
Diffrac'on	basics	
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Diffraction 

Diffraction refers to the phenomena exhibited by radiation 
when it interacts with barriers and obstacles (scattering). 



Interference	of	waves	

Construc've	 interference:	 mutual	
reinforcement	of	the	sca9ered	rays	

-	 Difference	 in	 distances	 travelled	 by	
various	parallel	beams	are	a	mul'ple	of	
wavelength:	Δd	=	n*λ	

	
Destruc've	 interference:	 sca9ered	
beams	 are	 out	 of	 phase	 and	 cancel	
each	other.	

-  Difference	in	distances	travelled	by	
various	parallel	beams	are	a	mul'ple	
of	wavelength:	Δd	=	n*λ/2	
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Diffrac'on	is	construc've	interference	of	light	rays	or	other	types	of	
radia'on	

So? 



Interference vs diffraction 
 

Feynman “Lectures on Physics” Ch. 30. Diffraction 
 
This	chapter	is	a	direct	con'nua'on	of	the	previous	one,	although	the	name	has	
been	 changed	 from	 Interference	 to	 Diffrac'on.	No	 one	 has	 ever	 been	 able	 to	
define	 the	 difference	 between	 interference	 and	 diffrac5on	 sa5sfactorily.	 It	 is	
just	 a	 ques'on	of	 usage,	 and	 there	 is	 no	 specific,	 important	 physical	 difference	
between	them.	The	best	we	can	do,	roughly	speaking,	 is	to	say	that	when	there	
are	 only	 a	 few	 sources,	 say	 two,	 interfering,	 then	 the	 result	 is	 usually	 called	
interference,	 but	 if	 there	 is	 a	 large	 number	 of	 them,	 it	 seems	 that	 the	 word	
diffrac5on	 is	 more	 o<en	 used.	 So,	 we	 shall	 not	 worry	 about	 whether	 it	 is	
interference	 or	 diffrac'on,	 but	 con'nue	 directly	 from	where	 we	 leK	 off	 in	 the	
middle	of	the	subject	in	the	last	chapter.	
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Huygen’s	principle	
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Every point on a propagating wavefront serves as the source of spherical 
secondary wavelets, such that the wavefront at a later time is the envelope 
of these wavefronts.  
 

The image shows a wavefront, as well as a number of 
spherical secondary wavelets, which after a time t, 
have propagated out to a radius of  vt. The envelop of 
all these wavelets is then asserted to correspond to the 
advanced primary wave.   

Propagation of a wavefront according to Huygens’s 
principle: consistent with diffraction 

 
The wavelets advance with a speed and frequency 
equal to those of the primary wave at each point in 
space. 



Diffrac'on	geometry	
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What can be said about the symmetry of this diffraction pattern?  
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Interference	 is	 construc've	 only	 if	 the	
radia'on	is	coherent.	
	
	
	

A	 diffrac'on	pa9ern	 results	 from	diffrac'on	
(sca9ering)	 followed	 by	 interference	
between	the	diffracted	(sca9ered)	beams.		
	

	
Diagram	 of	 a	 distant	 light	 source	 emiQng	
coherent	 wavetrains.	 When	 one	 of	 these	
strikes	 a	 screen	with	 adjacent	 slits,	 the	 slits	
act	as	secondary	sources	of	light	according	to	
Huygen’s	 principle,	 which	 then	 meet	 and	
interfere.		

Geometry	of	diffrac'on	pa9erns		
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Geometry	of	diffrac'on	pa9erns		



9 

Diffrac'on	at	a	wide	slit	(aperture)	
Two	slits 
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Slit	width (a) several times the wavelength (λ): 
 Locate the first minima 

 

Diffrac'on	at	a	wide	slit	(aperture)	
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Diffrac'on	at	a	wide	slit	(aperture)	
Slit	width (a) several times the wavelength (λ): 

 Locate the first minima 
 

Virtual point sources 
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Geometry	of	diffrac'on	pa9erns		

Condi'on	for	maxima	in	the	

interference	plane:	
	

mλ =	d	sinθ 

Reciprocal relation between θ and d… 

with	m	=	0,	±1,	±2,	…		
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Side	view	of	a	diffrac'on	gra'ng.	
The	 slit	 separa'on	 is	 d	 and	 the	
path	difference	between	adjacent	
slits	is	d	sinθ.

m is the order of diffraction. 



