
Slides from FYS4411 Lectures

Morten Hjorth-Jensen

1Department of Physics and Center of Mathematics for Applications
University of Oslo, N-0316 Oslo, Norway

Spring 2011

1 / 470

Topics for Week 4, January 24-28

Introduction, Parallelization, MPI and Variational Monte
Carlo

I Presentation of topics to be covered and introduction to
Many-Body physics (Lecture notes chapter 14-19, Raimes
chapter 1 or Thijssen chapter 4).

I Variational Monte Carlo theory and presentation of project
1. (lecture notes chapter 14, Thijssen chapter 12)

I Next week: Introduction to Message Passing Interface
(MPI) and parallelization. (lecture notes chapter 4.7)

I Assignment for next week: study chapter 14 of Lecture
notes or Chapter 12 of Thijssen.

2 / 470

24 January - 31 May

Course overview, Computational aspects

I Parallelization (MPI), high-performance computing topics
and object orientation. Choose between F95 and/or C++
as programming languages. Python also possible as
programming language.

I Algorithms for Monte Carlo Simulations (multidimensional
integrals), Metropolis-Hastings and importance sampling
algorithms. Improved Monte Carlo methods (part 1 of
project 1)

I Statistical analysis of data from Monte Carlo calculations,
blocking method. (part 1 of project 1)

3 / 470

24 January - 31 May

Course overview, Computational aspects

I Search for minima in multidimensional spaces (conjugate
gradient method, steepest descent method,
quasi-Newton-Raphson, Broyden-Jacobian), part 2 of
project 1.

I Iterative methods for solutions of non-linear equations, part
2 of project 1.

I Object orientation, both parts
I Solutions of coupled differential equations for density

functional calculations, part 2 of project 1.

4 / 470

24 January -31 May

Quantum Mechanical Methods and Systems

1. Variational Monte Carlo for ’ab initio’ studies of quantum
mechanical many-body systems.

2. Simulation of quantum dots with extensions to solids. It
can also be extended to three-dimensional systems like
atoms or molecules.

3. Aim of part 1 of the project: understand how to simulate
qauntum mechanical systems with many interacting
particles using variational Monte Carlo methods.

The methods are relevant for atomic, molecular,solid state,
materials science, nanotechnology, quantum chemistry and
nuclear physics.

5 / 470

24 January -31 May

Quantum Mechanical Methods and Systems

1. Part 2 of the project solves much of the same systems as
in part 1 but introduces density functional theory.

2. We will compare density functional theory with the VMC
results

3. The VMC results will then be used to constrain a density
functional (actual research and could lead to an article)

4. We will also end up writing a density functional code and
use this to compute properties of solids (atoms in a lattice).

DFT and Hartree-Fock theory are covered by the lectures notes
and chapters 4-6 of Thijssen.

6 / 470

24 January -31 May, project 2

Quantum Mechanical Methods and Systems

1. The final part (part 2) of project 1 is however not yet
determined. Depending on the interest of the participants
we may extend project 1 to parameterize a density
functional from Monte Carlo calculations and compare with
existing functionals. It may open up for the possibility of a
writing a scientific article.

7 / 470

24 January -31 May

Projects, deadlines and oral exam

1. Deadline part 1: March 21
2. Deadline full project: 31 May
3. Oral exam: week 24 (8-12 June), most likely Friday June

10.

The oral exam is based on your presentation of the project.

8 / 470

24 January -31 May

More on projects

1. Keep a logbook, important for keeping track of all your
changes etc etc.

2. The projects should be written as a regular scientific
article, with introduction, formalism, codes which have
been developed and discussion of results. Conclusions
and references should also be included. An example can
be found on the webpage of the course.

3. The link with the article example contains also an article on
how to use latex and write good scientific articles!

9 / 470

Lectures and ComputerLab

I Lectures: Thursday (14.15-16, room FV329)
I Detailed lecture notes, all programs presented and

projects can be found at the homepage of the course.
I Computerlab: 16-19 thursday, room FV329
I Weekly plans and relevant information are on the official

webpage.
I Chapters 4, 11-18 of the FYS3150 lecture notes give a

good starting point. We recommend also J. M. Thijssen
text Computational Physics and the text of Raimes as
background. For MPI we recommend Gropp, Lusk and
Sjellum’s text.

10 / 470

Thijssen’s text

J. M. Thijssen’s text

I Computational
Physics

I Chapters 3-6 and 12,
possibly also chapter
8-9

I see http://www.
tn.tudelft.nl/
tn/People/Staff/
Thijssen/
comphybook.html

11 / 470

http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/comphybook.html
http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/comphybook.html
http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/comphybook.html
http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/comphybook.html
http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/comphybook.html

MPI text

Gropp, Lusk and
Sjellum

I Using MPI
I Chapters 1-5
I see
http://mitpress.
mit.edu/catalog/
item/default.
asp?ttype=2&tid=
10761

12 / 470

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10761
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10761
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10761
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10761
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10761

Selected Texts and lectures on C/C++

J. J. Barton and L. R. Nackman,Scientific and Engineering C++, Addison Wesley,
3rd edition 2000.

B. Stoustrup, The C++ programming language, Pearson, 1997.

George Em Karniadakis and Robert M. Kirby II, Parallel Scientific Computing in
C++ and MPI http://www.cambridge.org/catalogue/catalogue.asp?
isbn=9780521520805

D. Yang, C++ and Object-oriented Numeric Computing for Scientists and
Engineers, Springer 2000.

More books reviewed at http:://www.accu.org/ and
http://www.comeaucomputing.com/booklist/

13 / 470

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521520805
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521520805
http:://www.accu.org/
http://www.comeaucomputing.com/booklist/

Definitions and notations

The Schrödinger equation reads

Ĥ(r1, r2, . . . , rN)Ψλ(r1, r2, . . . , rN) = EλΨλ(r1, r2, . . . , rN), (1)

where the vector ri represents the coordinates (spatial and spin) of particle i , λ stands

for all the quantum numbers needed to classify a given N-particle state and Ψλ is the

pertaining eigenfunction. Throughout this course, Ψ refers to the exact eigenfunction,

unless otherwise stated.

14 / 470

Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

Ĥ = T̂ + V̂

where T̂ represents the kinetic energy of the system

T̂ =
N∑

i=1

p2
i

2mi
=

N∑
i=1

(
−

~2

2mi
∇i

2
)

=
N∑

i=1

t(ri)

while the operator V̂ for the potential energy is given by

V̂ =
N∑

i=1

u(ri) +
N∑

ji=1

v(ri , rj) +
N∑

ijk=1

v(ri , rj , rk) + . . . (2)

Hereafter we use natural units, viz. ~ = c = e = 1, with e the elementary chargeand c

the speed of light. This means that momenta and masses have dimension energy.

15 / 470

Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = Ne electrons takes the following form

Ĥ =

Ne∑
i=1

t(ri)−
Ne∑
i=1

k
Z
ri

+

Ne∑
i<j

k
rij
,

with k = 1.44 eVnm

16 / 470

Definitions and notations

We can rewrite this as

Ĥ = Ĥ0 + Ĥ1 =

Ne∑
i=1

ĥi +

Ne∑
i<j=1

1
rij
, (3)

where we have defined rij = |ri − rj | and

ĥi = t(ri)−
Z
ri
. (4)

The first term of eq. (3), H0, is the sum of the A or n one-body Hamiltonians ĥi . Each

individual Hamiltonian ĥi contains the kinetic energy operator of an electron and its

potential energy due to the attraction of the nucleus. The second term, H1, is the sum

of the Ne(Ne − 1)/2 two-body interactions between each pair of electrons. Note that

the double sum carries a restriction i < j .

17 / 470

Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
ui = u(ri) of Eq. (2). We have moved this term into the Ĥ0 part of the Hamiltonian,
instead of keeping it in V̂ as in Eq. (2). The reason is that we will hereafter treat Ĥ0 as
our non-interacting Hamiltonian. For a many-body wavefunction Φλ defined by an
appropriate single-particle basis, we may solve exactly the non-interacting eigenvalue
problem

Ĥ0Φλ = eλΦλ,

with eλ being the non-interacting energy. This energy is defined by the sum over

single-particle energies to be defined below. For atoms the single-particle energies

could be the hydrogen-like single-particle energies corrected for the charge Z . For

nuclei and quantum dots, these energies could be given by the harmonic oscillator in

three and two dimensions, respectively.

18 / 470

Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

Ĥ = Ĥ0 + Ĥ1 =
N∑

i=1

hi +
N∑

i<j=1

V (rij), (5)

with

H0 =
N∑

i=1

hi =
N∑

i=1

(t(ri) + u(ri)) . (6)

The onebody part u(ri) is normally approximated by a harmonic oscillator potential or

the Coulomb interaction an electron feels from the nucleus. However, other potentials

are fully possible, such as those derived from the self-consistent solution of

Hartree-Fock or Kohn-Sham equations.

19 / 470

Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P̂
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(r1, r2, . . . , rN) is an eigenfunction of P̂ as well, that is

P̂ij Ψλ(r1, r2, . . . , ri , . . . , rj , . . . , rN) = Ψλ(r1, r2, . . . , rj , . . . , ri , . . . , rN).

We have introduced the suffix ij in order to indicate that we permute particles i and j .

The Pauli principle tells us that the total wave function for a system of fermions has to

be antisymmetric. What does that mean for the above permutation?

20 / 470

Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Φ(r1, r2, . . . , rN , α, β, . . . , σ) =
1
√

N!

∣∣∣∣∣∣∣∣∣
ψα(r1) ψα(r2) ψα(rN)
ψβ(r1) ψβ(r2) ψβ(rN)
.
.

ψσ(r1) ψσ(r2) ψγ(rN)

∣∣∣∣∣∣∣∣∣ , (7)

where ri stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.

21 / 470

Definitions and notations

The single-particle function ψα(ri) are eigenfunctions of the onebody Hamiltonian hi ,
that is

hi = h(ri) = t(ri) + u(ri),

with eigenvalues
hiψα(ri) = t(ri) + u(ri)ψα(ri) = εαψα(ri).

The energies εα are the so-called non-interacting single-particle energies, or

unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.

22 / 470

Definitions and notations

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .

23 / 470

Definitions and notations

In the Hartree-Fock method (and very similarly the Kohn-Sham approach) the trial
function is the Slater determinant of Eq. (7) which can be rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

∑
P

(−)P P̂ψα(r1)ψβ(r2) . . . ψν(rN) =
√

N!AΦH ,

(8)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two nucleons.

24 / 470

Definitions and notations

It is defined as
A =

1
N!

∑
p

(−)pP̂, (9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle
functions

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN).

25 / 470

Definitions and notations

Both Ĥ0 and Ĥ1 are invariant under all possible permutations of any two particles and
hence commute with A

[H0,A] = [H1,A] = 0. (10)

Furthermore, A satisfies
A2 = A, (11)

since every permutation of the Slater determinant reproduces it.

26 / 470

Definitions and notations

The expectation value of Ĥ0∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗HAĤ0AΦHdτ

is readily reduced to ∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗H Ĥ0AΦHdτ,

where we have used eqs. (10) and (11). The next step is to replace the
antisymmetrization operator by its definition Eq. (8) and to replace Ĥ0 with the sum of
one-body operators

∫
Φ∗Ĥ0Φdτ =

N∑
i=1

∑
p

(−)p
∫

Φ∗H ĥi P̂ΦHdτ.

27 / 470

Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then

∫
Φ∗Ĥ0Φdτ =

N∑
i=1

∫
Φ∗H ĥi ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

∫
Φ∗Ĥ0Φdτ =

N∑
µ=1

∫
ψ∗µ(r)ĥψµ(r)dr. (12)

28 / 470

Definitions and notations

We introduce the following shorthand for the above integral

〈µ|h|µ〉 =

∫
ψ∗µ(r)ĥψµ(r)dr,

and rewrite Eq. (12) as ∫
Φ∗Ĥ0Φdτ =

N∑
µ=1

〈µ|h|µ〉. (13)

29 / 470

Definitions and notations

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have ∫

Φ∗Ĥ1Φdτ = N!

