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Crystallography basics



Crystal systems

a |
c
a

a
Cubic Tetragonal Orthorhomblc

i -'

Monoclinic Trlcllmc Rhombohedral Hexagonal
(trigonal)




Centering

e What happens when other points are added to each of the previous lattices while
maintaining the rotation symmetry (added at centered positions, centering
involves only translation operations = centering operators)

¢ |n each situation is it still a lattice? Is it a new lattice?

Four possible lattice cente

P: Primitive - lattice points on cell corners

I: Body-centred - additional lattice point at cell centre

F: Face-centred - one additional lattice point at centre
of each face

A/B/C: Centred on a single face - one additional lattice
point centred on A, B or C face

rings

a#bh#?

The location of the additional lattice
points within the unit cell is described
by a set of centering operators:

* Body centered (l) has additional
lattice point at (1/2,1/2,1/2)

* Face centered (F) has additional
lattice points at (0,1/2,1/2),
(1/2,0,1/2), and (1/2,1/2,0)

* Side centered (C) has an additional
lattice point at (1/2,1/2,0) 4



Bravais lattices

The combination of crystal system and centering gives
14 Bravais lattices

I
. — S .

triclinic menoclinic

trigonal
A Bravais lattice is an infinite array of discrete points with identical environment:
seven crystal systems + four lattice centering types = 14 Bravais lattices



Point symmetry groups

A set of symmetry operations that leave an object invariant.
Generically, there are infinite point symmetry groups. However,
not all can be combined with a lattice.

In crystallography we are interested in objects that can be
combined with the lattices: there are only 32 point groups
compatible with periodicity in 3-D.



In short...

Crystal Class | Point Groups

Triclinic 1,1

Monoclinic 21 2/m

Orthorhombic |222, mm2, 2/m 2/m 2/m

Trigonal 3,3,32,3m, 32/m

6, 6, 6/m, 622, 6mm, 6m2,
Hexagonal 6/m 2/m 2/m

4,4, 4/m, 422, 4mm, 42m,
Tetragonal |y 9m Dfin

[sometric ?? |23, 2/m3, 432, 43m, 4/m32/m

32 point groups



Space groups

Periodic solids have:

- lattice symmetry (purely translational)

- point symmetry (no translational component)

- possibly glide and/or screw axes (partly translational)

Together all the symmtery operations
make up the space group



Limitations on combination of
symmetry elements

* Not all symmetry elements can be combined in the
crystallographic point groups (only 32 point groups are
compatible with periodicity in 3-D)

* Furthermore not all of the 32 point groups can be
combined will all the lattices. For 3-D lattices there are:

- 14 Bravais lattices
- 32 point groups
- but only 230 space groups



Interpretation of space group symbols

All space group symbols start with a letter corresponding to the
lattice centering, followed by a collection of symbols for symmetry | Lattice cenfering

operations in the three lattice directions.
Primitive

Base cemer‘in

There are sometimes short notations for space groups symbols:
« P121is usually written as P2

- X
- primitive cell Z ‘ 1
- two-fold rotation along the b axis BRI AL
* Body cemer‘ing@
« P2,2,2, (cannot be abbreviated) - X,Y.2

- primitive cell
- 2, screw along each axis, orthorhombic

«  Cmma (full symbol: C2/m2/m2/a)

- Xt YR 243
Face centering

- X Y. 2
- C-centered cell . .3
. . - Xt3,.¥Y*7,. 2
- mirror plane perpendicular to a R
- mirror plane perpendicular to b RS T PR A )
- glide plane perpendicular to ¢ - X,Y+3, 2%

- other implied symmetry elements (e.g. 2-fold rotations)

Rhombohedral cenferin

« Pnma - XY.2
- primitive cell - x#'/s, y¥¢ls, 24/
- n glide plane perpendicular to a - x+2/3, y+1/3' z,dl/3
- mirror plane perpendicular to b
- glide plane perpendicular to ¢ 10

- other implied elements



Interpretation of space group symbols

Point Groups (Crystal Classes)

 Hermann-Mauguin Symbols (three positions)
— Tniclinic & monoclinic systems: one position
— / means ‘perpendicular to’ as 2/m
— Orthorhombic: three positions for a, b, c

— Tnigonal, Hexagonal, Tetragonal: 3 positions: c,
a, [110]

— Cubic: 3 positions: [100] (a), [111], [110]




Wyckoff positions

A useful piece of information contained in the International Tables are the
Wyckoff positions that tell us where the atoms in a crystal can be found.