Geometry	of	diffrac'on	pa9erns	
Observa'ons	of	diffrac'on	of	light	using	a	laser	as	a	coherent	light	source.	As	the	aperture	size	
decreases	the	diameter	of	the	diffracted	disk	and	rings	increases	(reciprocal	rela'on...)		

(a) (c) (b) (e) (d) 
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Reciprocal	laQce	

		
	
Any	point	of	the	reciprocal	laQce	can	be	specified	by	a	vector:	dhkl*	=	ha*	+	kb*	+	lc*		
This	vector	is	perpendicular	to	the	plane	in	real	space	with	Miller	indices	(hkl).	The	length	
of	this	vector	|dhkl*	|=	1/dhkl	where	dhkl	is	the	interplanar	spacing	in	real	space.		

Designations: 
•  Real space 
•  Direct space 

Designations: 
•  Reciprocal space 
•  Fourier space  
•  K-space  
•  Frequency space 
     (spatial not temporal) 

The	reciprocal	laQce	is	a	set	of	imaginary	points	so	that	the	direc'on	of	a	vector	from	one	
point	to	another	coincides	with	the	normal	to	a	family	of	real	space	planes.	The	absolute	
value	of	the	vector	is	given	by	the	reciprocal	of	the	real	interplanar	distance.	

A	 whole	 family	 of	
planes	 in	 real	 space	
is	 represented	 by	 a	
s i n g l e	 p o i n t	 i n	
reciprocal	space 
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Construction of reciprocal lattice 

1.  Identify the basic planes in the direct space lattice, i.e. (001), (010), 
and (001). 

2.  Draw normals to these planes from the origin. 

3.  Mark distances from the origin along these normals proportional to the 
inverse of the distance from the origin to the direct space planes. 

Notes	on	reciprocal	laQce	
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•  The	points	of	 the	direct	and	reciprocal	 laQces	have	the	same	meaning	as	the	points	

defined	in	geometry:		mathema'cal	en''es.		

•  The	direct-space	 laEce	can	be	used	 to	 indicate	 the	 loca'on	of	 real	objects	 (atoms)	
and	has	dimensions	of	m,	whereas	the	reciprocal	 laEce	can	be	used	to	 indicate	the	
posi'on	of	diffracted	light/radia5on	spots	and	has	dimensions	of	m-1.	

•  Reciprocal	 space	 is	 also	 called	 Fourier	 space,	 k-space	 (2π/λ)	 or	 frequency	 space,	 in	
contrast	to	real	space	or	direct	space.	

•  The	 diffrac'on	 pa9erns	 are	 visual	 representa'ons	 or	 images	 of	 the	 object	 (crystal)	
Fourier	transforms.	

•  The	 results	 of	 diffrac'on	 experiments	 can	 be	 easily	 interpreted	 using	 the	 reciprocal	
laQce.	 Useful	 informa'on	 about	 the	 internal	 structure	 of	 crystalline	ma9er	 can	 be	
obtained	through	the	Ewald	construc5on	in	reciprocal	space	(see	below).	

	
•  The	 geometry	of	 the	diffrac'on	pa9ern	 is	 determined	by	 the	 crystal	 laQce,	 but	 the	

diffracted	intensity	at	each	reciprocal	point	is	determined	by	the	mo've	or	base.	
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Notes	on	reciprocal	laQce	



	
The	reciprocal	laQce	is	related	to	the	real	space	laQce	by:	
	
	
	
	
																						
	
•  a,	b,	 c	 are	 the	 vectors	 of	 the	 real	 space	 laQce	 and	a*,	b*,	 c*	 are	 the	

vectors	of	the	reciprocal	laQce.	

•  Note		 												(unit	cell	volume)	

•  These	 rela'ons	are	 symmetrical	 and	 show	 that	 the	 reciprocal	 laQce	of	
the	reciprocal	laQce	is	the	direct	laQce.	
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a∗ = b× c
a.(b× c)

b∗ = c×a
a.(b× c)

c∗ = a×b
a.(b× c)

V = a.(b∗ × c∗)

Notes	on	reciprocal	laQce	



	
•  The	points	of	 the	direct	and	reciprocal	 laQces	have	the	same	meaning	as	the	points	

defined	in	geometry:		mathema'cal	en''es.		