∫
Φ∗HAĤ1AΦHdτ,

which reduces to

∫
Φ∗Ĥ1Φdτ =

N∑
i≤j=1

∑
p

(−)p
∫

Φ∗HV (rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.

30 / 470

Definitions and notations

Because of the dependence on the inter-particle distance rij , permutations of any two
particles no longer vanish, and we get

∫
Φ∗Ĥ1Φdτ =

N∑
i<j=1

∫
Φ∗HV (rij)(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges nucleon i and nucleon j . Again

we use the assumption that the single-particle wave functions are orthogonal.

31 / 470

Definitions and notations

We obtain

∫
Φ∗Ĥ1Φdτ =

1
2

N∑
µ=1

N∑
ν=1

[∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψµ(ri)ψν(rj)dri drj

−
∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψν(ri)ψµ(rj)dri drj

]
.

(14)

The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.

32 / 470

Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions ψµ(r), defined by the quantum numbers µ and r (recall that r also
includes spin degree) are defined as the overlap

ψα(r) = 〈r|α〉.

33 / 470

Definitions and notations

We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =

∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψµ(ri)ψν(rj)dri drj ,

and
〈µν|V |νµ〉 =

∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψν(rj)ψµ(ri)dri drj .

34 / 470

Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .

35 / 470

Definitions and notations

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .

With these notations we rewrite Eq. (14) as

∫
Φ∗Ĥ1Φdτ =

1
2

N∑
µ=1

N∑
ν=1

〈µν|V |µν〉AS . (15)

36 / 470

Definitions and notations

Combining Eqs. (13) and (109) we obtain the energy functional

E [Φ] =
N∑
µ=1

〈µ|h|µ〉+
1
2

N∑
µ=1

N∑
ν=1

〈µν|V |µν〉AS . (16)

which we will use as our starting point for the Hartree-Fock calculations and density

functional calculations (DFT) based on solving the Kohn-Sham equations later in this

course.

37 / 470

Quantum dots, the case of our project

We consider a system of electrons confined in a pure isotropic harmonic oscillator
potential V (r) = m∗ω2

0r2/2, where m∗ is the effective mass of the electrons in the host
semiconductor, ω0 is the oscillator frequency of the confining potential, and
r = (x , y , z) denotes the position of the particle.
The Hamiltonian of a single particle trapped in this harmonic oscillator potential simply
reads

Ĥ =
p2

2m∗
+

1
2

m∗ω2
0r2

where p is the canonical momentum of the particle.

38 / 470

Quantum dots

When considering several particles trapped in the same quantum dot, the Coulomb
repulsion between those electrons has to be added to the single particle Hamiltonian
which gives

Ĥ =

Ne∑
i=1

(
pi

2

2m∗
+

1
2

m∗ω2
0ri

2
)

+
e2

4πε0εr

∑
i<j

1
ri − rj

,

where Ne is the number of electrons, −e (e > 0) is the charge of the electron, ε0 and
εr are respectively the free space permitivity and the relative permitivity of the host
material (also called dielectric constant), and the index i labels the electrons.

39 / 470

Quantum dots

We assume that the magnetic field
−→
B is static and along the z axis. At first we ignore

the spin-dependent terms. The Hamiltonian of these electrons in a magnetic field now
reads

Ĥ =

Ne∑
i=1

(
(pi + eA)2

2m∗
+

1
2

m∗ω2
0ri

2
)

+
e2

4πε0εr

∑
i<j

1
ri − rj

, (17)

=

Ne∑
i=1

(
pi

2

2m∗
+

e
2m∗

(A · pi + pi · A) +
e2

2m∗
A2 +

1
2

m∗ω2
0ri

2
)

(18)

+
e2

4πε0εr

∑
i<j

1
ri − rj

, (19)

where A is the vector potential defined by B = ∇× A.

40 / 470

Quantum dots

In coordinate space, pi is the operator −i~∇i and by applying the Hamiltonian on the
total wave function Ψ(r) in the Schrödinger equation, we obtain the following operator
acting on Ψ(r)

A · pi + pi · A = −i~ (A · ∇i +∇i · A) Ψ (20)

= −i~ (A · (∇i Ψ) +∇i · (AΨ)) (21)

41 / 470

Quantum dots

We note that if we use the product rule and the Coulomb gauge ∇ ·A = 0 (by choosing
the vector potential as A = 1

2 B× r), pi and ∇i commute and we obtain

∇i · (AΨ) = A · (∇i Ψ) + (∇i · A)︸ ︷︷ ︸
0

Ψ = A · (∇i Ψ)

42 / 470

Quantum dots

This leads us to the following Hamiltonian:

Ĥ =

Ne∑
i=1

(
−

~2

2m∗
∇2

i − i~
e

m∗
A · ∇i +

e2

2m∗
A2 +

1
2

m∗ω2
0ri

2
)

+
e2

4πε0εr

∑
i<j

1
ri − rj

,

43 / 470

Quantum dots

The linear term in A becomes, in terms of B:

−i~e
m∗

A · ∇i = −
i~e
2m∗

(B× ri) · ∇i (22)

=
−i~e
2m∗

B · (ri ×∇i) (23)

=
e

2m∗
B · L (24)

where L = −i~(ri ×∇i) is the orbital angular momentum operator of the electron i .

44 / 470

Quantum dots

If we assume that the electrons are confined in the xy -plane, the quadratic term in A
can be written as

e2

2m∗
A2 =

e2

8m∗
(B× r)2 =

e2

8m∗
B2r2

i

45 / 470

Quantum dots

Until this point we have neglected the intrinsic magnetic moment of the electrons which
is due to the electron spin in the host material. We will now add its effect to the
Hamiltonian. This intrinsic magnetic moment is given byMs = −g∗s (eS)/(2m∗),
where S is the spin operator of the electron and g∗s its effective spin gyromagnetic ratio
(or effective g-factor in the host material).We see that the spin magnetic momentMs
gives rise to an additional interaction energy linear in the magnetic field,

Ĥs = −Ms · B = g∗s
e

2m∗
BŜz = g∗s

ωc

2
Ŝz

where ωc = eB/m∗ is known as the cyclotron frequency.

46 / 470

Quantum dots

The final Hamiltonian reads

Ĥ =

Ne∑
i=1

(
−~2

2m∗
∇2

i +

Harmonic ocscillator
potential︷ ︸︸ ︷

1
2

m∗ω2
0ri

2
)

+

Coulomb
interactions︷ ︸︸ ︷

e2

4πε0εr

∑
i<j

1
ri − rj

+

Ne∑
i=1

(
1
2

m∗
(ωc

2

)2
ri

2 +
1
2
ωc L̂(i)

z +
1
2

g∗s ωc Ŝ(i)
z

)
︸ ︷︷ ︸

single particle interactions
with the magnetic field

, (25)

47 / 470

Quantum dots

In order to simplify the computation, the Hamiltonian can be rewritten on dimensionless
form. For this purpose, we introduce the following constants:

I the oscillator frequency ω = ω0

√
1 + ω2

c/(4ω2
0),

I a new energy unit ~ω,

I a new length unit, the oscillator length defined by l =
√

~/(m∗ω), also called the
characteristic length unit.

We rewrite the Hamiltonian in dimensionless units using:

r −→
r
l
, ∇ −→ l ∇ and L̂z −→ L̂z

48 / 470

Quantum dots

It leads to the following Hamiltonian:

Ĥ =

Ne∑
i=1

(
−

1
2
∇2

i +
1
2

r2
i

)
+

Dimensionless
confinement
strength (λ)︷ ︸︸ ︷
e2

4πε0εr

1
~ωl

∑
i<j

1
rij

+

Ne∑
i=1

(
1
2
ωc

~ω
L̂(i)

z +
1
2

g∗s
ωc

~ω
Ŝ(i)

z

)
, (26)

Lengths are now measured in units of l =
√

~/(m∗ω), and energies in units of ~ω.

49 / 470

Quantum dots

A new dimensionless parameter λ = l/a∗0 (where a∗0 = 4πε0εr~2/(e2m∗) is the
effective Bohr radius) describes the strength of the electron-electron interaction. Large
λ implies strong interaction and/or large quantum dot.

Since both L̂z and Ŝz commute with the Hamiltonian we can perform the calculations

separately in subspaces of given quantum numbers Lz and Sz .

50 / 470

Quantum dots

The simplified dimensionless Hamiltonian becomes

Ĥ =

Ne∑
i=1

[
−

1
2
∇2

i +
1
2

r2
i

]
+ λ

∑
i<j

1
rij

+

Ne∑
i=1

(
1
2
ωc

~ω
L(i)

z +
1
2

g∗s
ωc

~ω
S(i)

z

)
,

51 / 470

Quantum dots

The last sum which is proportional to the magnetic field involves only the quantum
numbers Lz and Sz and not the operators themselves. Therefore these terms can be
put aside during the resolution, the squizzing effect of the magnetic field being included
simply in the parameter λ. The contribution of these terms will be added when the other
part has been solved. This brings us to the simple and general form of the Hamiltonian:

Ĥ =

Ne∑
i=1

(
−

1
2
∇2

i +
1
2

r2
i

)
+ λ

∑
i<j

1
rij
.

52 / 470

Quantum dots

The form

Ĥ =

Ne∑
i=1

(
−

1
2
∇2

i +
1
2

r2
i

)
+ λ

∑
i<j

1
rij
,

is however not so practical since the interaction carries a strength λ. Why?

53 / 470

Quantum dots

We rewrite it as a one-body part

Ĥ0 =

Ne∑
i=1

(
−

1
2
∇2

i +
ω2

2
r2
i

)
,

and interacting part

V̂ =

Ne∑
i<j

1
|ri − rj |

.

Your task till next week is to show this. The unperturbed part of the Hamiltonian yields
the single-particle energies

εi = ω (2n + |m|+ 1) , (27)

where n = 0, 1, 2, 3, .. and m = 0,±1,±2, ... The index i runs from 0, 1, 2,

54 / 470

Tasks for next week

I Solve the exercise on the previous slide

I Set up the harmonic oscillator wave function in cartesian coordinates for an
electron with nx = ny = 0 and find the oscillator energy.

I Use this result to find the unperturbed energy

∫
Φ∗Ĥ0Φdτ =

N∑
µ=1

〈µ|h|µ〉.

for two electrons with the same quantum numbers. Is that possible?

I Repeat for six electrons (find the relevant harmonic oscillator quantum numbers)

I Read chapter 12 of Thijssen or alternatively chapter 14 of lecture notes
(Variational Monte Carlo)

I Read chapter 5 of Lars Eivind Lervåg’s thesis, it deals with quantum dots and
gives a good introduction to the physics of quantum dots.

55 / 470

Topics for Week 5, January 31-February 4

Quantum Monte Carlo and start of project 1

I Repetition from the last two weeks
I Quantum Monte Carlo
I How to compute the local energy, numerically versus

closed form expressions

Project work this week: Start 1a and 1b.

56 / 470

Quantum Monte Carlo Motivation

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =∫
dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem. an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.

57 / 470

Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).

58 / 470

Quantum Monte Carlo

There are

2A ×
(

A
Z

)
coupled second-order differential equations in 3A dimensions.
For a nucleus like 10Be this number is 215040. This is a truely challenging many-body
problem.

Methods like partial differential equations can at most be used for 2-3 particles.

59 / 470

Quantum Many-particle(body) Methods

1. Monte-Carlo methods

2. Renormalization group (RG) methods, in particular density matrix RG

3. Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

4. Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

5. Perturbative many-body methods

6. Green’s function methods

7. Density functional theory/Mean-field theory and Hartree-Fock theory

The physics of the system hints at which many-body methods to use. For systems with

strong correlations among the constituents, item 5 and 7 are ruled out.

60 / 470

Pros and Cons of Monte Carlo

I Is physically intuitive.

I Allows one to study systems with many degrees of freedom. Diffusion Monte
Carlo (DMC) and Green’s function Monte Carlo (GFMC) yield in principle the
exact solution to Schrödinger’s equation.

I Variational Monte Carlo (VMC) is easy to implement but needs a reliable trial
wave function, can be difficult to obtain. This is where we will use Hartree-Fock
theory to construct an optimal basis.

