
Crystallography	basics	
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Family	of	planes	
(hkl)	-	Family	of	plane:	parallel	planes	and	equally	spaced.	The	indices	correspond	
to	the	plane	closer	to	the	origin	which	intersects	the	cell	at	a/h,	b/k	and	c/l.	

Miller indices describe the orientation and spacing of a family of planes. 
 
The spacing between adjacent planes of a family is referred to as the “d-
spacing”. 

Note all (100) planes 
are members of the 
(300) family	

Three different families 
o f p l a n e s : T h e d -
spacing of (300) planes 
is one third of the (100) 
spacing 
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Planes	(and	direcBons)	of	a	form	
	
{hkl}	-	Planes	of	a	form:	equivalent	laEce	planes	related	by	
symmetry.	
	
For	the	cubic	system	all	the	planes	(100),	(010),	(001),	(100),	
(010)	and	(001)	belong	to	the	form	{100}.		
	
For	a	 tetragonal	material	 a=b≠c	 the	 form	 {100}	would	only	
include	(100),	(010),	(100),	and	(010).	
	
<uvw>	 -	DirecBons	 of	 a	 form:	 equivalent	 laEce	 direcBons	
related	by	symmetry	
	

- - 

- 
- - 
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Planes	of	a	zone	

The	 shaded	 planes	 in	 the	 cubic	 laEce	 are	
planes	of	the	zone	[001].		
	
The	planes	of	zone	are	not	all	of	the	same	
form.	
	
Any	direcBon	is	a	zone	axis!	
	
	

Planes	of	a	zone	-	The	planes	of	a	zone	axis	[uvw]	saBsfy	the	Weiss	Zone	Law:			
	

hu	+	kv	+lw	=	0	
	
This	law	is	valid	for	all	laEces,	Cartesian,	or	not.		
	
In	cubic	systems	[hkl]	is	normal	to	the	set	of	planes	(hkl)	and	the	Weiss	zone	law	
can	be	expressed	as	the	scalar	(dot)	product	of	[uvw]	and	the	plane	normal	[hkl].	
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Interplanar	distances	(d)	formulae	

Intercepts of a lattice plane (hkl) on 
the unit cell vectors a, b, c. As there is 
another plane of the same family 
passing through O the interplanar 
distance is just: ON=dhkl 

ONA=90° 

For orthogonal axis: cos2α+cos2β+cos2γ=1 
 
Hence: (h/a)2.dhkl

2+ (k/b)2.dhkl
2

 + (l/c)2.dhkl
2 =1 

 
 

As a result: (h/a)2 + (k/b)2
 + (l/c)2  = 1/dhkl
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AON=α

BON=β è 

cos α = dhkl /(a/h)

cos γ = dhkl /(l/c)

cos β = dhkl /(b/k)

CON=γ
α

γ
β

C 
ONB=90° 

In the case of orthogonal systems determination of interplanar distances is simple. 

ONC=90° 

B 
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Interplanar	distances	(d)	formulae	
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•  A	symmetry	element	(or	operator)	when	applied	to	an	object	
leaves	that	object	unchanged	

•  An	object	has	translaBonal	symmetry	if	it	looks	the	same	aXer	
a	 parBcular	 translaBon	 operaBon	 (an	 example	 is	 wallpaper,	
which	 has	 a	 repeaBng	 paYern;	 if	 you	 slide	 it	 by	 the	 right	
amount	it	looks	the	same	as	before).		

•  A	 point	 symmetry	 operaBon	 is	 specified	 with	 respect	 to	 a	
point	in	space	which	does	not	move	during	the	operaBon	(eg.	
inversion,	rotaBon,	reflecBon,	improper	rotaBon)	

8 

Symmetry	operaBons	



TranslaBonal	symmetry	operaBons	

La=ce	-	Infinite	array	of	points	in	space,	in	which	each	point	has	idenBcal	
surroundings.		
	
The	 simplest	 way	 to	 generate	 such	 na	 array	 is	 by	 using	 translaBon	
invariance	(tranlaBonal	symmetry	operaBon).	
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Unit	cell	
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Unit	cell	choice	
•  There is always more than one possible choice of unit cell 

•  By convention the unit cell is usually chosen so that it is as small 
as possible while reflecting the full symmetry of the lattice 

•  If the unit cell contains only one lattice point is said to be primitive 

•  If it contains more than one lattice point it is centered 
 

Face centered cubic 
Primitive  
 
 

Body centred cubic 
Primitive  

Why? 
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Why	does	crystallography	need	symmetry?	