•  The	direct-space	 laEce	can	be	used	 to	 indicate	 the	 loca'on	of	 real	objects	 (atoms)	
and	has	dimensions	of	m,	whereas	the	reciprocal	 laEce	can	be	used	to	 indicate	the	
posi'on	of	diffracted	light	spots	and	has	dimensions	of	m-1.	

•  Reciprocal	 space	 is	 also	 called	 Fourier	 space,	 k-space	 (2π/λ)	 or	 frequency	 space,	 in	
contrast	to	real	space	or	direct	space.	

•  The	 diffrac'on	 pa9erns	 are	 visual	 representa'ons	 or	 images	 of	 the	 object	 (Crystal)	
Fourier	transforms.	

•  The	 results	 of	 diffrac'on	 experiments	 can	 be	 easily	 interpreted	 using	 the	 reciprocal	
laQce.	 Useful	 informa'on	 about	 the	 internal	 structure	 of	 crystalline	ma9er	 can	 be	
obtained	through	the	Ewald	construc5on	in	reciprocal	space	(see	below).	

	
•  The	 geometry	of	 the	diffrac'on	pa9ern	 is	 determined	by	 the	 crystal	 laQce,	 but	 the	

diffracted	intensity	at	each	reciprocal	point	is	determined	by	the	mo've	or	base.	
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Notes	on	reciprocal	laQcec	



	

•  One	set	of	closely-spaced	horizontal	lines	gives	rise	
to	a	widely-spaced	ver'cal	row	of	points.		

•  A	 second	 set	 of	 more	 widely-space	 diagonal	 lines	
gives	 rise	 to	 a	 more	 closely-spaced	 row	 of	 points	
perpendicular	to	these	lines.	

•  If	one	mul'plies	one	set	of	lines	by	another,	this	will	
give	 an	 array	 of	 points	 at	 the	 intersec'ons	 of	 the	
lines	in	the	bo9om	part	of	the	figure.		

•  The	Fourier	transform	of	this	laQce	of	points,	which	
was	obtained	by	mul'plying	two	sets	of	lines,	is	the	
convolu'on	 of	 the	 two	 individual	 transforms	 (i.e.	
rows	 of	 points)	 ,	 which	 generates	 a	 reciprocal	
laQce.	

		
	
•  Frequency	=	1/period	=	1/dhkl		
						(in	this	context	the	period	refers	to	interplanar	distance,	not	'me)	
•  K	are	the	diffrac'on	vectors	
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Op'cal	Fourier	transform	



Op'cal	Fourier	transform	
Both	spaces	are	periodic	and	with	the	same	symmetry,	so:	
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Euler’s formula 

eiφ = cosφ + i sinφ  

Amplitude  
(measure of intensity at each point in recirpocal space)) 

Spatial frequency 
(position in the diffraction pattern) 

Summations of sinudoisal functions! 



Bragg's Interpretation 
 

 

 

W. H. Bragg examined Laue's photographs and noticed that the spots were 
elongated.  He surmised that this elongation arose from specular reflection of the 
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in 
phase if the path difference between them equals an integer multiple of the 
wavelength: 

BC = d sinθ CD = d sinθ
BC +CD =  path difference = nλ

nλ = 2d sinθ 21 



Vectorial form of Bragg’s law 
(Ewald or reflecting sphere) 

Postulate:	
•  a	sphere	of	radius	1/λ,
•  intersec'ng	the	origin	of	the	reciprocal	laQce,		
•  with	 the	 star'ng	 point	 of	 the	 incident	 (or	 direct)	

beam	vector	at	the	sphere	center,	
•  and	unitary	incident	and	diffracted	vectors	S0	and	S:	

Then:	
	
|S	-	S0|	=	2	R	sinθ =	2	sinθ /λ

	

Only	when	S	-	S0	coincides	with	a	reciprocal	laQce	point	
(i.e.	 when	 |S	 -	 S0|	 =	 |d*hkl|=	 1/dhkl	 )	 is	 Bragg’s	 law	
sa'sfied:	
	

2	sinθ /λ = 1/dhkl		
	

Therefore	 construc've	 interference	occurs	when	S	 -	S0	
coincides	 with	 the	 reciprocal	 vector	 of	 the	 reflec'ng	
planes!	
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For	this	incident	angle	there	is	no	diffracted	intensity	!	