I DMC/GFMC for fermions (spin with half-integer values, electrons, baryons,
neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric wave
function. PDF in this case given distribution of random walkers (p ≥ 0).

I The solution has a statistical error, which can be large.

I There is a limit for how large systems one can study, DMC needs a huge number
of random walkers in order to achieve stable results.

I Obtain only the lowest-lying states with a given symmetry. Can get excited
states.

61 / 470

Where and why do we use Monte Carlo Methods in
Quantum Physics

I Quantum systems with many particles at finite temperature: Path Integral Monte
Carlo with applications to dense matter and quantum liquids (phase transitions
from normal fluid to superfluid). Strong correlations.

I Bose-Einstein condensation of dilute gases, method transition from non-linear
PDE to Diffusion Monte Carlo as density increases.

I Light atoms, molecules, solids and nuclei.

I Lattice Quantum-Chromo Dynamics. Impossible to solve without MC
calculations.

I Simulations of systems in solid state physics, from semiconductors to spin
systems. Many electrons active and possibly strong correlations.

62 / 470

Bose-Einstein Condensation of atoms, thousands of
Atoms in one State, Project 2 in 2007

63 / 470

Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

∫
dRΨ∗T (R)H(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.

64 / 470

Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
∑

i

ai Ψi (R),

and assuming the set of eigenfunctions to be normalized one obtains∑
nm a∗man

∫
dRΨ∗m(R)H(R)Ψn(R)∑

nm a∗man
∫

dRΨ∗m(R)Ψn(R)
=

∑
n a2

nEn∑
n a2

n
≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved in the

calculation of various expectation values are multi-dimensional ones. The variational

principle yields the lowest state of a given symmetry.

65 / 470

Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.

66 / 470

Quantum Monte Carlo

I Construct first a trial wave function ψαT (R), for a many-body system consisting of
N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN).

I Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

∫
dRΨ∗Tα

(R)H(R)ΨTα
(R)∫

dRΨ∗Tα
(R)ΨTα

(R)
.

I Thereafter we vary α according to some minimization algorithm and return to the
first step.

67 / 470

Quantum Monte Carlo
Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to the
expectation value of the Hamiltonian is now

E [H] ≈
∫

dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

.

Define a new quantity

EL(R) =
1

ψT (R)
HψT (R),

called the local energy, which, together with our trial PDF yields

E [H] = 〈H〉 ≈
∫

P(R)EL(R)dR ≈
1
N

N∑
i=1

P(Ri)EL(Ri)

with N being the number of Monte Carlo samples.

68 / 470

Quantum Monte Carlo
Algo:

I Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

∣∣ψαT (R)
∣∣2.

I Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1. Calculate a trial position Rp = R + r ∗ step where r is a
random variable r ∈ [0,1].

2. Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3. If the step is accepted, then we set R = Rp. Update
averages

I Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. Called brute-force

sampling. Need importance sampling to get more relevant sampling.

69 / 470

Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m
∂2u(r)

∂r2
−
(

ke2

r
−

~2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−
1
2
∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1
2
∂2

∂ρ2
−

1
ρ

+
l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.

70 / 470

Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1
ρ
−
α

2

(
α−

2
ρ

)
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

71 / 470

Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

∫
dRΨ∗T (R)Hn(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
= constant×

∫
dRΨ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads to zero

variance! Variation is then performed by minimizing both the energy and the variance.

72 / 470

Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

73 / 470

Quantum Monte Carlo

The hamiltonian becomes then

Ĥ = −
~2∇2

1
2m

−
~2∇2

2
2m

−
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads
Ĥψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.

74 / 470

Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1
ψT (R)

(
−

1
2
∇2

1 −
Z
r1

)
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

(
−

1
2

d2

dr2
1
−

1
r1

d
dr1
−

Z
r1

)
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

(
−

1
r1

d
dr1
−

Z
r1

)
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.

75 / 470

Quantum Monte Carlo

This results in
1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1
RT (r)

dRT (r)

dr
= −

Z
l + 1

.

Similarry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
∏
i<j

f (rij),

for a system with N electrons or particles.

76 / 470

VMC code for helium, vmc para.cpp

/ / Here we def ine g loba l v a r i a b l e s used i n
var ious f un c t i on s

/ / These can be changed by reading from f i l e the
d i f f e r e n t parameters

i n t dimension = 3; / / three−dimensional system
i n t charge = 2; / / we f i x the charge to be t h a t

o f the hel ium atom
i n t my rank , numprocs ; / / these are the

parameters used by MPI to
/ / de f ine which node and

how many
double s tep leng th = 1 . 0 ; / / we f i x the bru te

fo rce jump to 1 Bohr rad ius
i n t number par t i c les = 2; / / we f i x a lso the

number o f e lec t rons to be 2

77 / 470

VMC code for helium, vmc para.cpp, main part

/ / MPI i n i t i a l i z a t i o n s , d iscuss p rope r l y next
week

M P I I n i t (& argc , &argv) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
t i m e s t a r t = MPI Wtime () ;

i f (my rank == 0 && argc <= 2) {
cout << "Bad Usage: " << argv [0] <<
" read also output file on same line" << endl

;
ex i t (1) ;

}
i f (my rank == 0 && argc > 2) {

out f i lename=argv [1] ;
o f i l e . open (ou t f i lename) ;

}

78 / 470

VMC code for helium, vmc para.cpp, main part

/ / Se t t i ng output f i l e name f o r t h i s rank :
os t r ings t ream ost ;
os t << "blocks_rank" << my rank << ".dat" ;
/ / Open f i l e f o r w r i t i n g :
b l o c k o f i l e . open (os t . s t r () . c s t r () , i os : : out | i os : :

b ina ry) ;

t o t a l c u m u l a t i v e e = new double [max var ia t ions + 1] ;
t o t a l c u m u l a t i v e e 2 = new double [max var ia t ions + 1] ;
cumula t ive e = new double [max var ia t ions + 1] ;
cumulat ive e2 = new double [max var ia t ions + 1] ;

/ / i n i t i a l i z e the ar rays by zero ing them
for (i =1; i <= max var ia t ions ; i ++){

cumula t ive e [i] = cumulat ive e2 [i] = 0 . 0 ;
t o t a l c u m u l a t i v e e [i] = t o t a l c u m u l a t i v e e 2 [i]

= 0 . 0 ;
}

79 / 470

VMC code for helium, vmc para.cpp, main part
/ / broadcast the t o t a l number o f v a r i a t i o n s
MPI Bcast (& max var ia t ions , 1 , MPI INT , 0 ,

MPI COMM WORLD) ;
MPI Bcast (& number cycles , 1 , MPI INT , 0 ,

MPI COMM WORLD) ;
to ta l number cyc les = number cycles∗numprocs ;
/ / a r ray to s to re a l l energies f o r l a s t v a r i a t i o n

o f alpha
a l l e n e r g i e s = new double [number cycles + 1] ;
/ / Do the mc sampling and accumulate data w i th

MPI Reduce
mc sampling (max var ia t ions , number cycles ,

cumulat ive e ,
cumulat ive e2 , a l l e n e r g i e s) ;

/ / C o l l e c t data i n t o t a l averages
for (i =1; i <= max var ia t ions ; i ++){

MPI Reduce(& cumulat ive e [i] , & t o t a l c u m u l a t i v e e [
i] , 1 , MPI DOUBLE,

MPI SUM, 0 ,

MPI COMM WORLD
) ;

MPI Reduce(& cumulat ive e2 [i] , &
t o t a l c u m u l a t i v e e 2 [i] , 1 , MPI DOUBLE,

MPI SUM, 0 ,
MPI COMM WORLD) ;

}

80 / 470

VMC code for helium, vmc para.cpp, main part

b l o c k o f i l e . write ((char ∗) (a l l e n e r g i e s +1) ,
number cycles∗sizeof (double)) ;

b l o c k o f i l e . close () ;
delete [] t o t a l c u m u l a t i v e e ; delete []

t o t a l c u m u l a t i v e e 2 ;
delete [] cumula t ive e ; delete [] cumulat ive e2 ;

delete [] a l l e n e r g i e s ;
/ / End MPI
MPI F ina l i ze () ;
return 0;
} / / end of main f u n c t i o n

81 / 470

VMC code for helium, vmc para.cpp, sampling

alpha = 0.5∗ charge ;
/ / every node has i t s own seed f o r the random

numbers
idum = −1−my rank ;
/ / a l l o c a t e matr ices which conta in the p o s i t i o n o f

the p a r t i c l e s
r o l d =(double ∗∗) mat r i x (number par t ic les ,

dimension , sizeof (double)) ;
r new =(double ∗∗) mat r i x (number par t ic les ,

dimension , sizeof (double)) ;
for (i = 0 ; i < number par t i c les ; i ++) {

for (j =0; j < dimension ; j ++) {
r o l d [i] [j] = r new [i] [j] = 0 ;

}
}

/ / loop over v a r i a t i o n a l parameters

82 / 470

VMC code for helium, vmc para.cpp, sampling

for (v a r i a t e =1; v a r i a t e <= max var ia t ions ;
v a r i a t e ++){

/ / i n i t i a l i s a t i o n s o f v a r i a t i o n a l parameters
and energies

alpha += 0 . 1 ;
energy = energy2 = 0; accept =0; d e l t a e =0;
/ / i n i t i a l t r i a l pos i t i on , note c a l l i n g w i th

alpha
for (i = 0 ; i < number par t i c les ; i ++) {

for (j =0; j < dimension ; j ++) {
r o l d [i] [j] = s tep leng th ∗ (ran2 (&idum)
−0.5) ;

}
}
wfold = wave funct ion (r o l d , alpha) ;

83 / 470

VMC code for helium, vmc para.cpp, sampling
/ / loop over monte ca r l o cyc les
for (cyc les = 1; cyc les <= number cycles ; cyc les ++)
{
/ / new p o s i t i o n
for (i = 0 ; i < number par t i c les ; i ++) {

for (j =0; j < dimension ; j ++) {
r new [i] [j] = r o l d [i] [j]+ s tep leng th ∗ (

ran2 (&idum) −0.5) ;
}

/ / f o r the other p a r t i c l e s we need to set the
p o s i t i o n to the o ld p o s i t i o n s ince

/ / we move only one p a r t i c l e a t the t ime
for (k = 0 ; k < number par t i c les ; k++) {

i f (k ! = i) {
for (j =0; j < dimension ; j ++) {

r new [k] [j] = r o l d [k] [j] ;
}

}
}

84 / 470

VMC code for helium, vmc para.cpp, sampling

wfnew = wave funct ion (r new , alpha) ;
/ / The Met ropo l i s t e s t i s performed by moving one

p a r t i c l e a t the t ime
i f (ran2 (&idum) <= wfnew∗wfnew / wfo ld / wfo ld) {

for (j =0; j < dimension ; j ++) {
r o l d [i] [j]= r new [i] [j] ;

}
wfold = wfnew ;

}
} / / end of loop over p a r t i c l e s

85 / 470

VMC code for helium, vmc para.cpp, sampling

/ / compute l o c a l energy
d e l t a e = loca l ene rgy (r o l d , alpha , wfo ld) ;
/ / save a l l energies on l a s t v a r i a t e
i f (v a r i a t e ==max var ia t ions) {

a l l e n e r g i e s [cyc les] = d e l t a e ;
}
/ / update energies
energy += d e l t a e ;
energy2 += d e l t a e ∗ d e l t a e ;

} / / end of loop over MC t r i a l s
/ / update the energy average and i t s squared
cumula t ive e [v a r i a t e] = energy ;
cumulat ive e2 [v a r i a t e] = energy2 ;

} / / end of loop over v a r i a t i o n a l steps

86 / 470

VMC code for helium, vmc para.cpp, wave function
/ / Funct ion to compute the squared wave func t i on ,

s imp les t form

double wave funct ion (double ∗∗ r , double alpha)
{

i n t i , j , k ;
double wf , argument , r s i n g l e p a r t i c l e , r 12 ;

argument = wf = 0;
for (i = 0 ; i < number par t i c les ; i ++) {

r s i n g l e p a r t i c l e = 0 ;
for (j = 0 ; j < dimension ; j ++) {

r s i n g l e p a r t i c l e += r [i] [j]∗ r [i] [j] ;
}
argument += s q r t (r s i n g l e p a r t i c l e) ;

