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• 	What	happens	when	other	points	are	added	to	each	of	the	previous	la<ces	while	
maintaining	 the	 rota$on	 symmetry	 (added	 at	 centered	 posi$ons,	 centering	
involves	only	transla$on	opera$ons	=	centering	operators)	

• 	In	each	situa$on	is	it	s$ll	a	la<ce?	Is	it	a	new	la<ce?	

	

Centering	

The	loca$on	of	the	addi$onal	la<ce	
points	within	the	unit	cell	is	described	
by	a	set	of	centering	operators:	
	
• 	Body	centered	(I)	has	addi$onal	
la<ce	point	at	(1⁄2,1⁄2,1⁄2)	

• 	Face	centered	(F)	has	addi$onal	
la<ce	points	at	(0,1⁄2,1⁄2),	
(1⁄2,0,1⁄2),	and	(1⁄2,1⁄2,0)		

• 	Side	centered	(C)	has	an	addi$onal	
la<ce	point	at	(1⁄2,1⁄2,0)	
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Bravais	la<ces	

 
A Bravais lattice is an infinite array of discrete points with identical environment: 
seven crystal systems + four lattice centering types = 14 Bravais lattices 
 



Point symmetry groups 
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A	 set	 of	 symmetry	 opera$ons	 that	 leave	 an	 object	 invariant.	
Generically,	there	are	infinite	point	symmetry	groups.	However,	
not	all	can	be	combined	with	a	la<ce.		
	
In	 crystallography	 we	 are	 interested	 in	 objects	 that	 can	 be	
combined	 with	 the	 la<ces:	 there	 are	 only	 32	 point	 groups	
compa$ble	with	periodicity	in	3-D.	
	
	
	



In	short...	

32	point	groups	
??	



Space	groups	
	
Periodic	solids	have:	
-	la<ce	symmetry	(purely	transla$onal)	
-	point	symmetry	(no	transla$onal	component)	
-	possibly	glide	and/or	screw	axes	(partly	transla$onal)	
	
Together	 all	 the	 symmtery	 opera$ons	
make	up	the	space	group		
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Limita$ons	on	combina$on	of	
symmetry	elements	

•  Not all symmetry elements can be combined in the 
crystallographic point groups (only 32 point groups are 
compatible with periodicity in 3-D) 

•  Furthermore not all of the 32 point groups can be 
combined will all the lattices. For 3-D lattices there are: 

 - 14 Bravais lattices 
 - 32 point groups  
 - but only 230 space groups 
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Interpreta$on	of	space	group	symbols	
Lattice centering




•  Primitive (P)


•  All space group symbols start with a letter corresponding to the 
lattice centering, followed by a collection of symbols for symmetry 
operations in the three lattice directions. 

•  There are sometimes short notations for space groups symbols: 
•  P121 is usually written as P2  

 - primitive cell  
 - two-fold rotation along the b axis 

 

•  P212121 (cannot be abbreviated) 
 - primitive cell  
 -  21 screw along each axis, orthorhombic 

 

•  Cmma (full symbol: C2/m2/m2/a) 
 - C-centered cell  
 - mirror plane perpendicular to a  
 - mirror plane perpendicular to b  
 - glide plane perpendicular to c 
 - other implied symmetry elements (e.g. 2-fold rotations) 

 

•  Pnma 
 - primitive cell 
 - n glide plane perpendicular to a 
 - mirror plane perpendicular to b 
 - glide plane perpendicular to c 
 - other implied elements 
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Interpreta$on	of	space	group	symbols	



Wyckoff	posi$ons	
•  A	 useful	 piece	 of	 informa$on	 contained	 in	 the	 Interna$onal	 Tables	 are	 the	

Wyckoff	posi$ons	that	tell	us	where	the	atoms	in	a	crystal	can	be	found.	

•  The	 le.er	 is	 simply	 a	 label	 and	 has	 no	 physical	meaning.	 They	 are	 assigned	
alphabe$cally	from	the	bo[om	up.		

•  The	mul1plicity	 tells	 us	 how	many	 atoms	 are	 generated	 by	 symmetry	 if	 we	
place	a	single	atom	at	that	posi$on.	