The letter is simply a label and has no physical meaning. They are assigned
alphabetically from the bottom up.

The multiplicity tells us how many atoms are generated by symmetry if we
place a single atom at that position.

The symmetry tells us what symmetry elements the atom resides upon. The
uppermost Wyckoff position, corresponding to an atom at an arbitrary
position never resides upon any symmetry elements. This Wyckoff position is
called the general position. The coordinates column tells us the coordinates of
all of the symmetry related atoms

All of the remaining Wyckoff positions are called special positions. They
correspond to atoms which lie upon one of more symmetry elements, because
of this they always have a smaller multiplicity than the general position.
Furthermore, one or more of their fractional coordinates must be fixed
otherwise the atom would no longer lie on the symmetry element. 12



Asymmetric Unit

* Definition: smallest part of the unit cell which will
generate the whole cell if all symmetry operators of

the space groups are applied to it.

 Knowing the asymmetric unit and the symmetry of
the structure allows generating the unit cell.



Pnma 2 Orthorhombic

No. 62 P2/n2\/m2/a
PLLL : PUH

il

) i

L4

f

i

i

g

g
b

.

Pv o p 2,/n 2,/m 2,/a

......... | 1 T

| 2, screw axis|| 2, screw axis|| 2, screw axis||
to the a-axis + to the b-axis + to the c-axis +
n-glide plane L mirror plane L to  a-glide plane L
""""""""""""""""""""" to the a-axis the b-axis to the c-axis

¢: | ja' - Ji "



Trigonal
P3m1
No. 164

2-fold axis || to
the a- & b-axes,
Mirror planes L to
these axes

P31m
No. 162

3-fold rotoinversion

D3d axis || to the c-axis,
2 Y
P32/m1 ;57
/- 4
N \

no axes || to the

face diagonals in the
ab plane ([110]),

No glides or mirrors
1 to the diagonals

Dia
P312/m

15



Cubic
Pa § T m3 Cubic
No. 205 P 21/ a 3 Patterson symmetry Pm}3

2, screw axis || to 5 :
the a-, b- & c-axes,
a-glide L to these

axes
A, ‘
e .
[
- No axes || to the face
P 2 1/0 3 1 ‘ diagonals. No glides or
/ mirrors L to these axes
3-fold rotoinversion

axes || to the body

diagonals 16



Space Group = Fm3m (225) | Space Group = Pm3m (221)
a=5.64 A a=4.12 A

Atom Site x 4 z Atom Site X Y
Na 4a 0 0 0 Cs la 0 0
Cl 4b 3 0 0 Cl 1b 3 3

o O N

Asymmeffic units...

17




Diffraction basics

18



Bragg's Interpretation

W. H. Bragg examined Laue's photographs and noticed that the spots were
elongated. He surmised that this elongation arose from specular reflection of the
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in
phase if the path difference between them equals an integer multiple of the
wavelength: P

BC =dsinf CD = d sinf
BC + CD = path difference = nA
nA=2dsin6 19



Vectorial form of Bragg's law
(Ewald or reflecting sphere)

Postulate:

* asphere of radius 1/A,

* intersecting the origin of the reciprocal lattice,

* with the starting point of the incident (or direct)
beam vector at the sphere center,

* and unitary incident and diffracted vectors S, and S:
Then:

|S-S,] =2 RsinB =2sinB /A

Only when S - S, coincides with a reciprocal lattice point
(i.e. when [S - S,| = |d* |= 1/d,, ) is Bragg's law
satisfied:

Therefore constructive interference occurs when S - S,

coincides with the reciprocal vector of the reflecting
planes!

For this incident angle there is no diffracted intensity !