}
wf = exp(−argument∗alpha) ;
return wf ;

}

87 / 470

VMC code for helium, vmc para.cpp, local energy

/ / Funct ion to c a l c u l a t e the l o c a l energy w i th num
d e r i v a t i v e

double l oca l ene rgy (double ∗∗ r , double alpha ,
double wfold)

{
i n t i , j , k ;
double e loca l , wfminus , wfplus , e k i n e t i c ,

e p o t e n t i a l , r 12 ,
r s i n g l e p a r t i c l e ;

double ∗∗ r p l us , ∗∗ r minus ;

88 / 470

VMC code for helium, vmc para.cpp, local energy

/ / a l l o c a t e matr ices which conta in the p o s i t i o n
o f the p a r t i c l e s

/ / the f u n c t i o n mat r i x i s def ined i n the progam
l i b r a r y

r p l u s =(double ∗∗) mat r i x (number par t ic les ,
dimension , sizeof (double)) ;

r minus =(double ∗∗) mat r i x (number par t ic les ,
dimension , sizeof (double)) ;

for (i = 0 ; i < number par t i c les ; i ++) {
for (j =0; j < dimension ; j ++) {

r p l u s [i] [j] = r minus [i] [j] = r [i] [j] ;
}

}

89 / 470

VMC code for helium, vmc para.cpp, local energy

/ / compute the k i n e t i c energy
e k i n e t i c = 0 ;
for (i = 0 ; i < number par t i c les ; i ++) {

for (j = 0 ; j < dimension ; j ++) {
r p l u s [i] [j] = r [i] [j]+h ;
r minus [i] [j] = r [i] [j]−h ;
wfminus = wave funct ion (r minus , alpha) ;
wfp lus = wave funct ion (r p lus , alpha) ;
e k i n e t i c −= (wfminus+wfplus−2∗wfold) ;
r p l u s [i] [j] = r [i] [j] ;
r minus [i] [j] = r [i] [j] ;

}
}

/ / i nc lude e lec t r on mass and hbar squared and
d i v i d e by wave f u n c t i o n

e k i n e t i c = 0.5∗h2∗ e k i n e t i c / wfo ld ;

90 / 470

VMC code for helium, vmc para.cpp, local energy

/ / compute the p o t e n t i a l energy
e p o t e n t i a l = 0 ;
/ / c o n t r i b u t i o n from e lec t ron−proton p o t e n t i a l
for (i = 0 ; i < number par t i c les ; i ++) {

r s i n g l e p a r t i c l e = 0 ;
for (j = 0 ; j < dimension ; j ++) {

r s i n g l e p a r t i c l e += r [i] [j]∗ r [i] [j] ;
}
e p o t e n t i a l −= charge / s q r t (r s i n g l e p a r t i c l e) ;

}

91 / 470

VMC code for helium, vmc para.cpp, local energy

/ / c o n t r i b u t i o n from e lec t ron−e lec t r on p o t e n t i a l
for (i = 0 ; i < number par t ic les −1; i ++) {

for (j = i +1; j < number par t i c les ; j ++) {
r 12 = 0;
for (k = 0 ; k < dimension ; k++) {

r 12 += (r [i] [k]− r [j] [k]) ∗ (r [i] [k]− r [j] [k])
;

}
e p o t e n t i a l += 1/ s q r t (r 12) ;

}
}

92 / 470

Structuring the code
During the development of our code we need to make several checks. It is also very
instructive to compute a closed form expression for the local energy. Since our wave
function is rather simple it is straightforward to find an analytic expressions. Consider
first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z)

(
1
r1

+
1
r2

)
+

1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
(

Z −
5
16

)
In our project, the simple form is

ΨT (r1, r2) = e−αω(r2
1 +r2

2)/2

Find the contribution to the local energy!

93 / 470

Structuring the code

With closed form formulae we can speed up the computation of the correlation. In our
case we write it as

ΨC = exp

∑
i<j

arij

1 + βrij

,
which means that the gradient needed for the so-called quantum force and local energy
can be calculated analytically. This will speed up your code since the computation of
the correlation part and the Slater determinant are the most time consuming parts in
your code.
We will refer to this correlation function as ΨC or the linear Padé-Jastrow.

94 / 470

Structuring the code

We can test this by computing the local energy for our helium wave function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
(

r12

2(1 + βr12)

)
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1 +
1

2(1 + βr12)2

{
α(r1 + r2)

r12
(1−

r1r2

r1r2
)−

1
2(1 + βr12)2

−
2

r12
+

2β
1 + βr12

}
It is very useful to test your code against these expressions. It means also that you

don’t need to compute a derivative numerically as discussed last week. This week you

should find the corresponding expression for a quantum dot system with two electrons.

95 / 470

Your tasks for today and till next week

I Implement the closed form expression for the local energy

I Convince yourself that the closed form expressions are correct. See also the
slides below. Background: Lars Eivind Lervåg’s thesis, chapter 7.1 and 7.2

I Implement the above expressions for systems with more than two electrons.

I Finish part 1a and 1b.

96 / 470

Structuring the code, simple task

I Make another copy of your code.

I Implement the closed form expression for the local energy

I Compile the new and old codes with the -pg option for profiling.

I Run both codes and profile them afterwards using
gprof{nameexecutable} > outprofile

I Study the time usage in the file outprofile

97 / 470

Efficient calculations of wave function ratios

In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for
a particle to be accepted at a new position. The ratio of the trial wave functions
evaluated at the new and current positions is given by

R ≡
Ψnew

T
Ψcur

T
=

Ψnew
D

Ψcur
D︸ ︷︷ ︸

RSD

Ψnew
C

Ψcur
C︸ ︷︷ ︸

RC

. (28)

Here ΨD is our Slater determinant while ΨC is our correlation function. We need to
optimize ∇ΨT /ΨT ratio and the second derivative as well, that is the ∇2ΨT /ΨT ratio.
The first is needed when we compute the so-called quantum force in importance
sampling. The second is needed when we compute the kinetic energy term of the local
energy.

∇Ψ

Ψ
=

∇(ΨD ΨC)

ΨD ΨC
=

ΨC∇ΨD + ΨD∇ΨC

ΨDΨC
=

∇ΨD

ΨD
+

∇ΨC

ΨC

98 / 470

Efficient calculations of wave function ratios

The expectation value of the kinetic energy expressed in atomic units for electron i is

〈K̂i 〉 = −
1
2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉

, (29)

Ki = −
1
2
∇2

i Ψ

Ψ
. (30)

∇2Ψ

Ψ
=

∇2(ΨD ΨC)

ΨD ΨC
=

∇·[∇(ΨD ΨC)]

ΨD ΨC
=

∇·[ΨC∇ΨD + ΨD∇ΨC]

ΨD ΨC

=
∇ΨC ·∇ΨD + ΨC∇2ΨD + ∇ΨD ·∇ΨC + ΨD∇2ΨC

ΨD ΨC

(31)

∇2Ψ

Ψ
=

∇2ΨD

ΨD
+
∇2ΨC

ΨC
+ 2

∇ΨD

ΨD
·
∇ΨC

ΨC
(32)

99 / 470

Definitions

We define the correlated function as

ΨC =
∏
i<j

g(rij) =
N∏

i<j

g(rij) =
N∏

i=1

N∏
j=i+1

g(rij),

with rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 for three dimensions and

rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 for two dimensions.
In our particular case we have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

f (rij)

 = exp

∑
i<j

arij

1 + βrij

,

100 / 470

Efficient calculations of wave function ratios

The total number of different relative distances rij is N(N − 1)/2. In a matrix storage
format, the set forms a strictly upper triangular matrix

r ≡

0 r1,2 r1,3 · · · r1,N
... 0 r2,3 · · · r2,N
...

... 0
. . .

...
...

...
...

. . . rN−1,N
0 0 0 · · · 0

. (33)

This applies to g = g(rij) as well.

In our algorithm we will move one particle at the time, say the kth-particle. Keep this in

mind in the discussion to come.

101 / 470

Efficient calculations of wave function ratios

RC =
Ψnew

C

Ψcur
C

=

k−1∏
i=1

gnew
ik

gcur
ik

N∏
i=k+1

gnew
ki

gcur
ki

. (34)

For the Padé-Jastrow form

RC =
Ψnew

C

Ψcur
C

=
eUnew

eUcur
= e∆U , (35)

where

∆U =

k−1∑
i=1

(
f new
ik − f cur

ik
)

+
N∑

i=k+1

(
f new
ki − f cur

ki
)

(36)

One needs to develop a special algorithm that runs only through the elements of the
upper triangular matrix g and have k as an index.

102 / 470

Efficient calculations of wave function ratios

The expression to be derived in the following is of interest when computing the
quantum force and the kinetic energy. It has the form

∇i ΨC

ΨC
=

1
ΨC

∂ΨC

∂xi
,

for all dimensions and with i running over all particles. For the first derivative only
N − 1 terms survive the ratio because the g-terms that are not differentiated cancel
with their corresponding ones in the denominator. Then,

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik

∂xk
+

N∑
i=k+1

1
gki

∂gki

∂xk
. (37)

An equivalent equation is obtained for the exponential form after replacing gij by
exp(fij), yielding:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
+

N∑
i=k+1

∂gki

∂xk
, (38)

with both expressions scaling as O(N).

103 / 470

Efficient calculations of wave function ratios

Using the identity
∂

∂xi
gij = −

∂

∂xj
gij (39)

on the right hand side terms of Eq. (37) and Eq. (38), we get expressions where all the
derivatives acting on the particle are represented by the second index of g:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik

∂xk
−

N∑
i=k+1

1
gki

∂gki

∂xi
, (40)

and for the exponential case:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi
. (41)

104 / 470

Efficient calculations of wave function ratios

For correlation forms depending only on the scalar distances rij we can use the chain
rule. Noting that

∂gij

∂xj
=
∂gij

∂rij

∂rij

∂xj
=

xj − xi

rij

∂gij

∂rij
, (42)

after substitution in Eq. (40) and Eq. (41) we arrive at

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

rik

rik

∂gik

∂rik
−

N∑
i=k+1

1
gki

rki

rki

∂gki

∂rki
. (43)

105 / 470

Efficient calculations of wave function ratios
Note that for the Padé-Jastrow form we can set gij ≡ g(rij) = ef (rij) = efij and

∂gij

∂rij
= gij

∂fij
∂rij

. (44)

Therefore,

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

rik

rik

∂fik
∂rik
−

N∑
i=k+1

rki

rki

∂fki

∂rki
, (45)

where
r ij = |r j − r i | = (xj − xi)e1 + (yj − yi)e2 + (zj − zi)e3 (46)

is the vectorial distance. When the correlation function is the linear Padé-Jastrow we
set

fij =
arij

(1 + βrij)
, (47)

which yields the analytical expression

∂fij
∂rij

=
a

(1 + βrij)2
. (48)

106 / 470

Efficient calculations of wave function ratios

Computing the ∇2ΨC/ΨC ratio

∇k ΨC =

k−1∑
i=1

1
gik

∇k gik +
N∑

i=k+1

1
gki

∇k gki .

