point to another coincides with the normal to a family of real space planes. The absolute
value of the vector is given by the reciprocal of the real interplanar distance.

A ™ Ao,
(010)
4 M T . . "
. Designations:
Designations: o T ¢ ¢ ° - Reciprocal space
« Realspace 271 . |E ™t o e e » Fourier space
. 2 e .
» Direct space £) < | o . . K-space
= " 1 lzw Cowm T Frequency space
.3(/ ' : A (spatial not temporal)
A

A whole family of
planes in real space
is represented by a
single point in
4 reciprocal space

[.l / | b, p p

Any point on the reciprocal lattice can be specified by a vector: d,,,;* = ha* + kb™ + Ic*
This vector is perpendicular to the plane in real space with Miller indices (hkl). The length
of this vector |d,,," |= 1/d,,, where d,, is the interplanar spacing in real space. 15



Notes on reciprocal lattice

Construction of reciprocal lattice

B2
| P normal to dr
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//// planes 1
/
planes T | —
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’:d/—j planes 1 2 2

1

1. Identify the basic planes in the direct space lattice, i.e. (001), (010),
and (001).

2. Draw normals to these planes from the origin.

3. Mark distances from the origin along these normals proportional to the

inverse of the distance from the origin to the direct space planes 4



Notes on reciprocal lattice

The points of the direct and reciprocal lattices have the same meaning as the points
defined in geometry: mathematical entities.

The direct-space lattice can be used to indicate the location of real objects (atoms)
and has dimensions of m, whereas the reciprocal lattice can be used to indicate the
position of diffracted light spots and has dimensions of m.

Reciprocal space is also called Fourier space, k-space (2wt/A) or frequency space, in
contrast to real space or direct space.

The diffraction patterns are visual representations or images of the object (Crystal)
Fourier transforms.

The results of diffraction experiments can be easily interpreted using the reciprocal
lattice. Useful information about the internal structure of crystalline matter can be
obtained through the Ewald construction in reciprocal space (see below).

The geometry of the diffraction pattern is determined by the crystal lattice, but the
diffracted intensity at each reciprocal point is determined by the motive or base.
17



Notes on reciprocal lattice

The reciprocal lattice is related to the real space lattice by:

. bxc . cxa . axb
a = b = ¢ =
a.(bxc) a.bxc)

_a(bxc)

 a, b, c are the vectors of the real space lattice and a*, b*, c¢* are the
vectors of the reciprocal lattice.

* Note V=a.(b" xc") (unitcell volume)

* These relations are symmetrical and show that the reciprocal lattice of
the reciprocal lattice is the direct lattice.

18



Notes on reciprocal latticec

The points of the direct and reciprocal lattices have the same meaning as the points
defined in geometry: mathematical entities.

The direct-space lattice can be used to indicate the location of real objects (atoms)
and has dimensions of m, whereas the reciprocal lattice can be used to indicate the
position of diffracted light spots and has dimensions of m.

Reciprocal space is also called Fourier space, k-space (2wt/A) or frequency space, in
contrast to real space or direct space.

The diffraction patterns are visual representations or images of the object (Crystal)
Fourier transforms.

The results of diffraction experiments can be easily interpreted using the reciprocal
lattice. Useful information about the internal structure of crystalline matter can be
obtained through the Ewald construction in reciprocal space (see below).

The geometry of the diffraction pattern is determined by the crystal lattice, but the
diffracted intensity at each reciprocal point is determined by the motive or base.
19



Optical Fourier transform

* Frequency = 1/period =1/d,,,
(in this context the period refers to interplanar distance, not time)
e K are the diffraction vectors

One set of closely-spaced horizontal lines gives rise

to a widely-spaced vertical row of points.

* A second set of more widely-space diagonal lines

gives rise to a more closely-spaced row of points

/ Se, perpendicular to these lines.
L J
. L ]
/ %o, If one multiplies one set of lines by another, this will
give an array of points at the intersections of the

lines in the bottom part of the figure.