Notation: d*, = g,

—

Incident
beam

S,

0

o hk]
dhkl

Reflecting sphere

;- Diffracted
D beam

Trace of (hkl)
reflecting plane

20
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Vectorial form of Bragg's law
The limiting sphere

-, Diffracted
beam

~ S-S /

Limiting sphere
* RADIUS = 25,/4

INCIDENT j
BEAM

.

sphere

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere.
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius
of Ewald shpere is 1/A since S and S, are unitary): planes with 1/d > 2/A cannot scatter
radiation with A wavelength due to too small interplanar distances... 21



Bragg ‘reflection’
physically wrong but geometrically right

Very useful but not a correct description!

22



Derivation of Laue equations

In reality the angle o, does not need to be measured only as 6 in Bragg’s law
illustrations. In fact, the diffracted beams of the same order form a conical surface
(o, in constant on the conical surface).

Incident beam

Lattice row
boryl
along x-axis

Zero-order Laue cone

Three Laue cones representing the directions of the diffracted beams from a lattice row along
the x-axis with 04 (n; = 0), 1a(n, = 1) and 2i(n, = 2) path differences. The corresponding Laue cones 23
forne = =1, n, = =2 etc. lie to the left of the zero order Laue cone.



Derivation of Laue equations

Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This
results in a set of equations with one simultaneous solution. By analogy with the previous

results this solution will be a single vector lying at the intersection of three cones sharing a
common apex.

AB-CD = a(cosa, —cosq,) =n A Diffracted ray
AB-CD = b(cos 5, —cos 5,) =n, A '

AB-CD = c(cosy, —cosy,)=n_A

24



X-ray diffraction methods

In XRD the Ewald sphere radius is short so the coincidence between
reciprocal lattice points and the sphere is rare.

In order to record a diffraction pattern some reciprocal lattice points must
lie on or pass through the Ewald sphere. This can be achieved in several
different ways:

« Use “white” radiation and a single crystal: Laue method

 Use monochromatic radiation and rotate a single crystal.: Rotation
method and similar techniques

« Use monochromatic radiation and a sample containing crystals with
many different orientations (a powder): Powder diffraction

25



The Laue method (single crystal diffraction)

As in Laue’s original experiment:

» Using “white” Bremsstrahlung radiation from an X-ray tube so that many different
wavelengths are scattered by the sample

« Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal

Record a spot
“pattern” on
the film

Transmission Laue Back reflection Laue
26



Appearance of Laue diffractograms
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(a) Obtaining a Laue photograph with a stationary crystal. (b) Laue photograph of vesuvian-
ite with poin

t group symmetry 4/m2/m2/m. The photograph was taken along the fourfold rotation axis
(c axis) of vesuvianite, thus revealing fourfold s

spots. The axial directions, a; and a,,

ymmetry and mirrors in the arrangement of diffraction
were inked onto the photograph after it had been developed.
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Ewald construction for Laue method

Back-reflection Transmission
Laue pattern Laue pattern

Incident Ag <Az <Ay <My

beam

2
=% ‘ X/ ” 7000

Reflecting
sphere



Rotating crystal method (single crystal method)

Aligned crystal is rotated around one axis so relps pass through the Ewald
sphere:

* Produces spots lying on lines

/_{ .

Beam direction

Rotation photograph of quart
showing spots on layer lines

relps = reciprocal lattice points
29



Ewald construction for rotating crystal method

rotation axis rotation axis of
of crystal and  reciprocal lattice
axis of film

Ewald sphere -

30



Powder diffraction method

Bragg-Brentano-geometry

Receiving

slit Soller




Reciprocal lattice of a powder

In a powder we have a large number of

crystals all at different orientations

The reciprocal space no longer has one set of
points, but many sets of points at different
orientations. All of these points lie on the
surface of spheres or shells.

— Reciprocal lattice shells — rel shells
b3

32



Ewald construction for powder

Ewald’s
sphere

N

Incident a
Beam 1

024

Figure 8.2
g 222 113 022

A diffracted cone is formed every time Bragg's law is satisfied. We may use a

photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.

The powder rotates (0) to increase the probably of diffraction and the detector rotates

(20) to intersect the diffracting cones. 33



Electron diffraction (TEM) of single crystal

Fourier transforms again:

Crystal Thin disc

00200200200200200000
Real 000000000200 000°

0000000020000000 X
Space 0000000000000 0° o

00200200000 +@ o @ multiplication

l FT l FT
R T
eCIprocal ............... ® ‘ “Relrod"
sSpace . e

............... convolution
|

2 lengths scales in
reciprocal space!