The symmetry of a crystal can be used to 
reduce the number of unique atom 
positions we have to specify 
 

Crystal structure of calcite, a 
form of calcium carbonate 
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Point	symmetry	operaBons	
Symmetry elements:  
(a)  Mirror plane, shown as dashed 

line, in elevation and plan.  
(b)   Twofold axis, lying along broken 

l ine in e levat ion, passing 
perpendicularly through clasped 
hands in plan.  

(c)  Combination of twofold axis 
with mirror planes, the position 
of the symmetry elements given 
only in plan.  

(d)   Threefold axis, shown in plan 
only.  

(e)  Centre of symmetry (in centre 
of clasped hands) 

(f)   Fourfold inversion axis, in 
elevation and plan, running 
along the dashed line and 
through the centre of the clasped 
h a n d s ( c o m p o u n d p o i n t 
symmetry operation) 
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(Compound	point	symmetry	operaBons)	
Compound operations: Combinations of a rotation with a reflection or inversion. Inversion 
takes a locus on points.  

Simple rotations are proper; that is, they generate a sequence of objects with the same 
handedness. Improper rotations (roto-inversions) produce objects of alternating 
handedness.  

 

Roto-inversions involve rotation and inversion. The overbar is used to designate roto-
inversion. The figure below shows the operation of a 3-fold roto-inversion axis. 
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Point	symmetry	operaBons	
Symmetry e lements us ing 
conventional symbols. The right-
hand group of (a) is drawn here 
in a different orientation, and the 
left-hand groups of (c) and (f) are 
omitted. Symbols + and - 
represent equal distances above 
and below the plane of the paper: 
o p e n c i r c l e s r e p r e s e n t 
asymmetric units of one hand, 
and circles with commas their 
enantiomorphs. (a) Mirror plane 
(m), perpendicular to (left) and in 
the plane of the paper. (b) 
Twofold axis (2) in the plane of 
the paper (left) and perpendicular 
to it (right). (c) Combination of 
twofold axes and mirror planes. 
Note that the presence of any 
two of these elements creates 
the third. (d) Three fold axis (3). 
(e) Centre of symmetry (1). (f) 
Fourfold inversion axis (   ). 

In written text mirror planes are given the symbol m, while 
axes and the corresponding inversion axes are referred to 
as                                           . The symbol 1 (for a onefold 
axis) means no symmetry at all, while the corresponding 
inversion axis (   ) is equivalent, as already remarked, to a 
centre of symmetry. 
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Determinant of matrix 
  
D = (cosθ)2 + (sinθ)2= 1.0 

  
θ = 180° (two-fold): 

t = 0*x+0*y+1*z 

(x,y,z) è (-x, -y, z) 

(x,y,z) è (x, y, -z) 

(x,y,z) è (-x, -y, -z) 

D = -1 

D = -1 

D = -1 

 

}  
Improper 
operations  
(change of hand) 



RotaBons	compaBble	with	a	laEce	
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Assume	 two	 laEce	 points,	 A	 and	 B,	 and	 that	 the	
minimum	 laEce	 spacing	 is	 a	 (unit	 translaBon).	 B	
generates	a	new	point	A'	which	is	rotated	from	A	by	a	
generic	 angle	 α.	 Applying	 the	 same	 rotaBonal	
operaBon	R	at	A’	generates	a	new	point	B’.	If	A'	and	B’	
are	both	laEce	points	then	R	is	a	symmetry	operaBon.	
Due	to	the	(translaBonal)	periodicity	of	the	crystal,	the	
new	vector	ha,	which	connects	B	and	B’,	must	be	an	
integral	mulBple	of	a	

AA’ = a 
BB’ = ha = a + 2x 
x = a.sin(θ) = - a. cos(θ+π/2) = - a.cos(α) 
ha = a – 2a.cos(α) 
ha - a = - 2a.cos(α) 
(h-1)/2= - cosα
For h integer: h = -1,0,1,2,3 
Hence: 

ha 

a 

a a 

A A’ 