Vi £ ~ ~ :‘ / 0.:0.:..
e e e e S S > ::.:0.:0 * The Fourier transform of this lattice of points, which
..0.:'.: was obtained by multiplying two sets of lines, is the
e 000 e, convolution of the two individual transforms (i.e.

rows of points) , which generates a reciprocal
lattice.

20



Optical Fourier transform

Both spaces are periodic and with the same symmetry, so:

———» N . 0
. / 0\ y y F \ L | s )
f@)= [ F)e*
Spatial frequency
Amplitude (position in the diffraction pattern)
(measure of intensity at each point in recirpocal space))
Euler's formula

o - Summations of sinudoisal functions! 21
e’ =cosQp +1SnQ



Bragg's Interpretation

W. H. Bragg examined Laue's photographs and noticed that the spots were
elongated. He surmised that this elongation arose from specular reflection of the
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in
phase if the path difference between them equals an integer multiple of the
wavelength: s

BC=dsinf  CD=dsinf
BC + CD = path difference = nA
nA=2dsinf 22



Vectorial form of Bragg's law
(Ewald or reflecting sphere) . s-s

Postulate:

* asphere of radius 1/A,

* intersecting the origin of the reciprocal lattice,

* with the starting point of the incident (or direct)
beam vector at the sphere center,

e and unitary incident and diffracted vectors S, and S:
Then:

|S-S,] =2 Rsin0 =2sin0 /A

Only when S - S, coincides with a reciprocal lattice point
satisfied:

Therefore constructive interference occurs when S - S,

coincides with the reciprocal vector of the reflecting
planes!

For this incident angle there is no diffracted intensity !

Notation: d*, = g,

Incident
beam

G ==
/
O
O
0(11)
0(10)
O
Reflecting sphere
¢ hkl
d;kl
_SO
. S-S"‘Sn Diffracted
M O beam
Trace of (hkl)
reflecting plane
23
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Vectorial form of Bragg's law
Ewald or reflecting sphere .

A change in the orientation of the incident beam relative to the crystal changes the
orientation of the reflecting sphere.

Eventually a condition where diffraction occurs.

A change in A changes the sphere radius and may also be used to satisfy Bragg’s law.



Vectorial form of Bragg's law
The limiting sphere

*..,, Diffracted
., beam

F,

Limiting sphere
RADIUS = 2S5/A

INCIDENT J
BEAM

sphere

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere.
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius
of Ewald shpere is 1/A since S and §, are unitary): planes with 1/d > 2/A cannot scatter
radiation with A wavelength due to too small interplanar distances... 25



Bragg ‘reflection’

physically wrong but geometrically right

Very useful but not a correct description!

26



Derivation of Laue equations

Assume a row of scatterers separated by constant repeat, a. Radiation of
wavelength A is incident on this row at an angle a,. Examine the the scatter from
this row at an angle a...

The path difference of rays scattering from points A and D is just AB-CD. If the
incoming rays are in phase, the path difference must be some integer multiple of

the wavelength for constructive interference to occur.
This leads to the first Laue equation:

AB-CD =a(cosa, —cosa,) =n_A



Derivation of Laue equations

In reality the angle o, does not need to be measured only as 6 in Bragg’s law
illustrations. In fact, the diffracted beams of the same order form a conical surface
(o, in constant on the conical surface).

Incident beam

Lattice row
el
along x-axis

2nd-order Laue cone

1st-order Laue cone

Zero-order Laue cone

Three Laue cones representing the directions of the diffracted beams from a lattice row along
the x-axis with 04 (n, = 0), 1A(n, = 1) and 2x(n, = 2) path differences. The corresponding Laue cones 28
forn, = =1, n, = =2 elt¢. lie 1o the left of the zero order Laue cone.