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 34
larger perpendicular to the disc due to finite and small thickness



Diffraction intensity

What can be said about the intensity of the “reflections” in this diffraction pattern?
35



Scattering by atoms

The atom can be considered to be a collection of electrons. This electron
density scatters radiation.

For radiation to remain coherent the interference between x-rays scattered
from different points within the atom has to be considered.
This leads to a strong angle dependence of the scattering.




Scattering by atoms

The scattering power of an atom is given by the atomic form factor (f): ratio of
scattering from the atom to what would be observed from a single electron

25—

20—

15—

Fe?+

Form factor is expressed as a function of (sinB)/A
as the interference depends on both A and the
scattering angle

Form factor is equivalent to the atomic number at
low angles, but it drops rapidly at high (sin©)/A

Atomic scattering factors calculated for
atoms and ions with different numbers of
electrons. Note that the single electron of
the hydrogen atom (H) scatters very little
as compared with other elements,
especially with increasing 0. Hydrogen will

therefore be "difficult to see”’. -



Coherent scattering from crystals

Extinctions from centered cells and/or

« Unit Cell (UC) is representative of the crystal structure
« Scattered waves from various atoms in the UC interfere to create the
diffraction pattern

)~
N e

The wave scattered from the middle plane is out of phase with the ones scattered
from top and bottom planes



Change in phase due to atoms in fractional coordinates

p=2m(hx'+ky +1z")

wave equation in ' [272(h xX'+k y'+1 2
 E = A = flPrOn <k )

complex notation

» [f atom B is different from atom A — the amplitudes must be weighed by the respective

atomic scattering factors (f)

» The resultant amplitude of all the waves scattered by all the atoms in the UC is the
scattering factor for the unit cell
» The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = function (position of the atoms, atomic scattering factors)

. L i[27t(h R )]
. _ _ Q] _ J J J
for n atoms in the UC. Fhkl Eff (4 Ef] €
j=1 j=1

Intensity of the diffracted wave: | [ oc Fh%cl

The structure factor is independent of the shape and size of the unit cell !!!



Structure factor calculations
Simple cubic

Atom at (0,0,0) and equivalent positions

F=fj e’

eniﬂ _ (_l)n
e(odd n)im _ _1

(evenn)in

e = +1

e’ +e =2cos(6)

i[22(h x;+k y;+1 z})]

F _ f ei[2jr(h-0+k' 0+/-0)] _ feO _ f

F 2 = f 2 = F is independent of the scattering plane (h k |)



Structure factor calculations
C centered orthorhombic

Atom at (0,0,0) & (%%, ¥4, 0) and equivalent positions o

Q. [22(h x'+k Y+ z))]
F _ f el¢1 — f el J J J
J J

. 11
F=f /27 0%k 0+1-0)] f el[2ﬂ<h°5+k3+l +0)]

i[27( h+k )] e o
e

Real

(h+k)€V»e” F=2f—>F2=4f2
e.g. (001), (110), (112); (021), (022), (023)

F=0——F*=0

= F is independent of the 1’ index e.g. (100), (101), (102); (031), (032), (033)

F =f[1+ei7r(h+k)]

(b+/‘70dd



Extinctions due to centering and/or
different atomic form factors

Crystal Type Bravais Lattice | Reflections Present Reflections Absent

Simple Primitive, P Any h,k,l None

Body-centered Body centered, I h+k+[=even h+k+I= odd

Face-centered Face-centered, F h,k,l unmixed h,k, ] mixed

NaCl FCC h,k,] unmixed h,k,l mixed

Zincblende FCC Same as FCC, but if all even h,k,l mixed and if all even
and h+k+I/#4N then absent and hA+k+/#4N then absent

Base-centered Base-centered h,k both even or both odd h,k mixed

Hexagonal close-packed | Hexagonal h+2k=3N with [ even h+2k=3N with [ odd

h+2k=3N+1 with / odd
h+2k=3N+1 with / even

42



Reciprocal space and intensities

The scattered intensity distribution in
reciprocal space is sometimes represented by
weighting the points of a reciprocal lattice

drawing:

* Larger points indicate higher intensity

* Crosses indicate absences or extinctions

b; — b,
i - + + h,k,l mixed
440 e unmixed, (h+k+I) even
® unmixed, (h+k+1) odd
-1
025 A
+ = o - + o -
330 331 333
o - + o - o -
220 222 224
+ - o - o - +
110 111 113
Section of weighted reciprocal space for NaCl
% @ } ®
000 001 002 003 004

43



Reciprocal space of a powder with

° ° °
IntenSItI es bi-b2 ¥ e h.Je,] mixed

e unMixed, (h+k+1) odd

330,114 3] —— —— - unmixed, (h+k-+1) even

-----
.
-

23— f il

004 Crellte

* Rel shells for powders

» Representation of the scattered
intensity for a powder in
reciprocal space

A radial profile is
similar to a XRD
diffraction pattern

Section of weighted reciprocal space
for a NaCl powder showing the

reciprocal lattice shells (rel shells)



Electron diffraction

45



TEM diffraction vs imaging

Abbe’s principle of imaging:

"

—~ St bl
Unlike with visible
light, due to the g ' +8 I
small A, electrons & g I
can be coherently 3 o |
scattered by S% | I
crystalline samples § ; |
so the diffraction - I I
pattern at the back § < A
focal plane of the £ ' I
object corresponds I Y
to the sample
reciprocal lattice. ] I
Rays with same 6 converge
Object Diftraction paltern |
{diffraction grating) {back focal plane)
Lens Magnified
(electromagnetic ~ Image
46 lens for electrons) (slits resolved)

(inverted)



TEM diffraction vs imaging

Rays with same
0 converge
(color scheme
different from
previous slide)

Remove aperture
—_—

| e |
Objective
aperture
Follow (bfp)

the spot
SAD aperture

Intermediate
image 1

\ —— Specimen = /n><

i

Follow the
‘image’ arrow,

4—\ Change _Br——)
strength i

L—=d

Intermediate
/ image 2

Fixed
strength

/ Screen \

Objective lens

Objective
aperture
(blp)

SAD aperture
[ —— |

—————————— Remove
aperture

Intermediate
lens

Projector

lens

Final image



Diffraction concepts

Why do electron diffraction patterns have many spots?

« Typically in X-ray or neutron diffraction only one reciprocal lattice point is on the
surface of the Ewald sphere at one time.

* In electron diffraction the Ewald sphere is not highly curved due to the very short
wavelength electrons used. This almost flat Ewald sphere intersects with many

reciprocal point (relps) at the same time (in fact, because they have non-zero
height).

Ewald sphere for Cu radiation is much more curved than Electronfd|ffralc\:lt.|'zln pattern
that for electrons in an electron diffraction experiment rom NI 48



Ewald sphere in multi-beam condition

N

| | Reciprocal lattice rods (relrods

I
I
st

For reciprocal lattice points (infinitely small): even with the crystal oriented along low-index
zone axis the intersection at the Zero Order Laue Zone would be impossible for relps other
than the origin...

The strong diffraction from many planes in this condition occurs because relps have size and
shape! 49



Two-beam conditions

The [011] zone-axis
diffraction pattern has
many planes diffracting
with equal strength. In
the smaller patterns the
specimen is tilted so
there are only two
strong beams, the direct
000 on-axis beam and a
different one of the hkl
off-axis diffracted

beams.

50



Excitation error or deviation parameter

0 <09

Trace of the (hkl) lattice planes
close to the Bragg position :t Specimen
\

k-ko- Oria + ¢ s ‘\\
— ~20,)

Transmitted beam \

l‘\ \ \
\u.‘ > ™~ - \l

\ K, \  Diffracted beam
x~%—— Intensity \.,-—--“
s (
G Ewald sphere
> A& Intensity

Tilted slightly off Bragg condition, intensity of diffraction spot much lower

Introduce new vector s - “the excitation error’ that measures deviation from

S 51
exact Bragg condition



2-beam scattering condition

Dynamical theory as a system of differential
equations (Howie-Whelan formulation)

Solution to the 1,(t) =w,w, =cos’ (m/fg) L
differential . .,
equations: I[,(H)=vy,y, =sin (m/fg)

There is an interchange of intensity between the two beams
as a function of tickness (t). The so-called thickness fringes,
which can be observed for a crystal of varying t (when
imaged with any of the two beams), originate from this effect.