Notation: d*hkl	=	ghkl 



A	change	in	the	orienta'on	of	the	incident	beam	rela've	to	the	crystal	changes	the	
orienta'on	of	the	reflec'ng	sphere.	
	
Eventually	a	condi'on	where	diffrac'on	occurs.	
	
A	change	in λ	changes	the	sphere	radius	and	may	also	be	used	to	sa'sfy	Bragg’s	law.	

Vectorial form of Bragg’s law 
Ewald or reflecting sphere 



Vectorial form of Bragg’s law 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

The	limi'ng	sphere	

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere. 
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius 
of Ewald shpere is 1/λ  since S and S0 are unitary): planes with 1/d > 2/λ cannot scatter 
radiation with λ wavelength due to too small interplanar distances… 24 



Bragg ‘reflection’ 

In fact… 
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physically wrong but geometrically right 

Very useful but not a correct description! 



 

 

Derivation of Laue equations 
Assume a row of scatterers separated by constant repeat, a. Radiation of 
wavelength λ is incident on this row at an angle αo. Examine the the scatter from 
this row at an angle αn. 

The path difference of rays scattering from points A and D is just AB-CD.  If the 
incoming rays are in phase, the path difference must be some integer multiple of 
the wavelength for constructive interference to occur.  
This leads to the first Laue equation: 
 

λαα xn naCDAB =−=− )cos(cos 0
26 



In reality the angle αn does not need to be measured only as θ in Bragg’s law 
illustrations. In fact, the diffracted beams of the same order form a conical surface 
(αn in constant on the conical surface). 

Derivation of Laue equations 
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λββ yn nbCDAB =−=− )cos(cos 0

Derivation of Laue equations 

Laue's remarkable idea was that this equation 
must have a simultaneous solution with the 
equation written for the x direction (and the z 
direction as well). The solution to this second 
equation also forms a cone except this time 
about b. The simultaneous solution to these 
two equations can be viewed as the 
intersection of the two cones originating at a 
common apex and which intersect along two 
lines.  
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Next consider another row of scatterers at some angle, to the first with repeat distance, b.  A 
second Laue equation can be written for this direction.  The incident rays will make angle β0 to 
this row and the scattered rays βn. This equation must also result in some integer multiple of 
the wavelength, ny, for constructive interference to occur. 



AB−CD = a(cosαn − cosα0 ) = nxλ

AB−CD = b(cosβn − cosβ0 ) = nyλ

AB−CD = c(cosγn − cosγ0 ) = nzλ

Derivation of Laue equations 
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Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This 
results in a set of equations with one simultaneous solution. By analogy with the previous 
results this solution will be a single vector lying at the intersection of three cones sharing a 
common apex. 



a•S = a(cosαn )
a•S0 = a(cosα0 )
a•(S−S0 ) = nxλ

This equation can be restated in vector terms. The repeat distance a, becomes a 
unit cell vector a. Define a unit vector parallel to the incoming ray, S0, and a unit 
vector parallel to the scattered ray, S.  Then: 

The first Laue equation is valid for any scattered ray that makes an angle αn with the 
unit cell axis. Thus the Laue condition is consistent with a cone of scattered rays 
centered about the a axis.  
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Vectorial form of Laue equations 



Postulate that  S-S0\λ represents any vector g in reciprocal space.   

 

 

a•g = pa•a∗ + qa•b∗ + ra•c∗

b•g = pb•a∗ + qb•b∗ + rb•c∗

c•g = pc•a∗ + qc•b∗ + rc•c∗

= p
= q
= r z

y

x

n
n
n

=

=

=

The Laue conditions require that p, q, r be integers (nx, ny, nz). So they are 
the just Miller indices, h, k, and l! Hence the Laue equations are consistent 
with the concept of reciprocal lattice vector. 
 

xnλ
−

• =0(S S )aLook at first Laue condition in vector form 

Ewald sphere: vectorial form of Laue equations 
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1st Laue eq.: 

2nd Laue eq.: 

3rd Laue eq.: 

g = S−S0
λ

"

#
$

%

&
'= pa∗ + qb∗ + rc∗



g = S−S0
λ

"

#
$

%

&
'= ha∗ + kb∗ + lc∗ = dhkl

∗

So there is diffraction when the scattering vector g equals a reciprocal lattice vector d*: 

Ewald was responsible for first interpreting Laue's results in terms of reciprocal lattices. He 
devised a simple geometric construction that demonstrates the relationship in quite 
elegant but simple way. 