Derivation of Laue equations

Next consider another row of scatterers at some angle vy, to the first with repeat distance, b. A
second Laue equation can be written for this direction. The incident rays will make angle 3, to
this row and the scattered rays 3.. This equation must also result in some integer multiple of
the wavelength, n,, for constructive interference to occur.

AB-CD =b(cos p, —cos f) =n,A

Laue's remarkable idea was that this equation
must have a simultaneous solution with the
equation written for the x direction (and the z

' direction as well). The solution to this second
D,i,.ff,;aycsfed equation also forms a cone except this time
about b. The simultaneous solution to these
two equations can be viewed as the
intersection of the two cones originating at a
common apex and which intersect along two

L) s 0

Incident ray lines.

29



Derivation of Laue equations

Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This
results in a set of equations with one simultaneous solution. By analogy with the previous

results this solution will be a single vector lying at the intersection of three cones sharing a
common apex.

AB-CD = a(cosa, —cosa, ) =n_A Difiracted ray
AB-CD = b(cos 5, —cos 5,) =n, A '

AB-CD = c(cosy, —cosy,)=nA

30



Vectorial form of Laue equations

The first Laue equation is valid for any scattered ray that makes an angle a, with the
unit cell axis. Thus the Laue condition is consistent with a cone of scattered rays
centered about the a axis.

This equation can be restated in vector terms. The repeat distance a, becomes a
unit cell vector a. Define a unit vector parallel to the incoming ray, §,, and a unit
vector parallel to the scattered ray, S. Then:

a*S=a(cosa,)

as, a°*S,=a(cosq,)
a*(S-S,)=n/

31



Ewald sphere: vectorial form of Laue equations

(S_So) _
_nx
A

Look at first Laue condition in vectorform Q ®

Postulate that S-S,\A represents any vector g in reciprocal space.

g=(S;LS°)=pa*+qb*+rc*

1stLaue eq.: Aa°g=pa*a +qa*b +ra*c’=p =n_
2" Laue eq.: beg=pbea’+gbeb +rbec’'=q =n,
3dLaueeq.. ceg=pcea’ +qgc°b +recec’=r =n,_

The Laue conditions require that p, q, r be integers (n,, n,, n,). So they are

the just Miller indices, h, k, and I! Hence the Laue equations are consistent
with the concept of reciprocal lattice vector. 32



Ewald sphere: vectorial form of Laue equations

So there is diffraction when the scattering vector g equals a reciprocal lattice vector d*:

g = % =ha"+kb +Ilc" =d,,

Ewald was responsible for first interpreting Laue's results in terms of reciprocal lattices. He
devised a simple geometric construction that demonstrates the relationship in quite
elegant but simple way.

S-S .
g=( 2 0)=dhkl=

sin @

1 _2
dhkl A’
A=2d,,sin6

Consistent with Bragg’s law too!
33



X-ray diffraction methods

In XRD the Ewald sphere radius is short so the coincidence between
reciprocal lattice points and the sphere is rare.

In order to record a diffraction pattern some reciprocal lattice points must
lie on or pass through the Ewald sphere. This can be achieved in several
different ways:

« Use “white” radiation and a single crystal: Laue method

 Use monochromatic radiation and rotate a single crystal.: Rotation
method and similar techniques

 Use monochromatic radiation and a sample containing crystals with
many different orientations (a powder): Powder diffraction

34



The Laue method (single crystal diffraction)

As in Laue’s original experiment:

» Using “white” Bremsstrahlung radiation from an X-ray tube so that many different
wavelengths are scattered by the sample

« Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal

film

crystal % \‘
\ N
X-rays /8% //

X_.

Record a spot
“pattern” on
the film

Transmission Laue Back reflection Laue
35



Appearance of Laue diffractograms
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(b)
(a) Obtaining a Laue photograph with a stationary crystal. (b) Laue photograph of vesuvian-
ite with point group symmetry 4/m2/m2/m. The photograph was taken along the fourfold rotation axis
(c axis) of vesuvianite, thus revealing fourfold symmetry and mirrors in the arrangement of diffraction
spots. The axial directions, a; and a,, were inked onto the photograph after it had been developed.