B’ B 

α α

x x 

θ θ



Only	 2,	 3,	 4	 and	 6-fold	
rotaBons	 can	 produce	
space	filling	paYerns		
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RotaBons	compaBble	with	a	laEce	
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Point	symmetry	operaBons	
compaBble	with	a	laEce	
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Crystal	systems	
Crystals are axiomatically divided in 7 systems according to their symmetry 

Identity	
1	*	2-fold	
3	*	2-fold	
1	*	4-fold	
1	*	3-fold	
1	*	6-fold	
4	*	3-fold	

NB: Axiomatically = self-evident 
 



Symmetry	operaBons	compaBble	
with	the	triclinic	system	

1
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Illustrative 2D example (a planar lattice…) 

An array of repeating motifs: neither the motif nor the lattice 
contains any elements of symmetry other than 1 or  

Only	translaBonal	symmetry,	no	rotaBonal	symmetry	
other	than	1	or		

1



Symmetry	operaBons	compaBble	
with	the	cubic	system	

1
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Crystal	systems	
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• 	What	happens	when	other	points	are	added	to	each	of	the	previous	laEces	while	
maintaining	 the	 rotaBon	 symmetry	 (added	 at	 centered	 posiBons,	 centering	
involves	only	translaBon	operaBons	=	centering	operators)	

• 	In	each	situaBon	is	it	sBll	a	laEce?	Is	it	a	new	laEce?	

	

Centering	

The	locaBon	of	the	addiBonal	laEce	
points	within	the	unit	cell	is	described	
by	a	set	of	centering	operators:	
	
• 	Body	centered	(I)	has	addiBonal	
laEce	point	at	(1⁄2,1⁄2,1⁄2)	

• 	Face	centered	(F)	has	addiBonal	
laEce	points	at	(0,1⁄2,1⁄2),	
(1⁄2,0,1⁄2),	and	(1⁄2,1⁄2,0)		

• 	Side	centered	(C)	has	an	addiBonal	
laEce	point	at	(1⁄2,1⁄2,0)	
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Centering	
Not	all	 centering	possibiliBes	occur	 for	each	of	 the	seven	crystal	 systems:	
Only	14	unique	combinaBons	(Bravais	laEces):	
	
• 	 Some	 centering	 types	 are	 not	 allowed	 because	 they	 would	 lower	 the	
symmetry	 of	 the	 unit	 cell	 (e.g.	 side	 centered	 cubic	 is	 not	 possible	 as	 this	
would	destroy	 the	 three-fold	symmetry	 that	 is	an	essenBal	component	of	
cubic	symmetry)	

•  	 Some	 centering	 types	 are	 redundant	
(e.g.	C-centered	tetragonal	can	always	be	
described	 using	 a	 smaller	 primiBve	
tetragonal	cell,	see	figure)	
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Bravais	laEces	

 
A Bravais lattice is an infinite array of discrete points with identical environment: 
seven crystal systems + four lattice centering types = 14 Bravais lattices 
 



Point symmetry groups 
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A	 set	 of	 symmetry	 operaBons	 that	 leave	 an	 object	 invariant.	
Generically,	there	are	infinite	point	symmetry	groups.	However,	
not	all	can	be	combined	with	a	laEce.		
	
In	 crystallography	 we	 are	 interested	 in	 objects	 that	 can	 be	
combined	 with	 the	 laEces:	 there	 are	 only	 32	 point	 groups	
compaBble	with	periodicity	in	3-D.	
	
	
	



Crystallographic point symmetry groups 
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•  A	crystallographic	point	group	is	a	set	of	symmetry	operaGons,	like	rotaBons	or	
reflecBons,	 that	 leave	a	central	point	fixed	while	moving	other	direcBons	and	
faces	of	the	crystal	to	the	posiBons	of	features	of	the	same	kind.		

•  For	a	 true	crystal	 the	group	must	also	be	consistent	with	maintenance	of	 the	
three-dimensional	translaBonal	symmetry	that	defines	crystallinity.		