Ewald sphere: vectorial form of Laue equations 
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g = S−S0
λ

"

#
$

%

&
'= dhkl

∗ =
1
dhkl

=
2
λ
sinθ

λ = 2dhkl sinθ

Consistent with Bragg’s law too! 



X-ray diffraction methods 
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In XRD the Ewald sphere radius is short so the coincidence between 
reciprocal lattice points and the sphere is rare.  

In order to record a diffraction pattern some reciprocal lattice points must 
lie on or pass through the Ewald sphere. This can be achieved in several 
different ways: 

•  Use “white” radiation and a single crystal:  Laue method 

•  Use monochromatic radiation and rotate a single crystal: Rotation 
method and similar techniques 

•  Use monochromatic radiation and a sample containing crystals with 
many different orientations (a powder): Powder diffraction 



The Laue method (single crystal diffraction) 
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As in Laue’s original experiment: 

•  Using “white” Bremsstrahlung radiation from an X-ray tube so that many different 
wavelengths are scattered by the sample 

•  Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal  

 



Appearance of Laue diffractograms 
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Ewald construction for Laue method 
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Rotating crystal method (single crystal method) 

relps = reciprocal lattice points 

Aligned crystal is rotated around one axis so relps pass through the Ewald 
sphere: 
 
•  Produces spots lying on lines  
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Ewald	construc'on	for	rota'ng	crystal	method	
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Powder diffraction method 

Diffractometer 

Bragg-Brentano-geometry 



Reciprocal	laQce	of	a	powder	
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In a powder we have a large number of 

crystals all at different orientations  
 
The reciprocal space no longer has one set of 
points, but many sets of points at different 
orientations. All of these points lie on the 
surface of spheres or shells.  
 
– Reciprocal lattice shells – rel shells  
 



Ewald	construc'on	for	powder	
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Ewald	construc'on	for	powder	

42 
The powder rotates (θ) to increase the probably of diffraction and the detector rotates 
(2θ) to intersect the diffracting cones. 

A diffracted cone is formed every time Bragg’s law is satisfied. We may use a 
photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.  



Electron	diffrac'on	(TEM)	of	single	crystal		
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Fourier transforms again: 
Crystal Thin disc 

multiplication 

convolution 

Real  
space 

Reciprocal  
space 

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 
larger perpendicular to the disc due to finite and small thickness 



C O 

S 

S0 

Diffrac'on	from	a	single	crystal	(TEM)	
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S0 is the transmitted beam 

S is the diffracted beam 

ZOLZ is the zeroth order Laue zone 
FOLZ is the first order Laue zone 
SOLZ is the second order Laue zone 

The reciprocal space is an artificial, mathematical construction – it 
doesn’t really exist; however, we can see it in single crystal 
diffraction.  



Geometry	of	diffrac'on	pa9erns		

(also called near-field) 

(also called far-field) 

Fraunhofer diffraction pattern:  the rays leave the diffracting object in parallel directions: 
•  Screen very far from the object 
•  Converging lenses may be used to make the rays converge in smaller distances 



Geometry	of	diffrac'on	pa9erns		

n = 0 

n= 1 

n = -1 

 w
av

e 
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Diffraction intensity 
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What can be said about the intensity of the “reflections” in this diffraction pattern?  
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Scattering by electrons 

•  Electrons and other charged particles scatter X-rays.  

Interaction of a X-ray front with an 
isolated electron, which becomes a 
new X-ray source, producing the X-
rays waves in a spherical mode. 

The spherical waves produced 
by two electrons interact with 
each other, producing positive 
and negative interferences.

  
 



),( 00 νλ
Sets	electron	into	oscilla/on	

Sca0ered	beams	),( 00 νλ
Coherent	

(definite	phase	rela/onship)	

§  The	electric	field	(E)	is	the	main	cause	for	the	accelera'on	of	the	electron		
§  The	moving	par'cle	radiates	most	strongly	in	a	direc5on	perpendicular	to	its	

mo5on	
§  The	radia'on	will	be	polarized	along	the	direc'on	of	its	mo'on	

Scattering by an electron 



Scattering by an electron 
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I = I0
e4

m2c4
sin2θ
r2

!