36



Ewald construction for Laue method

Back-reflection Transmission
Laue pattern Laue pattern

Incident
beam

Reflecting
sphere

37



Rotating crystal method (single crystal method)

Aligned crystal is rotated around one axis so relps pass through the Ewald
sphere:

* Produces spots lying on lines

Beam direction S \—’/

Rotation photograph of quart
showing spots on layer lines

relps = reciprocal lattice points

38



Ewald construction for rotating crystal method

rotation axis rotation axis of
of crystal and  reciprocal lattice
axis of film

Ewald sphere —

39



Powder diffraction method

Bragg-Brentano-geometry

slit

Receiving

slit Soller

Divergence

Secondary

S Y sl
) é onochromato:
hs'/ . Anti-scatter

Sample~~" slit



Reciprocal lattice of a powder

In a powder we have a large number of

crystals all at different orientations

The reciprocal space no longer has one set of
points, but many sets of points at different
orientations. All of these points lie on the
surface of spheres or shells.

— Reciprocal lattice shells — rel shells
b3

41



Ewald construction for powder

Ewald’s Diffraction
Sphere Cone

-
-

incident
Beam

* In powder diffraction you
generate an infinite number of
randomly oriented, but identical,
reciprocal lattice vectors.

¢ They form circles with their ends
placed on the surface of Ewald’s R*|=|g|=d}, = E 3
sphere. hid

* They produce powder diffraction
cones at different Bragg angles

S IR S STl | |1

Debye
Ring

Detector

42



Ewald construction for powder

Ewald’s
sphere

N

Incident
Beam

Figure 8.2
9 222 113 022

A diffracted cone is formed every time Bragg's law is satisfied. We may use a

photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.

The powder rotates (0) to increase the probably of diffraction and the detector rotates
(20) to intersect the diffracting cones. 13



Electron diffraction (TEM) of single crystal

Fourier transforms again:

Crystal Thin disc

000000000000000 X

l FT l FT
ReCi rocal ...............
p ............... ® . “Relr.od"
SPaCe . e e

ooooooooooooooo Convolution
|

2 lengths scales in
reciprocal space!

———— —
— e — =
—_ e = = —
———— —
—_— — - — —

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 44
larger perpendicular to the disc due to finite and small thickness



Diffraction from a single crystal (TEM)

ZOLZ is the zeroth order Laue zone
FOLZ is the first order Laue zone
SOLZ is the second order Laue zone

The reciprocal space is an artificial, mathematical construction — it
doesn'’t really exist; however, we can see it in single crystal
diffraction.

NN N
al
Q0 0O
S, is the transmitted beam 0
e
S is the diffracted beam e
T
$3¢
e
i
- o>
s TID
C &% > +
SO - -
39,
B
i
A=
. b
111

Ewald sphere
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Geometry of diffraction patterns

+1
. /
grating —_—
/
] 0
%
Fresnel diffraction
(also called near-field)
Fraunhofer diffraction -
(also called far-field)
screen

Fraunhofer diffraction pattern: the rays leave the diffracting object in parallel directions:
« Screen very far from the object
« Converging lenses may be used to make the rays converge in smaller distances



Geometry of diffraction patterns

Point source

of light

Converging lens to give
parallel light at the
diffraction grating

Diffraction
grating Focused pencils
: of light on screen
n= 1
*\ n=-1

Convergingllens to focus
the parallel beams or pencils
of direct and diffracted light
on to screen

A plane wavelront (parallel light) incident upon a grating may be achieved by inserting a lens
(left) with the point source at its focus. Conversely, the parallel *pencils’ of the direct and diffracted light
may be sharply focused onto a screen or photographic plate by inserting another lens

47



Diffraction intensity

What can be said about the intensity of the “reflections” in this diffraction pattern?
48



Scattering by electrons

» Electrons and other charged particles scatter X-rays.