•  The	symmetry	 tells	us	what	 symmetry	elements	 the	atom	resides	upon.	The	
uppermost	 Wyckoff	 posi$on,	 corresponding	 to	 an	 atom	 at	 an	 arbitrary	
posi1on	never	resides	upon	any	symmetry	elements.		This	Wyckoff	posi$on	is	
called	the	general	posi$on.		The	coordinates	column	tells	us	the	coordinates	of	
all	of	the	symmetry	related	atoms			

•  All	 of	 the	 remaining	 Wyckoff	 posi$ons	 are	 called	 special	 posi1ons.	 They	
correspond	to	atoms	which	lie	upon	one	of	more	symmetry	elements,	because	
of	 this	 they	 always	 have	 a	 smaller	 mul$plicity	 than	 the	 general	 posi$on.		
Furthermore,	 one	 or	 more	 of	 their	 frac$onal	 coordinates	 must	 be	 fixed	
otherwise	the	atom	would	no	longer	lie	on	the	symmetry	element.	 12 



Asymmetric	Unit		

•  Defini1on:	smallest	part	of	the	unit		cell	which	will	
generate	the	whole	cell	if	all	symmetry	operators	of	
the	space	groups	are	applied	to	it.	

•  Knowing	the	asymmetric	unit	and	the	symmetry	of	
the	structure	allows	genera$ng	the	unit	cell.	
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Examples


Asymmetric units…


(225)
 (221)
- - 



Diffrac$on	basics	
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Bragg's Interpretation 
 

 

 

W. H. Bragg examined Laue's photographs and noticed that the spots were 
elongated.  He surmised that this elongation arose from specular reflection of the 
x-rays off of "planes" of regularly arranged atoms. Incident beams are ‘reflected’ in 
phase if the path difference between them equals an integer multiple of the 
wavelength: 

BC = d sinθ CD = d sinθ
BC +CD =  path difference = nλ

nλ = 2d sinθ 19 



Vectorial form of Bragg’s law 
(Ewald or reflecting sphere) 

Postulate:	
•  a	sphere	of	radius	1/λ,
•  intersec$ng	the	origin	of	the	reciprocal	la<ce,		
•  with	 the	 star$ng	 point	 of	 the	 incident	 (or	 direct)	

beam	vector	at	the	sphere	center,	
•  and	unitary	incident	and	diffracted	vectors	S0	and	S:	

Then:	
	
|S	-	S0|	=	2	R	sinθ =	2	sinθ /λ

	

Only	when	S	-	S0	coincides	with	a	reciprocal	la<ce	point	
(i.e.	 when	 |S	 -	 S0|	 =	 |d*hkl|=	 1/dhkl	 )	 is	 Bragg’s	 law	
sa$sfied:	
	

2	sinθ /λ = 1/dhkl		
	

Therefore	 construc$ve	 interference	occurs	when	S	 -	S0	
coincides	 with	 the	 reciprocal	 vector	 of	 the	 reflec$ng	
planes!	
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For	this	incident	angle	there	is	no	diffracted	intensity	!	

Notation: d*hkl	=	ghkl 



Vectorial form of Bragg’s law 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

The	limi$ng	sphere	

The limiting sphere is obtained by the rotation around the origin of the reflection (Ewald) sphere. 
Defines the possible ‘reflections’ in a diffractogram, which depend only on the wavelength (radius 
of Ewald shpere is 1/λ  since S and S0 are unitary): planes with 1/d > 2/λ cannot scatter 
radiation with λ wavelength due to too small interplanar distances… 21 



Bragg ‘reflection’ 

In fact… 
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physically wrong but geometrically right 

Very useful but not a correct description! 



In reality the angle αn does not need to be measured only as θ in Bragg’s law 
illustrations. In fact, the diffracted beams of the same order form a conical surface 
(αn in constant on the conical surface). 

Derivation of Laue equations 
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AB−CD = a(cosαn − cosα0 ) = nxλ

AB−CD = b(cosβn − cosβ0 ) = nyλ

AB−CD = c(cosγn − cosγ0 ) = nzλ

Derivation of Laue equations 
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Adding scatterers in a third direction to form a 3D lattice gives the third Laue equation. This 
results in a set of equations with one simultaneous solution. By analogy with the previous 
results this solution will be a single vector lying at the intersection of three cones sharing a 
common apex. 