The total intensity is conserved i.e., ly(f) + I (f) = 1 and the
intensity in the diffracted beam is zero for t = ng, (n an
integer), hence the term extinction distance.

Variation of intensity with thickness for a crystal at a Bragg condition, using the
two-beam theory and without including any absorption. g is the extinction
distance, i.e., the periodicity of the thickness fringes.

52



Dynamical scattering for 2-beam condition

I T T

The images of wedged samples present series of so-called thickness fringes
when only one beam is used.

53
http://www.tf.uni-kiel.de/



Dynamical scattering for 2-beam condition

The image intensity varies sinusoidally depending on the
thickness and on the beam used for imaging.

(A) BF and (B) DF images from the same region of a
The contrast of thickness fringes in a two-beam BF  wedge-shaped specimen of Siat 300 kV tilted so that g(220)is strong. The
image decreases when the effect of anomalous absorption is included. periodicity and contrast of the fringes are amilar and complementary in
Note that the defects are still visible when the fringes have disappearedat  each image.
athickness of =5 &,.

>
Reduced contrast as thickness increases 2 beam condition

due to absorption A: image obtained with transmitted beam (Bright fit
B: image obtained with diffracted beam (Dark field’

o4



Selected area diffraction

95



Symmetry information

Zone axis SADPs have symmetry closely related to symmetry of crystal lattice

Example: FCC aluminium

[00 1]

[111]

4-fold rotation axis

2-fold rotation axis

6-fold rotation axis - but [| | 1] actually 3-fold axis
Need third dimension for true symmetry!

56



Atomic positions information

(a) Kinematic simulation and (b) experimental DP of fcc Nd,Hf,04
with the beam parallel to [110] (zone axis = [110]).

The atomic positions information (structure factor) is totally or partially

lost due to dynamic effects...
57



Ring diffraction patterns

If selected area aperture selects numerous, randomly-oriented nanocrystals,
SADP consists of rings sampling all possible diffracting planes: like powder X-

ray diffraction
Larger crystals: “spotty” patterns

“Texture” - i.e. preferential orientation - is seen as arcs of greater intensity in the
diffraction rings

Hydroxyapatite

58



Kikuchi lines

59



J Kikuchi lines

electrons
Ev— / Inelastic scattering: electron in all directions inside
crystal. Some scattered electrons in correct
orientation for Bragg scattering: cone of scattering
Incident .
beam | (hkl) e ®
Diffusely scattered In the / |
lect S Specunen
& /\e ectron \
/ i
In the P . %8 (hkl) P '
specimen planes ." v
/ 4
(hkl) i
Kossel s
/ // cone |
(hkl) Kossel NS i
cone intersects A S
(hkl) Ewald sphere w4 \
Kossel \ id b (hkl) Kossel
cone Y s (hkl) cone intersects
Projection (hkl) Kikuchi line & .~ ’ Ewald sphere
of (hkl) Kossel B 4 \
s cone — A Gl Ir})tll)le
Exce : t.. 5
lxi;eSS Dc:?.f:-_cm -~ Pi)oge(:zzlc;n o son Kikuchi line 60



Kikuchi lines

Bragg “reflection” of inelastically scattered electron

deficiency plane excess
line trace line

61



Kikuchi lines

Similar example:




Kikuchi lines: “road maps” to reciprocal lattice

Kikuchi lines traverse reciprocal space, converging on zone axes

- use them to navigate reciprocal space as you tilt the specimen!

Examples: Si simulations using JEMS

Si[l | 0] Si[l | O] tilted off zone axis

63



Analyzing the diffraction pattern

« Spot pattern — from single-crystals in the specimen
— Major use:
» The foil orientation can be determined;
* |dentification of phases;

* The orientation relationship between structures can be
determined.

* Ring pattern — from polycrystalline specimen
— Major use:
* |dentification of the phases;
« Analysis of texture.

64



Ring pattern:

For polycrystalline material the reciprocal lattice becomes a series of
concentric spheres

beam

hkl sphere

Steps for indexing ring patterns:

1) Measure ring diameters D,, D,, D5 .......
2) Calculate d,,, (using the expression: rd,,,=L\)
3) Use some structure database to index each ring.

65