Interaction of a X-ray front with an
isolated electron, which becomes a
new X-ray source, producing the X-
rays waves in a spherical mode.

The spherical waves produced
by two electrons interact with
each other, producing positive
and negative interferences.

49



Scattering by an electron

(45Y5)

(/) N
Sets electron into oscillation , m

Coherent =
(definite phase relationship) \ ( A v ) Scattered beams
0°>70

= The electric field (E) is the main cause for the acceleration of the electron

= The moving particle radiates most strongly in a direction perpendicular to its
motion

= The radiation will be polarized along the direction of its motion



Scattering by an electron

For a wave oscillating in z direction L

The reason we are able to I = Io/ ~ 5 4 >

neglect scattering from the//"x]_’{?,x'c r

protons in the nucleus

51



Scattering by atoms

The atom can be considered to be a collection of electrons. This electron
density scatters radiation.

For radiation to remain coherent the interference between x-rays scattered
from different points within the atom has to be considered.

This leads to a strong angle dependence of the scattering.




Scattering by atoms

electron cloud

photographic
film
53



Scattering by atoms

The scattering power of an atom is given by the atomic form factor (f): ratio of
scattering from the atom to what would be observed from a single electron

25— « Form factor is expressed as a function of (sinB)/A
as the interference depends on both A and the
20— Fo2+ scattering angle

« Form factor is equivalent to the atomic number at
15— low angles, but it drops rapidly at high (sin8)/A

Atomic scattering factors calculated for
atoms and ions with different numbers of
electrons. Note that the single electron of
the hydrogen atom (H) scatters very little
as compared with other elements,
especially with increasing 8. Hydrogen will
therefore be "difficult to see" ..

54



Coherent scattering from crystals

Extinctions from centered cells or different atoms in the unit cell

* Due to crystal periodicity scattering from atoms in one unit cell can be used to determine

the intensities of the diffracted beams
* The positions of the atoms in a unit cell determine the intensities of the reflections.

e Consider diffraction from (001) planes in body centered cells:

These (001) planes diffract?

lc o ol

( Piﬁ‘racﬁon from (001) planes
HE

(b)

(a) If the path length between rays 1 and 2 differs by A, the diffraction angle is satisfied and the
diffracted intensity corresponds to that of 1 atom (in primitive cells we have 1 atom/cell).

(b) For the centred cell, in the same configuration, the path length between rays 1 and 3 will
differ by A/2 and destructive interference in (b) will lead to NO diffracted intensity for (001)
in any body-centered (BC) lattice (I-cubic, I- tetragonal, or I-orthorhombic). 55



Coherent scattering from crystals

Extinctions from centered cells and/or

« Unit Cell (UC) is representative of the crystal structure
 Scattered waves from various atoms in the UC interfere to create the
diffraction pattern

)~
N e

The wave scattered from the middle plane is out of phase with the ones scattered
from top and bottom planes



Change in phase due to atoms in fractional coordinates
(revisiting the structure factor concept)

(h00) plane
Unit Cell




Change in phase due to atoms in fractional coordinates

a
AC=d,,, =—
R :
: MCN :: AC =d,,,
3 RBS :: AB=x
R,
| d(h00)
ia _ X _ X
(h00) plane % AC dh()o %
Unit Cell !
. Note: R, corresponds
5R1R2 = MCN =2d,,sin(0) = A to corne]r atoms and
2 R; to from atoms in
AB AB X ¢= 7 0 acjlditional positions in
Onw, = RBS =~ MCN =~ = ?A the Unit Cell (UC)
h
2w X AeoahX x ,
Prr, = 77 =< ., T fractional coordinate —> x'  |@rr, = 27Thx
h a

Extending to 3D ‘q& =27 (h x +k y’ +/ Z,)-——' Independent of the shape of UC



Revisiting the complex notation

The phase difference between rays scattered from the origin and rays scattered
from an atom at fraction coordinates (xX'v'w’) is:

p=2m(hx'+ky +1z")

« Each atom within the unit cell may produce a scattered wave of different
amplitude.