X-ray diffraction methods 
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In XRD the Ewald sphere radius is short so the coincidence between 
reciprocal lattice points and the sphere is rare.  

In order to record a diffraction pattern some reciprocal lattice points must 
lie on or pass through the Ewald sphere. This can be achieved in several 
different ways: 

•  Use “white” radiation and a single crystal:  Laue method 

•  Use monochromatic radiation and rotate a single crystal: Rotation 
method and similar techniques 

•  Use monochromatic radiation and a sample containing crystals with 
many different orientations (a powder): Powder diffraction 



The Laue method (single crystal diffraction) 
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As in Laue’s original experiment: 

•  Using “white” Bremsstrahlung radiation from an X-ray tube so that many different 
wavelengths are scattered by the sample 

•  Many reflections will simultaneously satisfy Bragg’s law without rotating the crystal  

 



Appearance	of	Laue	diffractograms	
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Ewald	construc$on	for	Laue	method	
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Rota$ng	crystal	method	(single	crystal	method)	

relps = reciprocal lattice points 

Aligned crystal is rotated around one axis so relps pass through the Ewald 
sphere: 
 
•  Produces spots lying on lines  
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Ewald	construc$on	for	rota$ng	crystal	method	

30 



Powder diffraction method 

Diffractometer 

Bragg-Brentano-geometry 



Reciprocal	la<ce	of	a	powder	
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In a powder we have a large number of 

crystals all at different orientations  
 
The reciprocal space no longer has one set of 
points, but many sets of points at different 
orientations. All of these points lie on the 
surface of spheres or shells.  
 
– Reciprocal lattice shells – rel shells  
 



Ewald	construc$on	for	powder	

33 
The powder rotates (θ) to increase the probably of diffraction and the detector rotates 
(2θ) to intersect the diffracting cones. 

A diffracted cone is formed every time Bragg’s law is satisfied. We may use a 
photographic film (Debye-Sherrer camera in the old days) or a revolving detector (Bragg-
Brentano diffractometer) to record the diffracted intensity.  



Electron	diffrac$on	(TEM)	of	single	crystal		
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Fourier transforms again: 
Crystal Thin disc 

multiplication 

convolution 

Real  
space 

Reciprocal  
space 

Reciprocal lattice scales: small parallel to the plane of the disc (almost infinite in atomic scale) and 
larger perpendicular to the disc due to finite and small thickness 



Diffrac$on	intensity	
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What can be said about the intensity of the “reflections” in this diffraction pattern?  
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Scattering by atoms 
•  The atom can be considered to be a collection of electrons. This electron 

density scatters radiation. 
•  For radiation to remain coherent the interference between x-rays scattered 

from different points within the atom has to be considered.  
•  This leads to a strong angle dependence of the scattering. 
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The scattering power of an atom is given by the atomic form factor (f): ratio of 
scattering from the atom to what would be observed from a single electron  

Scattering by atoms 

•  Form factor is expressed as a function of (sinθ)/λ 
as the interference depends on both λ and the 
scattering angle  

•  Form factor is equivalent to the atomic number at 
low angles, but it drops rapidly at high (sinθ)/λ  

 

Atomic scattering factors calculated for 
atoms and ions with different numbers of 
electrons. Note that the single electron of 
the hydrogen atom (H) scatters very little 
as compared with other elements, 
especially with increasing θ. Hydrogen will 
therefore be "difficult to see”.   
 