•  The	macroscopic	 properBes	 of	 a	 crystal	 would	 look	 exactly	 the	 same	 before	
and	 aXer	 any	 of	 the	 operaBons	 in	 its	 point	 group.	 In	 the	 classificaBon	 of	
crystals,	each	point	group	is	also	known	as	a	crystal	class.	

•  There	 are	 infinitely	 many	 three-dimensional	 point	 groups;	 However,	 the	
crystallographic	 restricBon	 of	 the	 infinite	 families	 of	 general	 point	 groups	
results	in	there	being	only	32	crystallographic	point	groups.		

	

	

	

	



The	32	point	groups	in	stereographic	projecBon	

29 

Triclinic system 
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Point	Groups	in	Stereographic	projecBon	
Monoclinic System 
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Point	Groups	in	Stereographic	projecBon	

Orthorhombic System 

2/m2/m2/m=mmm 2mm=mm2 
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Point	Groups	in	Stereographic	projecBon	
Trigonal System 
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Trigonal System 
Point	Groups	in	Stereographic	projecBon	

=   m 
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Point	Groups	in	Stereographic	projecBon	
Tetragonal System 
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Point	Groups	in	Stereographic	projecBon	
Tetragonal System 
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Point	Groups	in	Stereographic	projecBon	
Tetragonal System 

4/m2/m2/m=4/mmm 
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Point	Groups	in	Stereographic	projecBon	
Hexagonal System 



38 

Point	Groups	in	Stereographic	projecBon	
Hexagonal System 

6/m2/m2/m=6/mmm 
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Point	Groups	in	Stereographic	projecBon	
Hexagonal System 
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Point	Groups	in	Stereographic	projecBon	
Cubic System 

=m3 
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Point	Groups	in	Stereographic	projecBon	
Cubic System 

=m3m 



In	short...	

32	point	groups	
??	



Space	groups	
	
Periodic	solids	have:	
-	laEce	symmetry	(purely	translaBonal)	
-	point	symmetry	(no	translaBonal	component)	
-	possibly	glide	and/or	screw	axes	(partly	translaBonal)	
	
Together	 all	 the	 symmtery	 operaBons	
make	up	the	space	group		
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Glide	planes	
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Combined reflections and translations (the translation is not a pure translational 
symmetry vector): 

Step 1: reflect 
(a temporary position) 

Step 2: translate 

repeat 

A stylised aerial view of a well coached 'eight', showing a translational symmetry 
operation: each rower is related to the next by a combination of translation and 
reflection. 

Change of hand… 



Glide	planes	
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A glide plane. Translation from left to right across the page is 
accompanied by reflection through the plane of the paper. 
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Glide	operaBons	



Screw	axes	
Combined rotations and translations (the translation is not a pure translational 
symmetry vector). The general symbol for a screw axis is Nn, where N is the order 
(2, 3, 4 or 6) of the axis, and n /N the translation distance expressed as a fraction of 
the repeat unit.  

47 

(a) A two-fold screw axis, 21, shown perpendicular to the plane of the paper 
(left) and in the plane of the paper (right). Each half revolution is accompanied 
by a translation through half the repeat distance. (b) A fourfold screw axis, 41. 
(c)  
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LimitaBons	on	combinaBon	of	
symmetry	elements	

•  Not all symmetry elements can be combined in the 
crystallographic point groups (only 32 point groups are 
compatible with periodicity in 3-D) 

•  Furthermore not all of the 32 point groups can be 
combined will all the lattices. For 3-D lattices there are: 

 - 14 Bravais lattices 
 - 32 point groups  
 - but only 230 space groups 
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InterpretaBon	of	space	group	symbols	
Lattice centering




•  Primitive (P)


•  All space group symbols start with a letter corresponding to the 
lattice centering, followed by a collection of symbols for symmetry 
operations in the three lattice directions. 