« The amplitude is given by the form factor f for the atom.

« All of the scattered waves from individual atoms sum together to produce a
wave whose amplitude can be measured (the phase is more difficult to retrieve).

Tool to handle the summation of waves scattered from different atoms:
JLZi The most convenient way to represent the amplitude
N

and phase of a scattered wave is by a vector in the
complex plane.

Wave of amplitude A and phase ¢:
Ae'® = A(cosp + i sing)

Real when ¢ is multiple of 2 «t
1 for even multiples

4+ —9; - -1 for odd multiples 59




Change in phase due to atoms in fractional coordinates

_ / / IN| wave equationin gy~ ip i[2n(h x'+k y'+1 2')]
W—ZJT(hx +k)/ +IZ) complex notation -E = Ae _fe

= [f atom B is different from atom A — the amplitudes must be weighed by the respective
atomic scattering factors (f)

» The resultant amplitude of all the waves scattered by all the atoms in the UC is the
scattering factor for the unit cell

» The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = function (position of the atoms, atomic scattering factors)

F = Structure Factor = Amplitude of wave scattered by all atoms in UC

Amplitude of wave scattered by an electron

L L L Cioalh ok vl o
for n atoms in the UC: Fhkl — Ef] 'V = Ef] el[ n( KA ZJ)]
J=1 j=1

Intensity of the diffracted wave: | [ oc Fh%d

The structure factor is independent of the shape and size of the unit cell !!!



Structure factor calculations
Simple cubic

Atom at (0,0,0) and equivalent positions

enijr _ (_ 1)71
e(odd n)imx _ _1

(evenn)im

e =+1]

e’ +e =2cos(0)

Q. [272(h x'+k y' +] 2'))]
F = f ewj _ f el j jTE 2
J J

F =f ei[ZJt(h'O+k'O+l-O)] =feO =f

F? = f > — Fisindependent of the scattering plane (h k )



Structure factor calculations
C centered orthorhombic

Atom at (0,0,0) & (%, ¥4, 0) and equivalent positions O

F f e —f Zﬂ(hx +ky]+lz)]

. 11
F=f ei[2ﬂ(h°0+k'0+l'0)]+f el[2ﬂ(h-5+k-§+l-o)]

W, o
=f80 +f€ —f[l elil’(h+k)
\

Real

(h + k) evelt

- both odd F=2f—'F2=4f2

e.g. (001), (110), (112); (021), (022), (023)

_ im(h+k)
F =1+ | g
s Mand evep F?=0
k) ody F=0— _

= F is independent of the 1’ index e.g. (100), (101), (102); (031), (032), (033)

Both even o



Structure factor calculations
C centered orthorhombic

Simple Orthorhombic lattice [001] projection

@ = o
= S 2
= — ®

Trace of (210) planes

These (210) planes form a translationally equivalent set:
pass through all lattice points

C-Centred Orthorhombic lattice [001] projection

o : S — s
¢ - [ — 2
® e
= — e : o

To form a translationally equivalent set of planes
vassing through all lattice points) the red set of
( g through all latt ts) th I set o
planes have to be drawn

= |f the blue planes are scattering in phase then on C- centering the red planes will
scatter out of phase (with the blue planes - as they bisect their normal) and hence

the (210) reflection will become extinct

= This analysis is consistent with the extinction rules: (h + k) odd is absent



Structure factor calculations
C centered orthorhombic

Simple Orthorhombic lattice [001] projection C-Centred Orthorhombic lattice [001] projection

B 2 o o 2 <
| O | O
& , | , L ® e , ®
| | . * o
= e o & | & o
Trace of (310) planes No new planes are to be added to form a