After multiplying by ΨC and taking the gradient on both sides we get,

∇2
k ΨC = ∇k ΨC ·

k−1∑
i=1

1
gik

∇k gik +
N∑

i=k+1

1
gki

∇k gki

+ ΨC∇k ·

 N∑
i=k+1

1
gki

∇k gki +
N∑

i=k+1

1
gki

∇k gki

= ΨC

(
∇k ΨC

ΨC

)2
+ ΨC∇k ·

 N∑
i=k+1

1
gki

∇k gki +
N∑

i=k+1

1
gki

∇k gki

 . (49)

107 / 470

Efficient calculations of wave function ratios
Now,

∇k ·
(

1
gik

∇k gik

)
= ∇k

(
1

gik

)
·∇k gik +

1
gik

∇k ·∇k gik

= −
1

g2
ik
∇k gik ·∇k gik +

1
gik

∇k ·
(

r ik

rik

∂gik

∂rik

)
= −

1
g2

ik
(∇k gik)2

+
1

gik

[
∇k

(
1
rik

∂gik

∂rik

)
· r ik +

(
1
rik

∂gik

∂rik

)
∇k · r ik

]
= −

1
g2

ik

(
r ik

rik

∂gik

∂rik

)2

+
1

gik

[
∇k

(
1
rik

∂gik

∂rik

)
· r ik +

(
1
rik

∂gik

∂rik

)
d
]

= −
1

g2
ik

(
∂gik

∂rik

)2

+
1

gik

[
∇k

(
1
rik

∂gik

∂rik

)
· r ik +

(
1
rik

∂gik

∂rik

)
d
]
, (50)

with d being the number of spatial dimensions.

108 / 470

Efficient calculations of wave function ratios

Moreover,

∇k

(
1
rik

∂gik

∂rik

)
=

r ik

rik

∂

∂rik

(
1
rik

∂gik

∂rik

)
=

r ik

rik

(
−

1
r2
ik

∂gik

∂rik
+

1
rik

∂2gik

∂r2
ik

)
.

We finally get

∇k ·
(

1
gik

∇k gik

)
= −

1
g2

ik

(
∂gik

∂rik

)2
+

1
gik

[(
d − 1

rik

)
∂gik

∂rik
+
∂2gik

∂r2
ik

]
.

109 / 470

Efficient calculations of wave function ratios

Inserting the last expression in Eq. (49) and after division by ΨC we get,

∇2
k ΨC

ΨC
=

(
∇k ΨC

ΨC

)2

+

k−1∑
i=1

−
1

g2
ik

(
∂gik

∂rik

)2
+

1
gik

[(
d − 1

rik

)
∂gik

∂rik
+
∂2gik

∂r2
ik

]

+
N∑

i=k+1

−
1

g2
ki

(
∂gki

∂rki

)2
+

1
gki

[(
d − 1

rki

)
∂gki

∂rki
+
∂2gki

∂r2
ki

]
. (51)

110 / 470

Efficient calculations of wave function ratios

For the exponential case we have

∇2
k ΨC

ΨC
=

(
∇k ΨC

ΨC

)2

+

k−1∑
i=1

−
1

g2
ik

(
gik

∂fik
∂rik

)2
+

1
gik

[(
d − 1

rik

)
gik

∂fik
∂rik

+
∂

∂rik

(
gik

∂fik
∂rik

)]

+
N∑

i=k+1

−
1

g2
ki

(
gik

∂fki

∂rki

)2
+

1
gki

[(
d − 1

rki

)
gki

∂fki

∂rki
+

∂

∂rki

(
gki

∂fki

∂rki

)]
.

111 / 470

Efficient calculations of wave function ratios

Using

∂

∂rik

(
gik

∂fik
∂rik

)
=
∂gik

∂rik

∂fik
∂rik

+ gik
∂2fik
∂r2

ik

= gik
∂fik
∂rik

∂fik
∂rik

+ gik
∂2fik
∂r2

ik

= gik

(
∂fik
∂rik

)2
+ gik

∂2fik
∂r2

ik

and substituting this result into the equation above gives rise to the final expression,

∇2
k ΨPJ

ΨPJ
=

(
∇k ΨPJ

ΨPJ

)2

+

k−1∑
i=1

[(
d − 1

rik

)
∂fik
∂rik

+
∂2fik
∂r2

ik

]
+

N∑
i=k+1

[(
d − 1

rki

)
∂fki

∂rki
+
∂2fki

∂r2
ki

]
. (52)

112 / 470

Summing up: Bringing it all together, Local energy

The second derivative of the Jastrow factor divided by the Jastrow factor (the way it
enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik

∂x2
k

+
N∑

k=1

k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi

2

But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f (rij) = exp

∑
i<j

arij

1 + βrij

,
and it is easy to see that for particle k we have

∇2
k ΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)

rki rkj
f ′(rki)f ′(rkj) +

∑
j 6=k

(
f ′′(rkj) +

2
rkj

f ′(rkj)

)

113 / 470

Bringing it all together, Local energy

Using

f (rij) =
arij

1 + βrij
,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle k we

have

∇2
k ΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)

rki rkj

a
(1 + βrki)2

a
(1 + βrkj)2

+
∑
j 6=k

(
2a

rkj (1 + βrkj)2
−

2aβ
(1 + βrkj)3

)

114 / 470

Important feature

For the correlation part

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij

1 + βrij

,
we need to take into account whether electrons have equal or opposite spins since we
have to obey the electron-electron cusp condition as well. When the electrons have
equal spins

a = 1/3,

while for opposite spins (as for the ground state of a quantum dot with two electrons)

a = 1.

115 / 470

Topics for Week 6, February 7-11

Importance sampling, Fokker-Planck and Langevin
equations and parallelization

I Repetition from last week
I Importance sampling, discussion of codes, crash

introduction to get you started
I MPI programming and access to titan.uio.no
I Derivation of the Fokker-Planck and the Langevin

equations (Background material) if we get time, else this is
postponed till next week.

Project work this week: finalize 1a and 1b. Start implementing
importance sampling and exercise 1c. Next week we discuss
blocking as a tool to perform statistical analysis of MonteCarlo
data. We will also continue the discussion on importance
sampling.

116 / 470

Importance sampling, what we want to do
We need to replace the brute force Metropolis algorithm with a walk in coordinate
space biased by the trial wave function. This approach is based on the Fokker-Planck
equation and the Langevin equation for generating a trajectory in coordinate space.
This is explained later.
For a diffusion process characterized by a time-dependent probability density P(x , t) in
one dimension the Fokker-Planck equation reads (for one particle/walker)

∂P
∂t

= D
∂

∂x

(
∂

∂x
− F

)
P(x , t),

where F is a drift term and D is the diffusion coefficient.
The new positions in coordinate space are given as the solutions of the Langevin
equation using Euler’s method, namely, we go from the Langevin equation

∂x(t)
∂t

= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ,

where ξ is gaussian random variable and ∆t is a chosen time step.

117 / 470

Importance sampling, what we want to do

The process of isotropic diffusion characterized by a time-dependent probability
density P(x , t) obeys (as an approximation) the so-called Fokker-Planck equation

∂P
∂t

=
∑

i

D
∂

∂xi

(
∂

∂xi
− Fi

)
P(x , t),

where Fi is the i th component of the drift term (drift velocity) caused by an external
potential, and D is the diffusion coefficient. The convergence to a stationary probability
density can be obtained by setting the left hand side to zero. The resulting equation will
be satisfied if and only if all the terms of the sum are equal zero,

∂2P
∂xi

2
= P

∂

∂xi
Fi + Fi

∂

∂xi
P.

118 / 470

Importance sampling, what we want to do

The drift vector should be of the form F = g(x) ∂P
∂x . Then,

∂2P
∂xi

2
= P

∂g
∂P

(
∂P
∂xi

)2
+ Pg

∂2P
∂xi

2
+ g

(
∂P
∂xi

)2
.

The condition of stationary density means that the left hand side equals zero. In other
words, the terms containing first and second derivatives have to cancel each other. It is
possible only if g = 1

P , which yields

F = 2
1

ΨT
∇ΨT , (53)

which is known as the so-called quantum force. This term is responsible for pushing

the walker towards regions of configuration space where the trial wave function is large,

increasing the efficiency of the simulation in contrast to the Metropolis algorithm where

the walker has the same probability of moving in every direction.

119 / 470

Importance Sampling

The Fokker-Planck equation yields a (the solution to the equation) transition probability
given by the Green’s function

G(y , x ,∆t) =
1

(4πD∆t)3N/2
exp

(
−(y − x − D∆tF (x))2/4D∆t

)
which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x , y ,∆t)|ΨT (y)|2

G(y , x ,∆t)|ΨT (x)|2

See program vmc importance.cpp for example. Read more in Thijssen’s text chapters
8.8 and 12.2.

120 / 470

Importance sampling, new positions, see code
vmc importance.cpp under the programs link

for (v a r i a t e =1; v a r i a t e <= max var ia t ions ; v a r i a t e
++){
/ / i n i t i a l i s a t i o n s o f v a r i a t i o n a l parameters

and energies
beta += 0 . 1 ;
energy = energy2 = d e l t a e = 0 . 0 ;
/ / i n i t i a l t r i a l pos i t i on , note c a l l i n g w i th

beta
for (i = 0 ; i < number par t i c les ; i ++) {

for (j =0; j < dimension ; j ++) {
r o l d [i] [j] = gauss ian dev ia te (&idum) ∗ s q r t (

t imestep) ;
}

}
wfold = wave funct ion (r o l d , beta) ;
quantum force (r o l d , q fo rce o ld , beta , wfo ld) ;

121 / 470

Importance sampling, new positions in function
vmc importance.cpp

/ / loop over monte ca r l o cyc les
for (cyc les = 1; cyc les <= number cycles ;

cyc les ++){
/ / new p o s i t i o n
for (i = 0 ; i < number par t i c les ; i ++) {

for (j =0; j < dimension ; j ++) {
/ / gaussian dev ia te to compute new

p o s i t i o n s using a given t imestep
r new [i] [j] = r o l d [i] [j] +

gauss ian dev ia te (&idum) ∗ s q r t (t imestep
) + q fo r ce o ld [i] [j]∗ t imestep ∗D;

122 / 470

Importance sampling, new positions in function
vmc importance.cpp

/ / we move only one p a r t i c l e a t the t ime
for (k = 0 ; k < number par t i c les ; k++) {

i f (k != i) {
for (j =0; j < dimension ; j ++) {

r new [k] [j] = r o l d [k] [j] ;
}

}
}
/ / wave function onemove (r new ,

qforce new , &wfnew , beta) ;
wfnew = wave funct ion (r new , beta) ;
quantum force (r new , qforce new , beta ,

wfnew) ;

123 / 470

Importance sampling, new positions in function
vmc importance.cpp

/ / we compute the log o f the r a t i o o f the
greens f u n c t i o n s to be used i n the

/ / Met ropo l is−Hast ings a lgo r i thm
greens func t ion = 0 . 0 ;
for (j =0; j < dimension ; j ++) {

greens func t ion += 0 .5∗ (q f o r ce o ld [i] [j]+
qforce new [i] [j]) ∗

(D∗ t imestep ∗0.5∗ (q f o r ce o ld [i] [j]−
qforce new [i] [j])−r new [i] [j]+ r o l d
[i] [j]) ;

}
greens func t ion = exp (greens func t ion) ;

124 / 470

Importance sampling, new positions in function
vmc importance.cpp

/ / The Met ropo l i s t e s t i s performed by
moving one p a r t i c l e a t the t ime

i f (ran2 (&idum) <= greens func t ion ∗wfnew∗
wfnew / wfo ld / wfo ld) {

for (j =0; j < dimension ; j ++) {
r o l d [i] [j] = r new [i] [j] ;
q f o r ce o ld [i] [j] = qforce new [i] [j] ;

}
wfold = wfnew ;
.

125 / 470

Importance sampling, Quantum force in function
vmc importance.cpp

void quantum force (double ∗∗ r , double ∗∗ qforce ,
double beta , double wf)

{
i n t i , j ;
double wfminus , wfp lus ;
double ∗∗ r p l us , ∗∗ r minus ;

r p l u s = (double ∗∗) mat r i x (number par t ic les ,
dimension , sizeof (double)) ;

r minus = (double ∗∗) mat r i x (number par t ic les ,
dimension , sizeof (double)) ;

for (i = 0 ; i < number par t i c les ; i ++) {
for (j =0; j < dimension ; j ++) {

r p l u s [i] [j] = r minus [i] [j] = r [i] [j] ;
}

}
. . .

