FYS 4340/FYS 9340

Diffraction Methods & Electron Microscopy

Lecture 3

Sandeep Gorantla

UiO & University of Oslo **Centre for Materials Science and Nanotechnology (SMN)**

Lab Groups

Simplified ray diagram of conventional TEM Simplified ray diagram of conventional STEM

This Lecture

• TEM Instrumentation – Part 2 *(Text book Chapters: 5 – 9)*

• TEM Specimen Preparation *(Text book Chapters: 10)*

- **Electron Gun**
- **Electron Lens**
- **Apertures**
- **Stigmators, scan coils and beam deflecting coils**
- **Specimen Stage/Holders**
- **Lq. N² Coldtrap**
- **Image Viewing/Recording system**
- **Spectrometers**

Courtesy: David Rassouw, CCEM, Canada

The requirements of the illumination system

- High electron intensity
	- Image visible at high magnifications
- Small energy spread
	- Reduce chromatic aberrations effect in obj. lens
- High brightness of the electron beam
	- Reduce spherical aberration effects in the obj. lens
- Adequate working space between the illumination system and the specimen

The electron source

- Two types of emission sources
	- **Thermionic emission**
		- W or LaB6
	- **Field emission**
		- **Cold FEG** W
		- **Schottky FEG** ZnO/W

The electron gun

- The performance of the gun is characterised by:
	- Beam diameter, d_{cr}
	- Divergence angle, α_{cr}
	- Beam current, I_{cr}
	- Beam brightness, $β_{cr}$ at the cross over

Image of source

Brightness

• Brightness is the current density per unit solid angle of the source

•
$$
\beta = i_{cr}/(\pi d_{cr}\alpha_{cr})^2
$$

Beam diameter, d_{cr} Divergence angle, α_{cr} Beam current, I_{cr} Beam brightness, β_{cr} at the cross over

The electron gun

FEG Thermionic gun

Thermionic guns

Filament heated to give Thermionic emission

-Directly (W) or indirectly (LaB₆)

Filament negative potential to ground

Wehnelt produces a small negative bias

-Brings electrons to cross over

Thermionic guns

Thermionic emission

• Current density:

J_c= A_cT²exp(-φ_c/kT)

Richardson-Dushman

- Ac: Richardson's constant, material dependent
- T: Operating temperature (K)
- $-\phi$: Work function (natural barrier to prevent electrons to leak out from the surface)
- k: Boltzmann's constant

Maximum usable temperature T is determined by the onset of the evaporation of material.

Field emission

- The principle:
	- The strength of an electric field E is considerably increased at sharp points.

- $r_w < 0.1 \mu m$, V=1 kV \rightarrow E = 10¹⁰ V/m
	- Lowers the work-function barrier so that electrons can tunnel out of the tungsten.
- Surface has to be pristine (no contamination or oxide)
	- Ultra high vacuum condition (Cold FEG) or poorer vacuum if tip is heated ("thermal" FE; ZrO surface tratments \rightarrow Schottky emitters).

Field emission

Maxwell-Boltzmann energy distribution for all sources

Characteristics of principal electron sources at 200 kV

* Might be one order lower

Advantages and disadvantages of the different electron sources

Electron lenses

Any axially symmetrical electric or magnetic field have the properties of an ideal lens for paraxial rays of charged particles.

- Electrostatic
	- Require high voltage- insulation problems
	- Not used as imaging lenses, but are used in modern monochromators

- ElectroMagnetic
	- Can be made more accurately
	- Shorter focal length

F= -eE

General features of magnetic lenses

- Focus near-axis electron rays with the same accuracy as a glass lens focusses near axis light rays
- Same aberrations as glass lenses
- Converging lenses
- The bore of the pole pieces in an objective lens is about 4 mm or less
- A single magnetic lens rotates the image relative to the object
- Focal length can be varied by changing the field between the pole pieces. (Changing magnification)

http://www.matter.org.uk/tem/lenses/electromagnetic_lenses.htm

Strengths of lenses and focused image of the source

http://www.rodenburg.org/guide/t300.html

If you turn up one lens (i.e. make it stronger, or 'over- focus' then you must turn the other lens down (i.e. make it weaker, or 'under-focus' it, or turn its knob anti-clockwise) to keep the image in focus.

Magnification of image, Rays from different parts of the object

http://www.rodenburg.org/guide/t300.html

If the strengths (excitations) of the two lenses are changed, the magnification of the image changes

The Objective lens

- Often a double or twin lens
- The most important lens
	- Determines the reolving power of the TEM
		- All the aberations of the objective lens are magnified by the intermediate and projector lens.
- The most important aberrations
	- Asigmatism
	- Spherical
	- Chromatical

Stigmators

Stigmators

Apertures

Use of apertures

Condenser aperture:

Limit the beam divergence (reducing the diameter of the discs in the convergent electron diffraction pattern).