These (310) planes form a translationally equivalent set: translationally equivalent set of planes on C-centering

pass through all lattice points

» |n case of the (310) planes no new translationally equivalent planes are added on
lattice centering = this reflection cannot go missing.
= This analysis is consistent with the extinction rules: (h + k) even is present



Structure factor calculations

Body centered orthorhombic
Atom at (0,0,0) & (*%, 2, 72) and equivalent positions

Q. [22(h x';+k y' +1 z'))]
F=f. ewj =f. el j jTE 2
J J

. 1 | 1
F = f ei[2yr(h-0+k- 0+/-0)] + f el[zﬂ(h E+k. 5”5)] 0
, h+k+l U
_ feo . fez[%:r( 5 )] _ f[l +.\"ei7r(h+k+,l/)]

Real

e, F =2 P =4f°
e.g. (110), (200), (211); (220), (022), (310)

F =f[1+ei.77:(h+k+l)]
F=0—"F"=0

e.g. (100), (001), (111); (210), (032), (133)



Structure factor calculations
Face centred cubic

Atom at (0,0,0) & (7%, 72, 0) and equivalent positions
(4, %, 0), (%, 0, %), (0, %, )

F = eiqaj _ f ei[27r( hxi+k y;+l z})]
! ! O
B h+k k+l l+h 7

= e

+e ve 2 te
_ f[l £ ewr(h+k) ) em(hrh)—J\+ Real O/Q Q

_F =f[1+eiir(h+k) +eiir(k+l) +ei7r(l+h)]

bkl > F =4f—+F =16/

e.g. (111), (200), (220), (333), (420)

(h, k, I) mixed > F=0—F?=0
e.g. (100), (211); (210), (032), (033)
Two odd and one even (e.g. 112); two even and one odd (e.g. 122)

y

A 4




Mixed indices 7vo odd and one even (e.g. 112); two even and one odd (e.g. 122)

Mixed indices | CASE h k |
A 0 0 e
B 0 e e

CASE A: [1+€™ 4™ +™1=[1+1-1-1]=0
CASE B: [1+e™? +€™ +™]=[1-1+1-1]=0

(h, k, 1) mixed > F=0—— F2 = () eg (100), (211); (210), (032), (033)

Unmixed indices All odd (e.g. 111); all even (e.g. 222)

Unmixed indices | CASE h k
A 0 0
B e e

CASE A: [14+€™9 +e™ +e™ 9 =[1+1+1+1]=4
CASE B: [1+€™9 +e™ +™ ] =[1+1+1+1]=4

(h,k,l)unmixed>F — 4f_.F2 =16f2

e.g. (111), (200), (220), (333), (420)




Structure factor calculations

NaCl ~Na*at(0,0,0) + Face Centering Translations — (%, 72, 0), (%, 0, %), (0, %, %)
Face Centered Cubic ¢J-at (1, 0,0)+ FCT — (0, %, 0), (0, 0, %), (%, %, %)
B h+k k+1 [+h 7
- i[2a(—)] i[2a(—)] i[27(—)]
F=f e te > +e 2 +e 7 |+
Na
- h k / hek+l
22D 2] 22 il2a( +2+ )
fo-|e +e +e +e
_ 4 Clg

Q
qo;;

F =fNa+ [1+eiﬂ(h+k) +ein(k+l) +eiﬂ(l+h)]+

fC ) [eiﬂ(h) + eiﬂ’(k) + ei:r(l) + ei:r(h+k+l)]

e

F =fa+ [1+ei7r(h+k) +ei:t(k+l) +ei7t(l+h)]+ 0

fc— eiﬂ(h+k+l)[eiﬂ(—k—l) _I_eiﬂ(—l—h) +eiﬂ(—h—k) +1]

i (hk+]) i (h+k) i (k+1) (1+h)
F =[fNa+ + o elﬂ +K+ ][1+elﬂf + +elﬂf + +elﬂ’ + ]



F = [f . + - ei:z(h+k+l),\]\[’1—+ ei:r(h+k) + ei:r(k+l) e

F = factorl.factor?