•   Unit Cell (UC) is representative of the crystal structure 
•   Scattered waves from various atoms in the UC interfere to create the 

diffraction pattern 

The wave scattered from the middle plane is out of phase with the ones scattered 
from top and bottom planes 

Extinctions from centered cells and/or  

Coherent	sca[ering	from	crystals	
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wave equation in 
complex notation 

§  If  atom B is different from atom A → the amplitudes must be weighed by the respective 
atomic scattering factors (f) 

§  The resultant amplitude of all the waves scattered by all the atoms in the UC is the 
scattering factor for the unit cell 

§  The unit cell scattering factor is called the Structure Factor (F) 

Scattering by an unit cell = function (position of the atoms, atomic scattering factors) 

F = Structure Factor = Amplitude of wave scattered by all atoms in UC
Amplitude of wave scattered by an electron

[2 ( )]i i h x k y l zE Ae feϕ π ʹ ʹ ʹ+ += =2 ( )h x k y l zϕ π ʹ ʹ ʹ= + +

I ∝Fhkl
2

The structure factor is independent of the shape and size  of the unit cell !!! 

for n atoms in the UC: 

Change	in	phase	due	to	atoms	in	frac$onal	coordinates	

Intensity of the diffracted wave: 
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Atom at (0,0,0) and equivalent positions 
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Structure factor calculations 

Simple cubic 



Atom	at	(0,0,0)	&	(½,	½,	0)	and	equivalent	posi$ons	
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⇒ F is independent of the ‘l’ index 

Real 

]1[ )( khiefF ++= π

fF 2=

0=F

22 4 fF =

02 =F

Both even or both odd 

Mixture of odd and even 

e.g. (001), (110), (112); (021), (022), (023) 

e.g. (100), (101), (102); (031), (032), (033) 

(h + k) even 

(h + k) odd 

Structure factor calculations 
C centered orthorhombic 
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Extinctions due to centering and/or 
different atomic form factors 



Reciprocal	space	and	intensi$es		
	

The	 sca[ered	 intensity	 distribu$on	 in	

reciprocal	 space	 is	 some$mes	 represented	 by	

weigh$ng	 the	 points	 of	 a	 reciprocal	 la<ce	

drawing:	

•  Larger	points	indicate	higher	intensity		

•  Crosses	indicate	absences	or	ex$nc$ons	

43 

Section of weighted reciprocal space for NaCl 
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Reciprocal	space	of	a	powder	with	
intensi$es		
	

•  Rel shells for powders 
 
•  Representation of the scattered 

intensity for a powder in 
reciprocal space 

Section of weighted reciprocal space 
for a NaCl powder showing the 
reciprocal lattice shells (rel shells) 
 

A radial profile is 
similar to a XRD 
diffraction pattern 



Electron	diffrac$on	
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Abbe’s principle of imaging: 

Rays with same θ converge 

(inverted) 

TEM diffraction vs imaging 

Unlike	with	visible	
light,	due	to	the	
small	λ, electrons	
can	be	coherently	
sca[ered	by	
crystalline	samples	
so	the	diffrac$on	
pa[ern	at	the	back	
focal	plane	of	the	
object	corresponds	
to	the	sample	
reciprocal	la<ce.	
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TEM diffraction vs imaging 

￼ 

Rays	with	same	
θ	converge	
(color	scheme		
different	from	
previous	slide)	
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Why do electron diffraction patterns have many spots? 
   
•  Typically in X-ray or neutron diffraction only one reciprocal lattice point is on the 

surface of the Ewald sphere at one time.  
•  In electron diffraction the Ewald sphere is not highly curved due to the very short 

wavelength electrons used. This almost flat Ewald sphere intersects with many 
reciprocal point (relps) at the same time (in fact, because they have non-zero 
height). 

 

Ewald sphere for Cu radiation is much more curved than 
that for electrons in an electron diffraction experiment  
 

Electron diffraction pattern 
from NiAl  48 

Diffrac$on	concepts	



Ewald	sphere	in	mul$-beam	condi$on	

•  For	reciprocal	la<ce	points	(infinitely	small):		even	with	the	crystal	oriented	along	low-index	
zone	axis	the	intersec$on	at	the	Zero	Order	Laue	Zone	would	be	impossible	for	relps	other	
than	the	origin…	

•  The	strong	diffrac$on	from	many	planes	in	this	condi$on	occurs	because		relps	have	size	and	
shape!	