"
#

$

%
&The	reason	we	are	able	to	

neglect	sca9ering	from	the	
protons	in	the	nucleus	

Intensity	of	the	sca9ered	beam	due	to	an	electron	at	a	point	P	such	that	r	>>	λ	
	

x 

z 

r 

P 

For	a	wave	oscilla/ng	in	z	direc/on	
θ
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Scattering by atoms 
•  The atom can be considered to be a collection of electrons. This electron 

density scatters radiation. 
•  For radiation to remain coherent the interference between x-rays scattered 

from different points within the atom has to be considered.  
•  This leads to a strong angle dependence of the scattering. 



Scattering by atoms 
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The scattering power of an atom is given by the atomic form factor (f): ratio of 
scattering from the atom to what would be observed from a single electron  

Scattering by atoms 

•  Form factor is expressed as a function of (sinθ)/λ 
as the interference depends on both λ and the 
scattering angle  

•  Form factor is equivalent to the atomic number at 
low angles, but it drops rapidly at high (sinθ)/λ  

 

Atomic scattering factors calculated for 
atoms and ions with different numbers of 
electrons. Note that the single electron of 
the hydrogen atom (H) scatters very little 
as compared with other elements, 
especially with increasing θ. Hydrogen will 
therefore be "difficult to see" ..   
 



Coherent scattering from crystals 
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•  Due	to	crystal	periodicity	sca9ering	 from	atoms	 in	one	unit	cell	can	be	used	to	determine	
the	intensi'es	of	the	diffracted	beams	

•  The	posi'ons	of	the	atoms	in	a	unit	cell	determine	the	intensi'es	of	the	reflec'ons.	
•  Consider	diffrac'on	from	(001)	planes	in	body	centered	cells:	

(a)  If	the	path	length	between	rays	1	and	2	differs	by	λ,	the	diffrac'on	angle	is	sa'sfied	and	the	
diffracted	intensity	corresponds	to	that	of	1	atom	(in	primi've	cells	we	have	1	atom/cell).	

(b)  For	 the	centred	cell,	 in	 the	same	configura'on,	 the	path	 length	between	rays	1	and	3	will	
differ	by	λ/2	and	destruc've	interference	in	(b)	will	lead	to	NO	diffracted	intensity	for	(001)	
in	any	body-centered	(BC)	laQce	(I-cubic,	I-	tetragonal,	or	I-orthorhombic).		

	
	
	

Extinctions from centered cells or different atoms in the unit cell 

These (001) planes diffract? 



•   Unit Cell (UC) is representative of the crystal structure 
•   Scattered waves from various atoms in the UC interfere to create the 

diffraction pattern 

The wave scattered from the middle plane is out of phase with the ones scattered 
from top and bottom planes 

Extinctions from centered cells and/or  

Coherent scattering from crystals 



d(h00) 

θB θ 

R1 

R2 

R3 

Unit Cell 

x 

M 

C 

N 

R 
B 

S 

A 

'
1R

'
2R

'
3R

(h00) plane 
a 

Change in phase due to atoms in fractional coordinates 
(revisiting the structure factor concept) 



AC = dh00 =
a
h

MCN :: AC = dh00
RBS :: AB = x

AB
AC

=
x
dh00

=
x
a
h

δR1R2 =MCN = 2dh00 sin(θ ) = λ

δR1R3 = RBS =
AB
AC

MCN =
AB
AC

λ =
x
a
h
λ

δ
λ
π

ϕ
2

=

a
xh

h
a
x

RR πλ
λ
π

ϕ 22
31

== xcoordinatefractional
a
x

ʹ→→  xhRR ʹ= πϕ 2
31

Extending to 3D 2 ( )h x k y l zϕ π ʹ ʹ ʹ= + + Independent of the shape of UC 

Change in phase due to atoms in fractional coordinates 

Note: R1 corresponds 
to corner atoms and 
R3 to from atoms in 
additional positions in 
the Unit Cell (UC) 
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Revisiting the complex notation 
The phase difference between rays scattered from the origin and rays scattered 
from an atom at fraction coordinates (x’v’w’) is: 
 
 
 
•  Each atom within the unit cell may produce a scattered wave of different 

amplitude.  
•  The amplitude is given by the form factor f for the atom. 
•  All of the scattered waves from individual atoms sum together to produce a 

wave whose amplitude can be measured (the phase is more difficult to retrieve). 
 
Tool to handle the summation of waves scattered from different atoms: 

 
The most convenient way to represent the amplitude 
and phase of a scattered wave is by a vector in the 
complex plane. 
 