126 / 470

Importance sampling, Quantum force in function
vmc importance.cpp, brute force derivative

/ / compute the f i r s t d e r i v a t i v e
for (i = 0 ; i < number par t i c les ; i ++) {

for (j = 0 ; j < dimension ; j ++) {
r p l u s [i] [j] = r [i] [j]+h ;
r minus [i] [j] = r [i] [j]−h ;
wfminus = wave funct ion (r minus , beta) ;
wfp lus = wave funct ion (r p lus , beta) ;
q force [i] [j] = (wfplus−wfminus) ∗2 .0 / wf / (2∗ h) ;
r p l u s [i] [j] = r [i] [j] ;
r minus [i] [j] = r [i] [j] ;

}
}

} / / end of quantum force f u n c t i o n

127 / 470

Closed form expressions for quantum force

The general derivative formula of the Jastrow factor is

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik

∂xk
+

N∑
i=k+1

∂gki

∂xk

However, with our

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij

1 + βrij

,
the gradient needed for the quantum force and local energy is easy to compute. We get
for particle k

∇k ΨC

ΨC
=
∑
j 6=k

rkj

rkj

a
(1 + βrkj)2

,

which is rather easy to code. Remember to sum over all particles when you compute

the local energy.

128 / 470

Your tasks from the previous week plus new tasks

I Implement the closed form expression for the local energy and the so-called
quantum force

I Convince yourself that the closed form expressions are correct, see slides from
last week.

I Implement the closed form expressions for systems with more than two
electrons.

I Start implementing importance sampling, part 1c, see code vmc importance.cpp.

I Finish part 1a and begin part 1b.

I You need to produce random numbers with a Gaussian distribution.

I Reading task: Thijssen’s text chapters 8.8 and 12.2. To be discussed today.

I Task to next week: Finish coding importance sampling in 1c.

129 / 470

Going Parallel with MPI

You will need to parallelize the codes you develop.
Task parallelism: the work of a global problem can be divided
into a number of independent tasks, which rarely need to
synchronize. Monte Carlo simulation or integrations are
examples of this. It is almost embarrassingly trivial to parallelize
Monte Carlo codes.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME

130 / 470

What is Message Passing Interface (MPI)? Yet
another library!

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C or Fortran programs, and the classes and methods that
make up the MPI C++ library. The programs that users write in
Fortran, C or C++ are compiled with ordinary compilers and
linked with the MPI library.
MPI is a specification, not a particular implementation. MPI
programs should be able to run on all possible machines and
run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.
See chapter 4.7 of lecture notes for more details.

131 / 470

MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

I independent of hardware;
I not a language or compiler specification;
I not a specific implementation or product.

A message passing standard for portability and ease-of-use.
Designed for high performance.
Insert communication and synchronization functions where
necessary.

132 / 470

Demands from the HPC community

In the field of scientific computing, there is an ever-lasting wish
to do larger simulations using shorter computer time.
Development of the capacity for single-processor computers
can hardly keep up with the pace of scientific computing:

I processor speed
I memory size/speed

Solution: parallel computing!

133 / 470

The basic ideas of parallel computing

I Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.

I Multiple processors are involved to solve a global problem.
I The essence is to divide the entire computation evenly

among collaborative processors. Divide and conquer.

134 / 470

A rough classification of hardware models

I Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.

I SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.

I Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.

135 / 470

Shared memory and distributed memory

I One way of categorizing modern parallel computers is to
look at the memory configuration.

I In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.

I In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.

136 / 470

Different parallel programming paradigms

I Task parallelism the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. Integration is another. However this paradigm is
of limited use.

I Data parallelism use of multiple threads (e.g. one thread
per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.

137 / 470

Today’s situation of parallel computing

I Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel processing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.

I Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily used for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.

138 / 470

Overhead present in parallel computing

I Uneven load balance: not all the processors can perform
useful work at all time.

I Overhead of synchronization.
I Overhead of communication.
I Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized we may not achieve an optimal
parallelization.

139 / 470

Parallelizing a sequential algorithm

I Identify the part(s) of a sequential algorithm that can be
executed in parallel. This is the difficult part,

I Distribute the global work and data among P processors.

140 / 470

Process and processor

I We refer to process as a logical unit which executes its
own code, in an MIMD style.

I The processor is a physical device on which one or several
processes are executed.

I The MPI standard uses the concept process consistently
throughout its documentation.

141 / 470

Topics for Week 7, February 14-18

Importance sampling, Fokker-Planck and Langevin
equations and parallelization

I Repetition from last week
I MPI programming.
I Structuring the code and performing benchmarks
I Derivation of the Fokker-Planck and the Langevin

equations (Background material).

Project work this week: Try to finalize importance sampling in
exercise 1c. We start with blocking next week.

142 / 470

Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI Command name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI COMMAND NAME

The discussion in these slides focuses on the C++ binding.

143 / 470

Communicator

I A group of MPI processes with a name (context).
I Any process is identified by its rank. The rank is only

meaningful within a particular communicator.
I By default communicator MPI COMM WORLD contains all

the MPI processes.
I Mechanism to identify subset of processes.
I Promotes modular design of parallel libraries.

144 / 470

Some of the most important MPI routines

I MPI Init - initiate an MPI computation
I MPI Finalize - terminate the MPI computation and clean up
I MPI Comm size - how many processes participate in a

given MPI communicator?
I MPI Comm rank - which one am I? (A number between 0

and size-1.)
I MPI Send - send a message to a particular process within

an MPI communicator
I MPI Recv - receive a message from a particular process

within an MPI communicator

145 / 470

The first MPI C/C++ program
Let every process write ”Hello world” on the standard output.
This is program2.cpp of chapter 4.

using namespace s td ;
#include <mpi . h>
#include <iostream>
i n t main (i n t nargs , char∗ args [])
{
i n t numprocs , my rank ;
/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;

/ / End MPI
MPI F ina l i ze () ;

146 / 470

The Fortran program

PROGRAM h e l l o
INCLUDE "mpif.h"
INTEGER : : size , my rank , i e r r

CALL MPI INIT (i e r r)
CALL MPI COMM SIZE(MPI COMM WORLD, size , i e r r)
CALL MPI COMM RANK(MPI COMM WORLD, my rank , i e r r)
WRITE (∗ , ∗)"Hello world, I’ve rank " , my rank ," out

of " , size
CALL MPI FINALIZE (i e r r)

END PROGRAM h e l l o

147 / 470

Note 1

The output to screen is not ordered since all processes are
trying to write to screen simultaneously. It is then the operating
system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite
our program as in the next example (program3.cpp), see again
chapter 4.7 of lecture notes.

148 / 470

Ordered output with MPI Barrier

i n t main (i n t nargs , char∗ args [])
{

i n t numprocs , my rank , i ;
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
for (i = 0 ; i < numprocs ; i ++) {}
MPI Bar r ie r (MPI COMM WORLD) ;
i f (i == my rank) {
cout << "Hello world, I have rank " << my rank <<

" out of " << numprocs << endl ;}
MPI F ina l i ze () ;

149 / 470

Note 2

Here we have used the MPI Barrier function to ensure that that
every process has completed its set of instructions in a
particular order. A barrier is a special collective operation that
does not allow the processes to continue until all processes in
the communicator (here MPI COMM WORLD have called
MPI Barrier . The barriers make sure that all processes have
reached the same point in the code. Many of the collective
operations like MPI ALLREDUCE to be discussed later, have
the same property; viz. no process can exit the operation until
all processes have started. However, this is slightly more
time-consuming since the processes synchronize between
themselves as many times as there are processes. In the next
Hello world example we use the send and receive functions in
order to a have a synchronized action.

150 / 470

Strategies

I Develop codes locally, run with some few processes and
test your codes. Do benchmarking, timing and so forth on
local nodes, for example your laptop. You can install
MPICH2 on your laptop (most new laptos come with dual
cores). You can test with one node at the lab.

I When you are convinced that your codes run correctly, you
start your production runs on available supercomputers, in
our case titan.uio.no.

151 / 470

How do I run MPI on the machines at the lab
(MPICH2)

The machines at the lab are all quad-cores
I Compile with mpicxx or mpic++
I Set up collaboration between processes and run

mpd −−ncpus=4 &
run code wi th
mpiexec −n 4 . / nameofprog

Here we declare that we will use 4 processes via the
−ncpus option and via −n4 when running.

I End with

mpda l l ex i t

152 / 470

Can I do it on my own PC/laptop?

Of course:
I go to http:
//www.mcs.anl.gov/research/projects/mpich2/

I follow the instructions and install it on your own PC/laptop
I don’t have windows as operating system and need dearly your
feedback.

153 / 470

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

Ordered output with MPI Recv and MPI Send

.
i n t numprocs , my rank , f l a g ;
MPI Status status ;
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
i f (my rank > 0)
MPI Recv (& f l ag , 1 , MPI INT , my rank−1, 100 ,

MPI COMM WORLD, &status) ;
cout << "Hello world, I have rank " << my rank <<

" out of "
<< numprocs << endl ;
i f (my rank < numprocs−1)
MPI Send (&my rank , 1 , MPI INT , my rank +1 ,

100 , MPI COMM WORLD) ;
MPI F ina l i ze () ;

154 / 470

Note 3

The basic sending of messages is given by the function
MPI SEND, which in C/C++ is defined as

i n t MPI Send (void ∗buf , i n t count ,
MPI Datatype datatype ,
i n t dest , i n t tag , MPI Comm comm) }

This single command allows the passing of any kind of variable,
even a large array, to any group of tasks. The variable buf is
the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value,
this should be 1. If we transfer an array, it is the overall size of
the array. For example, if we want to send a 10 by 10 array,
count would be 10× 10 = 100 since we are actually passing
100 values.

155 / 470

Note 4
Once you have sent a message, you must receive it on another
task. The function MPI RECV is similar to the send call.
i n t MPI Recv (void ∗buf , i n t count , MPI Datatype

datatype ,
i n t source ,
i n t tag , MPI Comm comm, MPI Status ∗

status)

The arguments that are different from those in MPI SEND are
buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the
send command. This is the return ID of the sender.
Finally, we have used MPI Status status; where one can
check if the receive was completed.
The output of this code is the same as the previous example,
but now process 0 sends a message to process 1, which
forwards it further to process 2, and so forth.
Armed with this wisdom, performed all hello world greetings,
we are now ready for serious work.

156 / 470

Integrating π

Examples

I Go to the webpage
and click on the
programs link

I Go to MPI and then
chapter 4

I Look at program5.ccp
and program6.cpp.
(Fortran version also
available).

I These codes
compute π using the
rectangular and
trapezoidal rules.

157 / 470

Integration algos

The trapezoidal rule (example6.cpp)

I =

∫ b

a
f (x)dx = h (f (a)/2 + f (a + h) + f (a + 2h) + · · ·+ f (b − h) + fb/2) .

Another very simple approach is the so-called midpoint or rectangle method. In this
case the integration area is split in a given number of rectangles with length h and
heigth given by the mid-point value of the function. This gives the following simple rule
for approximating an integral

I =

∫ b

a
f (x)dx ≈ h

N∑
i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given rectangle. This is used in

program5.cpp.

158 / 470

Dissection of example program5.cpp

1 / / Reactangle r u l e and numer ica l i n t e g r a t i o n
2 using namespace s td ;
3 # include <mpi . h>
4 # include <iostream>

5 i n t main (i n t nargs , char∗ args [])
6 {
7 i n t numprocs , my rank , i , n = 1000;
8 double local sum , rectangle sum , x , h ;
9 / / MPI i n i t i a l i z a t i o n s
10 M P I I n i t (&nargs , &args) ;
11 MPI Comm size (MPI COMM WORLD, &numprocs) ;
12 MPI Comm rank (MPI COMM WORLD, &my rank) ;

159 / 470

Dissection of example program5.cpp

13 / / Read from screen a poss ib le new vaue of
n

14 i f (my rank == 0 && nargs > 1) {
15 n = a t o i (args [1]) ;
16 }
17 h = 1 . 0 / n ;
18 / / Broadcast n and h to a l l processes
19 MPI Bcast (&n , 1 , MPI INT , 0 , MPI COMM WORLD

) ;
20 MPI Bcast (&h , 1 , MPI DOUBLE, 0 ,

MPI COMM WORLD) ;
21 / / Every process sets up i t s c o n t r i b u t i o n

to the i n t e g r a l
22 local sum = 0 . ;

160 / 470

Dissection of example program5.cpp

After the standard initializations with MPI such as MPI Init, MPI Comm size and
MPI Comm rank, MPI COMM WORLD contains now the number of processes defined
by using for example

mpiexec −np 10 . / prog . x

In line 4 we check if we have read in from screen the number of mesh points n. Note
that in line 7 we fix n = 1000, however we have the possibility to run the code with a
different number of mesh points as well. If my rank equals zero, which correponds to
the master node, then we read a new value of n if the number of arguments is larger
than two. This can be done as follows when we run the code

mpiexec −np 10 . / prog . x 10000

161 / 470

Dissection of example program5.cpp

23 for (i = my rank ; i < n ; i += numprocs) {
24 x = (i +0.5) ∗h ;
25 local sum += 4 . 0 / (1 . 0 + x∗x) ;
26 }
27 local sum ∗= h ;

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast

function MPI Bcast. We use this particular function because we want data on one

processor (our master node) to be shared with all other processors. The broadcast

function sends data to a group of processes.