Reciprocal lattice rods (relrods) 
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Two-beam	condi$ons	

The [011 ] zone-axis 
diffraction pattern has 
many planes diffracting 
with equal strength. In 
the smaller patterns the 
specimen is tilted so 
there are only two 
strong beams, the direct 
000 on-axis beam and a 
different one of the hkl 
o ff - ax i s d iff racte d 
beams. 
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Excita$on	error	or	devia$on	parameter	
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Variation of intensity with thickness for a crystal at a Bragg condition, using the 
two-beam theory and without including any absorption. ξg is the extinction 
distance, i.e., the periodicity of the thickness fringes.  
 

There is an interchange of intensity between the two beams 
as a function of tickness (t). The so-called thickness fringes, 
which can be observed for a crystal of varying t (when 
imaged with any of the two beams), originate from this effect. 
 
 The total intensity is conserved i.e., I0(t) + Ig(t) = 1 and the 
intensity in the diffracted beam is zero for t = nξg (n an 
integer), hence the term extinction distance. 

2-beam	sca[ering	condi$on	
Dynamical	theory	as	a	system	of	differen$al	
equa$ons	(Howie-Whelan	formula$on)		

	
Solution to the 
differential 
equations: 
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The images of wedged samples present series of  so-called thickness fringes 
when only one beam is used. 

Dynamical	sca[ering	for	2-beam	condi$on		
	

http://www.tf.uni-kiel.de/ 

t 



The image intensity varies sinusoidally depending on the 
thickness and on the beam used for imaging.  

Reduced contrast as thickness increases 
due to absorption 

2 beam condition 
A: image obtained with transmitted beam (Bright field) 
B: image obtained with diffracted beam (Dark field) 

Dynamical	sca[ering	for	2-beam	condi$on		
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Selected	area	diffrac$on	
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Symmetry	informa$on	
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Atomic	posi$ons	informa$on	

The atomic positions information (structure factor) is totally or partially 
lost due to dynamic effects…  

57 



Ring	diffrac$on	pa[erns	
•  If selected area aperture selects numerous, randomly-oriented nanocrystals, 

SADP consists of rings sampling all possible diffracting planes: like powder X-
ray diffraction 

•  Larger crystals: “spotty” patterns 

•  “Texture” - i.e. preferential orientation - is seen as arcs of greater intensity in the 
diffraction rings  

Figure 6. Scanning electron microscope ~SEM; back-scattered electron! images of organic globules dispersed in
mineralized regions. a: Organic matter with relatively low sulfur content in a submandibular sialolith. b: Sulfur-rich
globules in a parotid sialolith. The spectra have been normalized using the background level.

Figure 7. Transmission electron microscope
~TEM! images and electron diffraction pat-
terns of crystals. a: Coexisting crystals of
different structures: A, colonies of filamen-
tary crystals; B, needle-like crystals; C, large
single crystals. b: Filamentary crystals.
c: Agglomerate of parallelepiped crystals.
d: Ring electron diffraction pattern obtained
from a region of filamentary crystals show-
ing the radial integrated intensity together
with a simulation for hydroxyapatite. e: Mi-
crodiffraction pattern of a single crystal in-
dexed for hydroxyapatite.

Structure and Growth of Sialoliths 1197
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Kikuchi	lines	
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Kikuchi	lines	
Inelastic scattering: electron in all directions inside 
crystal. Some scattered electrons in correct 
orientation for Bragg scattering: cone of scattering 
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Kikuchi	lines	
Bragg “reflection” of inelastically scattered electron 
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Kikuchi	lines	

Similar example: 



Kikuchi	lines:	“road	maps”	to	reciprocal	la<ce	
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•  Spot pattern – from single-crystals in the specimen 
–  Major use:  

•  The foil orientation can be determined; 
•  Identification of phases; 
•  The orientation relationship between structures can be 

determined. 

•  Ring pattern – from polycrystalline specimen 
–  Major use: 

•  Identification of the phases; 
•  Analysis of texture. 
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Analyzing	the	diffrac$on	pa[ern	



Ring pattern: 
 For polycrystalline material the reciprocal lattice becomes a series of 
concentric spheres  

beam 

O 

hkl sphere 
D 

Steps for indexing ring patterns: 
 
1)  Measure ring diameters D1, D2, D3 ……. 
2)  Calculate dhkl (using the expression: rdhkl=Lλ) 
3)  Use some structure database to index each ring. 
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