 Wave of amplitude A and phase φ: 
  Aeiφ = A(cosφ + i sinφ)  

 

-  Real when φ is multiple of 2 π
-  1 for even multiples 
-  -1 for odd multiples 

 

2 ( )h x k y l zϕ π ʹ ʹ ʹ= + +



Fhkl = f j
j=1

n

∑
.

eiϕ j = f j
j=1

n

∑
.

e
i 2π h x j

' +k yj
' +l z j

'( )"
#$

%
&'

wave equation in 
complex notation 

§  If  atom B is different from atom A → the amplitudes must be weighed by the respective 
atomic scattering factors (f) 

§  The resultant amplitude of all the waves scattered by all the atoms in the UC is the 
scattering factor for the unit cell 

§  The unit cell scattering factor is called the Structure Factor (F) 

Scattering by an unit cell = function (position of the atoms, atomic scattering factors) 

F = Structure Factor = Amplitude of wave scattered by all atoms in UC
Amplitude of wave scattered by an electron

[2 ( )]i i h x k y l zE Ae feϕ π ʹ ʹ ʹ+ += =2 ( )h x k y l zϕ π ʹ ʹ ʹ= + +

I ∝Fhkl
2

The structure factor is independent of the shape and size  of the unit cell !!! 

for n atoms in the UC: 

Change in phase due to atoms in fractional coordinates 

Intensity of the diffracted wave: 



nnie )1(−=π

eiθ + e−iθ = 2cos(θ )

Atom at (0,0,0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ ʹ ʹ+ += =

[2 ( 0 0 0)] 0i h k lF f e f e fπ ⋅ + ⋅ + ⋅= = =

22 fF = ⇒ F is independent of the scattering plane (h k l) 

ππ nini ee −=

e(odd  n) iπ = −1
1) ( +=πinevene

Structure factor calculations 

Simple cubic 



Atom	at	(0,0,0)	&	(½,	½,	0)	and	equivalent	posi'ons	

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ ʹ ʹ+ += =

1 1[2 ( 0)][2 ( 0 0 0)] 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h ki i h k

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+
+

= +

= + = +

⇒ F is independent of the ‘l’ index 

Real 

]1[ )( khiefF ++= π

fF 2=

0=F

22 4 fF =

02 =F

Both even or both odd 

Mixture of odd and even 

e.g. (001), (110), (112); (021), (022), (023) 

e.g. (100), (101), (102); (031), (032), (033) 

(h + k) even 

(h + k) odd 

Structure factor calculations 
C centered orthorhombic 



§  If the blue planes are scattering in phase then on C- centering the red planes will 
scatter out of phase (with the blue planes - as they bisect their normal) and hence 
the (210) reflection will become extinct 

§ This analysis is consistent with the extinction rules: (h + k) odd is absent 

Structure factor calculations 
C centered orthorhombic 



§  In case of the (310) planes no new translationally equivalent planes are added on 
lattice centering ⇒ this reflection cannot go missing. 

§ This analysis is consistent with the extinction rules: (h + k) even is present 

Structure factor calculations 
C centered orthorhombic 



Atom at (0,0,0) & (½, ½, ½) and equivalent positions 
[2 ( )]j j j ji i h x k y l z

j jF f e f eϕ π ʹ ʹ ʹ+ += =

1 1 1[2 ( )][2 ( 0 0 0)] 2 2 2

[ 2 ( )]0 ( )2   [1 ]

i h k li h k l

h k li i h k l

F f e f e

f e f e f e

ππ

π π

⋅ + ⋅ + ⋅⋅ + ⋅ + ⋅

+ +
+ +

= +

= + = +

Real 

]1[ )( lkhiefF +++= π

fF 2=

0=F

22 4 fF =

02 =F

(h + k + l) even 

(h + k + l) odd 

e.g. (110), (200), (211); (220), (022), (310) 

e.g. (100), (001), (111); (210), (032), (133) 

Structure factor calculations 
Body centered orthorhombic 



Atom at (0,0,0) & (½, ½, 0) and equivalent positions 

[2 ( )]j j j ji i h x k y l z
j jF f e f eϕ π ʹ ʹ ʹ+ += =

]1[    )()()(

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

hlilkikhi

hlilkikhii

eeef

eeeefF

+++

+++

+++=

⎥
⎦

⎤
⎢
⎣

⎡
+++=

πππ

ππππ

Real 

fF 4=

0=F

22 16 fF =

02 =F

(h, k, l) unmixed 

(h, k, l) mixed 

e.g. (111), (200), (220), (333), (420) 

e.g. (100), (211); (210), (032), (033) 