162 / 470

Dissection of example program5.cpp

The MPI routine MPI Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

MPI Bcast (&n , 1 , MPI INT , 0 , MPI COMM WORLD) ; .
MPI Bcast (&h , 1 , MPI DOUBLE, 0 , MPI COMM WORLD) ;

in a case of a double. The general structure of this function is

MPI Bcast (void ∗buf , i n t count , MPI Datatype
datatype , i n t root , MPI Comm comm) .

All processes call this function, both the process sending the data (with rank zero) and
all the other processes in MPI COMM WORLD. Every process has now copies of n
and h, the number of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of

data sent. In case of a one-dimensional array, one needs to transfer the number of

array elements. If you have an n ×m matrix, you must transfer n ×m. We need also to

specify whether the variable type we transfer is a non-numerical such as a logical or

character variable or numerical of the integer, real or complex type.

163 / 470

Dissection of example program5.cpp

28 i f (my rank == 0) {
29 MPI Status status ;
30 rectangle sum = local sum ;
31 for (i =1; i < numprocs ; i ++) {
32 MPI Recv(& local sum ,1 ,MPI DOUBLE,

MPI ANY SOURCE,500 ,
MPI COMM WORLD,& status) ;

33 rectangle sum += local sum ;
34 }
35 cout << "Result: " << rectangle sum <<

endl ;
36 } else
37 MPI Send(& local sum ,1 ,MPI DOUBLE,0 ,500 ,

MPI COMM WORLD) ;
38 / / End MPI
39 MPI F ina l i ze () ;
40 return 0;
41 }

164 / 470

Dissection of example program5.cpp

In lines 23-27, every process sums its own part of the final sum used by the rectangle
rule. The receive statement collects the sums from all other processes in case
my rank == 0, else an MPI send is performed. If we are not the master node, we
send the results, else they are received and the local results are added to final sum.
The above can be rewritten using the MPI allreduce, as discussed in the next example.

The above function is not very elegant. Furthermore, the MPI instructions can be

simplified by using the functions MPI Reduce or MPI Allreduce. The first function takes

information from all processes and sends the result of the MPI operation to one process

only, typically the master node. If we use MPI Allreduce, the result is sent back to all

processes, a feature which is useful when all nodes need the value of a joint operation.

We limit ourselves to MPI Reduce since it is only one process which will print out the

final number of our calculation, The arguments to MPI Allreduce are the same.

165 / 470

MPI reduce
Call as

MPI reduce (void ∗senddata , void∗ r esu l t da ta , i n t
count ,

MPI Datatype datatype , MPI Op , i n t root ,
MPI Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one
sends the address of the variable or the first element of an array. If they are arrays they
need to have the same size. The variable count represents the total dimensionality, 1
in case of just one variable, while MPI Datatype defines the type of variable which is
sent and received.
The new feature is MPI Op. It defines the type of operation we want to do. In our case,
since we are summing the rectangle contributions from every process we define
MPI Op = MPI SUM. If we have an array or matrix we can search for the largest og
smallest element by sending either MPI MAX or MPI MIN. If we want the location as
well (which array element) we simply transfer MPI MAXLOC or MPI MINOC. If we want
the product we write MPI PROD.
MPI Allreduce is defined as

MPI Alreduce (void ∗senddata , void∗ r esu l t da ta , i n t
count ,

MPI Datatype datatype , MPI Op , MPI Comm
comm) } .

166 / 470

Dissection of example program6.cpp
/ / Trapezo ida l r u l e and numer ica l i n t e g r a t i o n

usign MPI , example program6 . cpp
using namespace s td ;
#include <mpi . h>
#include <iostream>

/ / Here we def ine var ious f u n c t i o n s c a l l e d by
the main program

double i n t f u n c t i o n (double) ;
double t r a p e z o i d a l r u l e (double , double , i n t ,

double (∗) (double)) ;

/ / Main f u n c t i o n begins here
i n t main (i n t nargs , char∗ args [])
{

i n t n , l oca l n , numprocs , my rank ;
double a , b , h , l oca l a , l oca l b , to ta l sum ,

local sum ;
double t i m e s t a r t , t ime end , t o t a l t i m e ;

167 / 470

Dissection of example program6.cpp

/ / MPI i n i t i a l i z a t i o n s
M P I I n i t (&nargs , &args) ;
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &my rank) ;
t i m e s t a r t = MPI Wtime () ;
/ / Fixed values f o r a , b and n
a = 0.0 ; b = 1 . 0 ; n = 1000;
h = (b−a) / n ; / / h i s the same f o r a l l

processes
l o c a l n = n / numprocs ;
/ / make sure n > numprocs , e lse i n t e g e r d i v i s i o n

gives zero
/ / Length o f each process ’ i n t e r v a l o f
/ / i n t e g r a t i o n = l o c a l n ∗h .
l o c a l a = a + my rank∗ l o c a l n ∗h ;
l o c a l b = l o c a l a + l o c a l n ∗h ;

168 / 470

Dissection of example program6.cpp
t o ta l sum = 0 . 0 ;
loca l sum = t r a p e z o i d a l r u l e (l oca l a , l oca l b ,

l oca l n ,
& i n t f u n c t i o n) ;

MPI Reduce(& local sum , &tota l sum , 1 , MPI DOUBLE,
MPI SUM, 0 , MPI COMM WORLD) ;

t ime end = MPI Wtime () ;
t o t a l t i m e = time end−t i m e s t a r t ;
i f (my rank == 0) {

cout << "Trapezoidal rule = " << t o ta l sum <<
endl ;

cout << "Time = " << t o t a l t i m e
<< " on number of processors: " <<

numprocs << endl ;
}
/ / End MPI
MPI F ina l i ze () ;
return 0;

} / / end of main program

169 / 470

Dissection of example program6.cpp

We use MPI reduce to collect data from each process. Note also the use of the
function MPI Wtime. The final functions are

/ / t h i s f u n c t i o n def ines the f u n c t i o n to i n t e g r a t e
double i n t f u n c t i o n (double x)
{

double value = 4 . / (1 . + x∗x) ;
return value ;

} / / end of f u n c t i o n to evaluate

170 / 470

Dissection of example program6.cpp
Implementation of the trapezoidal rule.

/ / t h i s f u n c t i o n def ines the t r a p e z o i d a l r u l e
double t r a p e z o i d a l r u l e (double a , double b , i n t n ,

double (∗ func) (double))
{

double trapez sum ;
double fa , fb , x , step ;
i n t j ;
s tep =(b−a) / ((double) n) ;
fa =(∗ func) (a) / 2 . ;
fb =(∗ func) (b) / 2 . ;
trapez sum = 0 . ;
for (j =1; j <= n−1; j ++){

x= j ∗ step+a ;
trapez sum +=(∗ func) (x) ;

}
trapez sum =(trapez sum+fb+ fa) ∗ step ;
return trapez sum ;

} / / end t r a p e z o i d a l r u l e

171 / 470

How do I use the titan.uio.no cluster?

hpc@usit.uio.no

I Computational Physics requires High Performance
Computing (HPC) resources

I USIT and the Research Computing Services (RCS)
provides HPC resources and HPC support

I Resources: titan.uio.no
I Support: 14 people
I Contact: hpc@usit.uio.no

172 / 470

titan.uio.no
hpc@usit.uio.no

Titan

Hardware
I 304 dual-cpu quad-core SUN X2200 Opteron nodes (total

2432 cores), 2.2 Ghz, and 8 - 16 GB RAM and 250 - 1000
GB disk on each node

I 3 eight-cpu quad-core Sun X4600 AMD Opteron nodes
(total 96 cores), 2.5 Ghz, and 128, 128 and 256 GB
memory, respectively

I Infiniband interconnect
I Heterogenous cluster!

173 / 470

Titan

Software
I Batch system: SLURM and MAUI
I Message Passing Interface (MPI):

I OpenMPI
I Scampi
I MPICH2

I Compilers: GCC, Intel, Portland and Pathscale
I Optimized math libraries and scientific applications
I All you need may be found under /site
I Available software: http:
//www.hpc.uio.no/index.php/Titan_software

174 / 470

http://www.hpc.uio.no/index.php/Titan_software
http://www.hpc.uio.no/index.php/Titan_software

Getting started
Batch systems

I A batch system controls the use of the cluster resources
I Submits the job to the right resource
I Monitors the job while executing
I Restarts the job in case of failure
I Takes care of priorities and queues to control execution

order of unrelated jobs

Sun Grid Engine

I SGE is the batch system used on Titan
I Jobs are executed either interactively or through job scripts
I Useful commands: showq, qlogin, sbatch
I http:
//hpc.uio.no/index.php/Titan_User_Guide

175 / 470

http://hpc.uio.no/index.php/Titan_User_Guide
http://hpc.uio.no/index.php/Titan_User_Guide

Getting started

Modules
I Different compilers, MPI-versions and applications need

different sets of user environment variables
I The modules package lets you load and remove the

different variable sets
I Useful commands:

I List available modules: module avail
I Load module: module load <environment>
I Unload module: module unload <environment>
I Currently loaded: module list

I http:
//hpc.uio.no/index.php/Titan_User_Guide

176 / 470

http://hpc.uio.no/index.php/Titan_User_Guide
http://hpc.uio.no/index.php/Titan_User_Guide

Example

Interactively
l o g i n to t i t a n
$ ssh t i t a n . u io . no
ask for 4 cpus
$ q log in −−account=fys3150 −−ntasks=4
s t a r t a job setup , note the punktum !
$ source / s i t e / b in / jobsetup
we want to use the i n t e l module
$ module load i n t e l
$ module load openmpi / 1 . 2 . 8 . i n t e l
$ mkdir −p fys3150 / mpiexample /
$ cd fys3150 / mpiexample /
Use program6 . cpp from the course pages , see chapter 4
compile the program
$ mpic++ −O3 −o program6 . x program6 . cpp
and execute i t
$ mpirun . / program6 . x
$ Trapezoida l r u l e = 3.14159
$ Time = 0.000378132 on number of processors : 4

177 / 470

The job script

job.sge
! / b in / sh
Cal l th is f i l e job . slurm
4 cpus wi th mpi (or other communication)
#SBATCH −ntasks=4
10 mins o f wa l l t ime
#SBATCH−−t ime =0:10:00
p r o j e c t fys3150
#SBATCH−−account=fys3150
we need 2000 MB of memory per process
#SBATCH−−mem−per−cpu=2000M
name of job
#SBATCH−−job−name=program5

source / s i t e / b in / jobsetup

load the module used when we compiled the program
module load scampi

s t a r t program
mpirun . / program5 . x

#END OF SCRIPT

178 / 470

Example

Submitting

l o g i n to t i t a n
$ ssh t i t a n . u io . no
we want to use the module scampi
$ module load scampi
$ cd fys3150 / mpiexample /
compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
and submit i t
$ sbatch job . slurm
$ ex i t

179 / 470

Example

Checking execution
check i f j ob i s running :
$ showq −u mhjensen
ACTIVE JOBS−−−−−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC REMAINING STARTTIME

883129 mhjensen Running 4 10:31:17 F r i Oct 2 13:59:25

1 Ac t i ve Job 2692 of 4252 Processors Ac t i ve (63.31%)
482 of 602 Nodes Ac t i ve (80.07%)

IDLE JOBS−−−−−−−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

0 I d l e Jobs

BLOCKED JOBS−−−−−−−−−−−−−−−−
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

Tota l Jobs : 1 Ac t i ve Jobs : 1 I d l e Jobs : 0 Blocked Jobs : 0

180 / 470

Tips and admonitions

Tips

I Titan FAQ: http://www.hpc.uio.no/index.php/FAQ
I man-pages, e.g. man sbatch

I Ask us

Admonitions
I Remember to exit from qlogin-sessions; the resource is

reserved for you untill you exit
I Don’t run jobs on login-nodes; these are only for compiling

and editing files

181 / 470

http://www.hpc.uio.no/index.php/FAQ

Importance sampling, Fokker-Planck and Langevin
equation, discussed only if time

A stochastic process is simply a function of two variables, one is the time, the other is a
stochastic variable X , defined by specifying

I the set {x} of possible values for X ;

I the probability distribution, wX (x), over this set, or briefly w(x)

The set of values {x} for X may be discrete, or continuous. If the set of values is

continuous, then wX (x) is a probability density so that wX (x)dx is the probability that

one finds the stochastic variable X to have values in the range [x , x + dx] .