Mixed indices

CASEA: factor2 =[1+e™ +e™” + ™) =[1+1-1-1]=0
CASEB: factor2 =[1+e™” +e™ + ™ ]=[1-1+1-1]=0

Zero for mixed indices

Mixed indices | CASE h k |
A 0 0 e
B 0 e c

(h, k, 1) mixed > F=0—— F2 = () eg (100), (211); (210), (032), (033)




Unmixed indices Unmixed indices | CASE h
A 0
B e

CASEA : factor2 =[1+e™ +e™ + ™ =[1+1+1+1]=4

CASEB: factor2 =[1+¢e™ +e™ + ™1 =[1+1+1+1]=4

(h, k, 1) unmixed > F = 4[fNa+ + - ei:r(h+k+l)]

e.g. (111), (222); (133), (244)
F=A4f, +f,l—1th+k+Diseven = F> =16[f, .+ f T

e.g. (222),(244)

F=4f. —f, = 1@+k+Disodd —F> =16[f, . - f. T’
e.g. (111), (133)



Extinctions due to centering and/or
different atomic form factors

Crystal Type Bravais Lattice | Reflections Present Reflections Absent

Simple Primitive, P Any h,k,1 None

Body-centered Body centered, I h+k+[=even h+k+[= odd

Face-centered Face-centered, F h,k,l unmixed h,k,l mixed

NaCl FCC h,k,l unmixed h,k,l mixed

Zincblende FCC Same as FCC, but if all even h,k,l mixed and if all even
and h+k+I[#4N then absent and h+k+/#4N then absent

Base-centered Base-centered h,k both even or both odd h,k mixed

Hexagonal close-packed | Hexagonal h+2k=3N with [ even h+2k=3N with [ odd

h+2k=3N+1 with / odd
h+2k=3N+1 with [ even
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Scattering by a unit cell
Generic case? Consult the Tables of Crystallography

CONTINUED No. 14 P2, /c

Generators selected  (1): #(1,0,0); ¢(0,1.0); #(0,0,1); (2); (3

Positions

Multiplicity, Coordinates
Wyckof! letier,

Sile symmelry

Reflection conditions

General:

4 ¢ | () x,yz2 () R y++,54+14 (3) 1,3, 4)x.§=42+4
Special: as above, plus
2 d |1 £.0,- -0 Rkl : k+1=2n
2 ¢ |1 0,0, : 0,:.0 hid : k+1=2n
2 b 1 :,0,0 hikl @ k+1=2n
2 a |1 0,0,0 0,33 hid : k+1=2n

Symmetry of special projections
Along 001] p2gm Along (100 p2gg Along 010] p2
a=a b'=b a=>b b =c a=.c b'=a 72
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0



Reciprocal space and intensities

The scattered intensity distribution in
reciprocal space is sometimes represented
by weighting the points of a reciprocal

lattice drawing:

« Larger points indicate higher intensity

e« Crosses indicate absences or

extinctions

b; — b,
1 - + + h,k,l mixed
440 e unmixed, (h+k+I) even
® unmixed, (h+k+/) odd
-1
0.25 A
- = o - + o -
T330 331 333
0 - + o - o -
220 222 224
T - ° - o - +
110 111 113
Section of weighted reciprocal space for NaCl
% ® % ®
000 001 002 003 004

73



Reciprocal space of a powder with
iIntensities L

330, 1_14\31‘ _____ e = = unmixed, (h+k+I) even

23—t el

(x)4 ..'.:'b.
-~ . .

* Rel shells for powders

» Representation of the scattered
intensity for a powder in
reciprocal space

A radial profile is FZ]
similar to a XRD

diffraction pattern

Section of weighted reciprocal space
for a NaCl powder showing the

reciprocal lattice shells (rel shells)