Limit the number of electrons hitting the sample (reducing the intensity),

. **Objective aperture:**

Control the contrast in the image. Allow certain reflections to contribute to the image. Bright field imaging (central beam, 000), Dark field imaging (one reflection, **g**), High resolution Images (several reflections from a zone axis).

Selected area aperture:

Select diffraction patterns from small $($ > 1 μ m) areas of the specimen. Allows only electrons going through an area on the sample that is limited by the SAD aperture to contribute to the diffraction pattern (SAD pattern).

Objective aperture: Contrast enhancement

Centre for Materials Science and Nanotechnology (SMN)

UiO & University of Oslo

Dissociation of pure screw dislocation In Ni₃Al, Meng and Preston, J. Mater. Scicence, 35, p. 821-828, 2000.

Large objective aperture

High Resolution Electron Microscopy (HREM)

Phase contrast

Selected Area Diffraction Aperture

Selected area diffraction

Parallel incoming electron beam

Diffraction with no apertures

Convergent beam and Micro diffraction (CBED and µ-diffraction)

Convergent beam Focused beam

Convergent beam

Illuminated area less than the SAD aperture size.

Diffraction information from an area with

~ same thickness and crystal orientation

CBED pattern µ-diffraction pattern

Shadow imaging (diffraction mode)

Specimen holders and goniometers

- **Specimen holders**
	- Single tilt holders
	- Double tilt holders
	- Rotation holders
	- Heating holders
		- \bullet Up to 800 $^{\circ}$ C
	- Cooling holders
		- N: $-100 150$ °C
		- He: 4-10K
	- Strain holders
	- Environmental cells

- **Goniometers:**
	- **- Side-entry stage**
		- Most common type
		- Eucentric

- **Top-entry stage**

- Less obj. lens aberrations
- Not eucentric
- Smaller tilting angles

• TEM Specimen Preparation *(Text book Chapters: 10)*

Learning outcome

- HMS awareness
- Overview of common techniques
- Possible artifacts
- You should be able to evaluate which technique to use for a given sample

• Lab will give you some practical skills

What to consider before preparing a TEM specimen

- Ductile/fragile
- Bulk/surface/powder
- Insulating/conducting
- Heat resistant
- Irradiation resistant
- Single phase/multi phase
- Can mechanical damage be tolerated?
- Can chemical changes be accepted?
- Etc, etc…….

What is the objectiv of the TEM work?

Specimen preparation for TEM

- **Crushing**
- **Cutting**
	- saw, "diamond" pen, ultrasonic drill, FIB
- **Mechanical thinning**
	- Grinding, dimpling,
	- Tripod polishing
- **Electrochemical thinning**
- **Ion milling**
- **Coating**
- **Replica methods**
- **Etc.**

SAFETY!!!!

- Know what you handling.
	- MSDS
- Protect your self and others around you.
	- Follow instructions
- If an accident occurs, know how to respond.

Safety rules

- Be sure that you can safely dispose of the waste product before you start.
- Be sure you have the 'antidote' at hand.
- Never work alone in the specimenpreparation laboratory.
- Always wear safety glasses when preparing specimens and/or full protective clothing, including face masks and gloves, if so advised by the safety manual.
- Only make up enough of the solution for the one polishing session. Never use a mouth pipette for measuring any component of the solution. Dispose of the solution after use.
- Always work in a fume hood when using chemicals.
- Check that the extraction rate of the hood is sufficient for the chemical used.

Some acids for specimen preparation

- Cyanide solutions:
	- DO NOT USE
- Perchloric acid in ethanol or methanol
	- Ole Bjørn will make the solution if needed

- Nitric acid $(HNO₃)$
	- Can produce explosive mixtures with ethanol.
- Hydrofluoric acid (HF)
	- Penetrates flesh and dissolves bones rapidly!

 You need to have approval by supervisors and Ole Bjørn first!

Work in the Stucture Physics lab

• Get the local HMS instructions from **Ole Bjørn Karlsen**

Ask

Sign a form confirming that you have got the information

Preparation philosophy

Self-supporting discs or specimen supported on a grid or washer

Self-supporting disk or grid

- Self supporting disk
	- Consists of one material
		- Can be a composite
	- Can be handled with a tweeser
		- Metallic, magnetic, nonmagnetic, plastic, vacuum

If brittle, consider Cu washer with a slot

• Grid

- Several types (Fig. 10.3)
- Different materials (Cu, Ni…)
- Support brittle materials
- Support small particles

The grid may contribute to the EDS.

Common size: 3 mm. Smaller specimen diameters can be used for certain holders.

Grids and washers used as specimen support

Preparation of self-supporting discs

- Cutting
	- Ductile material or not?
- Grinding
	- $-100-200$ µm thick
	- polish
- Cut the 3mm disc
- Dimple ?
- Final thinning
	- Ion beam milling
	- Electropolishing

Self-supporting disk or grid

- Self supporting disk
	- Consists of one material
		- Can be a composite
	- Can be handled with a tweeser
		- Metallic, magnetic, nonmagnetic, plastic, vacuum

If brittle, consider Cu washer with a slot

- Grid and washer
	- Several types
	- Different materials (Cu, Ni…)
	- Support brittle materials
	- Support small particles

Preparation of self-supporting discs

- Cutting/cleaving
	- Ductile material or not?