•  There are sometimes short notations for space groups symbols: 
•  P121 is usually written as P2  

 - primitive cell  
 - two-fold rotation along the b axis 

 

•  P212121 (cannot be abbreviated) 
 - primitive cell  
 -  21 screw along each axis, orthorhombic 

 

•  Cmma (full symbol: C2/m2/m2/a) 
 - C-centered cell  
 - mirror plane perpendicular to a  
 - mirror plane perpendicular to b  
 - glide plane perpendicular to c 
 - other implied symmetry elements (e.g. 2-fold rotations) 

 

•  Pnma 
 - primitive cell 
 - n glide plane perpendicular to a 
 - mirror plane perpendicular to b 
 - glide plane perpendicular to c 
 - other implied elements 
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InterpretaBon	of	space	group	symbols	
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InterpretaBon	of	space	group	symbols	



53 

InterpretaBon	of	space	group	symbols	



P1,	equivalent	posiBons:		(1)	x,	y,	z	
	
x,y,z	are	fracBons	of	the	length	along	each	unit	cell	edge	(values	
ranging	from	0.0	to	1.0)	
	 54 

InterpretaBon	of	space	group	symbols	



P21,	equivalent	posiBons:	(1)	x,	y,	z;	(2)	-x,	y+1/2,	-z	
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InterpretaBon	of	space	group	symbols	
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Wyckoff	posiBons	
•  A	 useful	 piece	 of	 informaBon	 contained	 in	 the	 InternaBonal	 Tables	 are	 the	

Wyckoff	posiBons	that	tell	us	where	the	atoms	in	a	crystal	can	be	found.	

•  The	 leJer	 is	 simply	 a	 label	 and	 has	 no	 physical	meaning.	 They	 are	 assigned	
alphabeBcally	from	the	boYom	up.		

•  The	mulGplicity	 tells	 us	 how	many	 atoms	 are	 generated	 by	 symmetry	 if	 we	
place	a	single	atom	at	that	posiBon.	

•  The	symmetry	 tells	us	what	 symmetry	elements	 the	atom	resides	upon.	The	
uppermost	 Wyckoff	 posiBon,	 corresponding	 to	 an	 atom	 at	 an	 arbitrary	
posiGon	never	resides	upon	any	symmetry	elements.		This	Wyckoff	posiBon	is	
called	the	general	posiBon.		The	coordinates	column	tells	us	the	coordinates	of	
all	of	the	symmetry	related	atoms			

•  All	 of	 the	 remaining	 Wyckoff	 posiBons	 are	 called	 special	 posiGons.	 They	
correspond	to	atoms	which	lie	upon	one	of	more	symmetry	elements,	because	
of	 this	 they	 always	 have	 a	 smaller	 mulBplicity	 than	 the	 general	 posiBon.		
Furthermore,	 one	 or	 more	 of	 their	 fracBonal	 coordinates	 must	 be	 fixed	
otherwise	the	atom	would	no	longer	lie	on	the	symmetry	element.	 59 



Asymmetric	Unit		

•  DefiniGon:	smallest	part	of	the	unit		cell	which	will	
generate	the	whole	cell	if	all	symmetry	operators	of	
the	space	groups	are	applied	to	it.	

•  Knowing	the	asymmetric	unit	and	the	symmetry	of	
the	structure	allows	generaBng	the	unit	cell.	
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Describing	crystals	structures	
	
-	Full	symmetry	of	a	crystal	is	described	by	its	space	group	
	
-	 The	 locaBon	 of	 all	 atoms	 in	 a	 crystalline	 solid	 can	 be	
specified	by	a	combinaBon	of	all	 the	 symmetry	elements	
and	 the	 fracBonal	 coordinates	 for	 a	 unique	 set	 of	 atoms	
(asymmetric	unit)	
	
We	specify	the	atomic	coordinates	for	a	small	number	of	atoms.	Then	we	apply	all	
the	 symmetry	 elements	 including	 the	 laEce	 symmetry	 to	 build	 up	 the	 full	 3D	
structure.	
	
N.B.:		Each	laEce	point	may	be	associated	with	many	atoms		
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Examples


Asymmetric units…


(225)
 (221)
- - 
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Examples



Ta adopts the Ta-type structure with space group Im3m 
(229) with atoms at 2a (0,0,0) and a=0.33 nm.



Ti adopts the Mg-type structure with space group p63/mmc 
(194) with atoms at 2c (1/3,2/3,1/4) and a=0.295 nm and 
c=0,4686 nm.



Si adopts the diamond-type structure with space group 
Fd3m (227) with atoms at (16c) 1/8,1/8,1/8 and a=0.543 nm.



FeO adopts the NaCl-type structure with O in Cl sites (only 
lattice parameter missing…).