(½, ½, 0), (½, 0, ½), (0, ½, ½) 

]1[ )()()( hlilkikhi eeefF +++ +++= πππ

Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Structure factor calculations 
Face centred cubic 



Mixed indices CASE h k l 
A o o e 
B o e e 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 0i e i o i oe e eπ π π+ + + = + − − =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 0i o i e i oe e eπ π π+ + + = − + − =

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices Two odd and one even (e.g. 112); two even and one odd (e.g. 122) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

Unmixed indices 

fF 4= 22 16 fF =(h, k, l) unmixed 

e.g. (111), (200), (220), (333), (420) 

All odd (e.g. 111); all even (e.g. 222) 

( ) ( ) ( )CASE A: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =
( ) ( ) ( )CASE B: [1 ] [1 1 1 1] 4i e i e i ee e eπ π π+ + + = + + + =



Na+	at	(0,0,0)	+	Face	Centering	Transla'ons	→	(½,	½,	0),	(½,	0,	½),	(0,	½,	½)		
Cl−	at	(½,	0,	0)	+	FCT	→	(0,	½,	0),	(0,	0,	½),	(½,	½,	½)	

⎥
⎦

⎤
⎢
⎣

⎡
+++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=

++

+++

−

+

)]
2

(2[)]
2

(2[)]
2

(2[)]
2

(2[

)]
2

(2[)]
2

(2[)]
2

(2[)]0(2[

       
lkhilikihi

Cl

hlilkikhii
Na

eeeef

eeeefF

ππππ

ππππ

][      

]1[
)()()()(

)()()(

lkhilikihi
Cl

hlilkikhi
Na

eeeef

eeefF
++

+++

+++

++++=

−

+

ππππ

πππ

]1[      

]1[
)()()()(

)()()(

+++

++++=
−−−−−−++

+++

−

+

khihlilkilkhi
Cl

hlilkikhi
Na

eeeef

eeefF
ππππ

πππ

]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

NaCl 
Face Centered Cubic 

Structure factor calculations 



]1][[ )()()()( hlilkikhilkhi
ClNa eeeeffF +++++ ++++= −+

ππππ

Zero for mixed indices 

Mixed indices CASE h k l 
A o o e 
B o e e 

F = factor1. factor2

CASEA : factor2 = [1+ eiπ (e) + eiπ (o) + eiπ (o) ]= [1+1−1−1]= 0

CASEB: factor2 = [1+ eiπ (o) + eiπ (e) + eiπ (o) ]= [1−1+1−1]= 0

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033) 

Mixed indices 



(h, k, l) unmixed ][4 )( lkhi
ClNa effF ++

−+ += π

][4 −+ += ClNa ffF If (h + k + l) is even 22 ][16 −+ += ClNa ffF

][4 −+ −= ClNa ffF If (h + k + l) is odd 22 ][16 −+ −= ClNa ffF

e.g. (111), (222); (133), (244) 

e.g. (222),(244) 

e.g. (111), (133) 

Unmixed indices CASE h k l 
A o o o 
B e e e 

CASEA : factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

CASEB: factor2 = [1+ eiπ (e) + eiπ (e) + eiπ (e) ]= [1+1+1+1]= 4

Unmixed indices 
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Extinctions due to centering and/or 
different atomic form factors 



Generic case? Consult the Tables of Crystallography 
Scattering by a unit cell 

71 



Reciprocal space and intensities  
 

The scattered intensity distribution in 

reciprocal space is sometimes represented 

by weighting the points of a reciprocal 

lattice drawing: 

•  Larger points indicate higher intensity  

•  Crosses ind ica te absences o r 

extinctions 

72 

Section of weighted reciprocal space for NaCl 
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Reciprocal space of a powder with 
intensities  
 

•  Rel shells for powders 
 
•  Representation of the scattered 

intensity for a powder in 
reciprocal space 

Section of weighted reciprocal space 
for a NaCl powder showing the 
reciprocal lattice shells (rel shells) 
 

A radial profile is 
similar to a XRD 
diffraction pattern 