Cutting and cleaving

Cutting with a saw:

Soft or brittle material?

Brittle materials with well-defined cleavage plane

• Si

- GaAs
- NaCl

• MgO

Razor blade or ultramicrotome

Preparation of self-supporting discs

- Cutting/cleaving
	- Ductile material or not?
- Grinding
	- $-100-200$ µm thick
	- polish
- Cut the 3mm disc

Cutting a 3 mm disc

Soft or brittle material? Mechanical damage OK?

Brittle: Spark erosion, ultrasonic drill, grinding drill

Preparation of self-supporting discs

- Cutting
	- Ductile material or not?
- Grinding
	- $-100-200$ µm thick
	- polish
- Cut the 3mm disc
- Prethinning
	- Dimpling
	- Tripod polishing

Dimpling

F

Surface dimpling using a chemical solution

Final thinning of the discs

- Electropolishing
- Ionmilling

Jet polishing

 $Vent =$ Reservoir ℍ Pt cathode **Stainless** steel Specimen gauze Pump

Twin-jet electropolishing apparatus.

The positively charged specimen is held in a Teflon holder between the jets. A light pipe (not shown) detects perforation and terminates the polishing.

Ar ion beam thinning

Variation in penetration depth and thinning rate with the angle of incidence.

Effect of Ar-thinning on CdTe

Defects (dark spots) in Ar-thinned specimen

Crystal thinned by reactive iodine ion milling.

Preparation of **particles and fibers**

first embedding them in epoxy and forcing the epoxy into a 3-mm (outside) diameter brass tube prior to curing the epoxy. The tube and epoxy are then sectioned into disks with a diamond saw, dimpled, and ion milled to transparency.

THIN FILMS TEM specimen preparation

Initial preparation steps

Spacers : Si, glass, or some other inexpensive material.

THIN FILMS TEM specimen preparation

Specimens on grids/washers

- Electropolishing
	- The window method
- Ultramicrotomy
- **Crushing**
	- In ethanol
	- Mix in an epoxy
- Replication and extraction
- Cleaving and SACT
- The 90° wedge
- **Lithography**
- Preferensial chemical etching

Window polishing

• A sheet of the metal 100mm² is lacquered around the edges and made the anode of an electrolytic cell.

• Progress during thinning: the initial perforation usually occurs at the top of the sheet; lacquer is used to cover the initial perforation and the sheet is rotated 180° and thinning continues to ensure that final thinning occurs near the center of the sheet.

Ultramicrotomy

The sample is first embedded in epoxy or some other medium or the whole sample is clamped and moved across a knife edge.

The thin flakes float off onto water or an appropriate inert medium, from where they are collected on grids.

Replication of a surface

1) Spray acetone on the surface to be replicated before pressing a plastic (usually cellulose acetate)

2) Removed the plastic from the surface when hardened

3) Evaporate a C, Cr, or Pt film onto the replicated plastic surface.

4) Dissolve the plastic with acetone

Alternatively: the direct carbon replica.

Extraction replication

A thin amorphous carbon film is The rest of the matrix is etched evaporated over the particles

Cleaving

1) Use tape

2) Dissolve tape in a solvent

Cleaved MoS₂ showing regions of different shades of green, which correspond to different thicknesses.

SACT

The small-angle cleaving technique

Invaluable for films on Si or glass where there is no crystal structure

- 1. Scratch the sample;
- 2. Cleaving along the scratch;

LACT- The 90^o wedge

1) Prethin: 2-mm square of the multilayers on a Si substrate

2) Scribe the Si through the surface layers, turn over, and cleave Need: a sharp 90° edge;

3) Mount the 90° corner

Preferential chemical etching

Etch away most of the sample, leaving a small etched plateau Mask a region <50 nm across and etch away the majority of the surrounding plateau.

Turn 90o and mounted in a specimen holder

Lithographic techniques

Etching between the barrier layers Produces an undercutting down to the implanted layer which acts as an etch stop, producing a uniform layer 10 mm thick.

FIB

Schematic of a two-beam (electron and ion) FIB instrument.

SEM

-The area of interest has been marked.

FIB

-A Pt bar is deposited to protect this area from the Ga beam.

- -The two trenches are cut.
- -The bottom and sides of the slice are (final) cut. -The TEM specimen is polished in place before extracting it.

A dual-beam FIB instrument.

Summary flow chart for specimen preparation

THERE WILL BE TEM COURSE LAB THIS THURSDAY

Next Lecture

• Introduction to Crystallography

by

Patricia Almeida Carvalho

Senior Research Scientist SINTEF