182 / 470

Importance sampling, Fokker-Planck and Langevin
equation

An arbitrary number of other stochastic variables may be derived from X . For example,
any Y given by a mapping of X , is also a stochastic variable. The mapping may also be
time-dependent, that is, the mapping depends on an additional variable t

YX (t) = f (X , t).

The quantity YX (t) is called a random function, or, since t often is time, a stochastic
process. A stochastic process is a function of two variables, one is the time, the other
is a stochastic variable X . Let x be one of the possible values of X then

y(t) = f (x , t),

is a function of t , called a sample function or realization of the process. In physics one

considers the stochastic process to be an ensemble of such sample functions.

183 / 470

Importance sampling, Fokker-Planck and Langevin
equation

For many physical systems initial distributions of a stochastic variable y tend to
equilibrium distributions: w(y , t)→ w0(y) as t →∞. In equilibrium detailed balance
constrains the transition rates

W (y → y ′)w(y) = W (y ′ → y)w0(y),

where W (y ′ → y) is the probability, per unit time, that the system changes from a state
|y〉 , characterized by the value y for the stochastic variable Y , to a state |y ′〉.
Note that for a system in equilibrium the transition rate W (y ′ → y) and the reverse

W (y → y ′) may be very different.

184 / 470

Importance sampling, Fokker-Planck and Langevin
equation

Consider, for instance, a simple system that has only two energy levels ε0 = 0 and
ε1 = ∆E .
For a system governed by the Boltzmann distribution we find (the partition function has
been taken out)

W (0→ 1) exp−ε0/kT = W (1→ 0) exp−ε1/kT

We get then
W (1→ 0)

W (0→ 1)
= exp−∆E/kT ,

which goes to zero when T tends to zero.

185 / 470

Importance sampling, Fokker-Planck and Langevin
equation

If we assume a discrete set events, our initial probability distribution function can be
given by

wi (0) = δi,0,

and its time-development after a given time step ∆t = ε is

wi (t) =
∑

j

W (j → i)wj (t = 0).

The continuous analog to wi (0) is

w(x)→ δ(x), (54)

where we now have generalized the one-dimensional position x to a

generic-dimensional vector x. The Kroenecker δ function is replaced by the δ

distribution function δ(x) at t = 0.

186 / 470

Importance sampling, Fokker-Planck and Langevin
equation

The transition from a state j to a state i is now replaced by a transition to a state with
position y from a state with position x. The discrete sum of transition probabilities can
then be replaced by an integral and we obtain the new distribution at a time t + ∆t as

w(y, t + ∆t) =

∫
W (y, t + ∆t |x, t)w(x, t)dx, (55)

and after m time steps we have

w(y, t + m∆t) =

∫
W (y, t + m∆t |x, t)w(x, t)dx. (56)

When equilibrium is reached we have

w(y) =

∫
W (y|x, t)w(x)dx, (57)

that is no time-dependence. Note our change of notation for W

187 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We can solve the equation for w(y, t) by making a Fourier transform to momentum
space. The PDF w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =

∫ ∞
−∞

dk exp (ikx)w̃(k, t), (58)

and using the definition of the δ-function

δ(x) =
1

2π

∫ ∞
−∞

dk exp (ikx), (59)

we see that
w̃(k, 0) = 1/2π. (60)

188 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)
∂t

= −Dk2w̃(k, t), (61)

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
=

1
2π

exp
[
−(Dk2t)

]
. (62)

189 / 470

Importance sampling, Fokker-Planck and Langevin
equation

Using Eq. (58) we obtain

w(x, t) =

∫ ∞
−∞

dk exp [ikx]
1

2π
exp

[
−(Dk2t)

]
=

1
√

4πDt
exp

[
−(x2/4Dt)

]
, (63)

with the normalization condition ∫ ∞
−∞

w(x, t)dx = 1. (64)

190 / 470

Importance sampling, Fokker-Planck and Langevin
equation

It is rather easy to verify by insertion that Eq. (63) is a solution of the diffusion equation.
The solution represents the probability of finding our random walker at position x at
time t if the initial distribution was placed at x = 0 at t = 0.
There is another interesting feature worth observing. The discrete transition probability
W itself is given by a binomial distribution. The results from the central limit theorem
state that transition probability in the limit n→∞ converges to the normal distribution.
It is then possible to show that

W (il − jl, nε)→ W (y, t + ∆t |x, t) =
1

√
4πD∆t

exp
[
−((y− x)2/4D∆t)

]
, (65)

and that it satisfies the normalization condition and is itself a solution to the diffusion

equation.

191 / 470

Importance sampling, Fokker-Planck and Langevin
equation

Let us now assume that we have three PDFs for times t0 < t ′ < t , that is w(x0, t0),
w(x′, t ′) and w(x, t). We have then

w(x, t) =

∫ ∞
−∞

W (x.t |x′.t ′)w(x′, t ′)dx′,

and
w(x, t) =

∫ ∞
−∞

W (x.t |x0.t0)w(x0, t0)dx0,

and
w(x′, t ′) =

∫ ∞
−∞

W (x′.t ′|x0, t0)w(x0, t0)dx0.

192 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We can combine these equations and arrive at the famous
Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

W (xt |x0t0) =

∫ ∞
−∞

W (x, t |x′, t ′)W (x′, t ′|x0, t0)dx′.

We can replace the spatial dependence with a dependence upon say the velocity (or
momentum), that is we have

W (v, t |v0, t0) =

∫ ∞
−∞

W (v, t |v′, t ′)W (v′, t ′|v0, t0)dx′.

193 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We will now derive the Fokker-Planck equation. We start from the ESKC equation

W (x, t |x0, t0) =

∫ ∞
−∞

W (x, t |x′, t ′)W (x′, t ′|x0, t0)dx′.

Define s = t ′ − t0, τ = t − t ′ and t − t0 = s + τ . We have then

W (x, s + τ |x0) =

∫ ∞
−∞

W (x, τ |x′)W (x′, s|x0)dx′.

194 / 470

Importance sampling, Fokker-Planck and Langevin
equation

Assume now that τ is very small so that we can make an expansion in terms of a small
step xi , with x′ = x− ξ, that is

W (x, s|x0) +
∂W
∂s

τ + O(τ2) =

∫ ∞
−∞

W (x, τ |x− ξ)W (x− ξ, s|x0)dx′.

We assume that W (x, τ |x− ξ) takes non-negligible values only when ξ is small. This is

just another way of stating the Master equation!!

195 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We say thus that x changes only by a small amount in the time interval τ . This means
that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x− ξ)W (x− ξ, s|x0) =
∞∑

n=0

(−ξ)n

n!

∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

We can then rewrite the ESKC equation as

∂W
∂s

τ = −W (x, s|x0) +
∞∑

n=0

(−ξ)n

n!

∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ
]
.

We have neglected higher powers of τ and have used that for n = 0 we get simply

W (x, s|x0) due to normalization.

196 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We say thus that x changes only by a small amount in the time interval τ . This means
that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x− ξ)W (x− ξ, s|x0) =
∞∑

n=0

(−ξ)n

n!

∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

We can then rewrite the ESKC equation as

∂W (x, s|x0)

∂s
τ = −W (x, s|x0)+

∞∑
n=0

(−ξ)n

n!

∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ
]
.

We have neglected higher powers of τ and have used that for n = 0 we get simply

W (x, s|x0) due to normalization.

197 / 470

Importance sampling, Fokker-Planck and Langevin
equation

We simplify the above by introducing the moments

Mn =
1
τ

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ =
〈[∆x(τ)]n〉

τ
,

resulting in
∂W (x, s|x0)

∂s
=
∞∑

n=1

(−ξ)n

n!

∂n

∂xn
[W (x, s|x0)Mn] .

198 / 470

Importance sampling, Fokker-Planck and Langevin
equation

When τ → 0 we assume that 〈[∆x(τ)]n〉 → 0 more rapidly than τ itself if n > 2. When
τ is much larger than the standard correlation time of system then Mn for n > 2 can
normally be neglected. This means that fluctuations become negligible at large time
scales.
If we neglect such terms we can rewrite the ESKC equation as

∂W (x, s|x0)

∂s
= −

∂M1W (x, s|x0)

∂x
+

1
2
∂2M2W (x, s|x0)

∂x2
.

199 / 470

Importance sampling, Fokker-Planck and Langevin
equation

In a more compact form we have

∂W
∂s

= −
∂M1W
∂x

+
1
2
∂2M2W
∂x2

,

which is the Fokker-Planck equation! It is trivial to replace position with velocity

(momentum).

200 / 470

Langevin equation

Consider a particle suspended in a liquid. On its path through the liquid it will
continuously collide with the liquid molecules. Because on average the particle will
collide more often on the front side than on the back side, it will experience a
systematic force proportional with its velocity, and directed opposite to its velocity.
Besides this systematic force the particle will experience a stochastic force F (t). The
equations of motion then read

dr
dt

= v ,

dv
dt

= −ξv + F .

201 / 470

Langevin equation

From hydrodynamics we know that the friction constant ξ is given by

ξ = 6πηa/m

where η is the viscosity of the solvent and a is the radius of the particle.
Solving the second equation in the previous slide we get

v(t) = v0e−ξt +

∫ t

0
dτe−ξ(t−τ)F (τ).

202 / 470

Langevin equation

If we want to get some useful information out of this, we have to average over all
possible realizations of F (t), with the initial velocity as a condition. A useful quantity for
example is

〈v(t) · v(t)〉v0 = v−ξ2t
0 + 2

∫ t

0
dτe−ξ(2t−τ)v0 · 〈F (τ)〉v0

+

∫ t

0
dτ ′

∫ t

0
dτe−ξ(2t−τ−τ ′)〈F (τ) · F (τ ′)〉v0 .

203 / 470

Langevin equation

In order to continue we have to make some assumptions about the conditional
averages of the stochastic forces. In view of the chaotic character of the stochastic
forces the following assumptions seem to be appropriate

〈F (t)〉 = 0,

〈F (t) · F (t ′)〉v0 = Cv0δ(t − t ′).

204 / 470

Langevin equation

We omit the subscript v0, when the quantity of interest turns out to be independent of
v0. Using the last three equations we get

〈v(t) · v(t)〉v0 = v2
0 e−2ξt +

Cv0

2ξ
(1− e−2ξt).

For large t this should be equal to 3kT/m, from which it follows that

〈F (t) · F (t ′)〉 = 6
kT
m
ξδ(t − t ′).

This result is called the fluctuation-dissipation theorem .

205 / 470

Langevin equation

Integrating

v(t) = v0e−ξt +

∫ t

0
dτe−ξ(t−τ)F (τ),

we get

r(t) = r0 + v0
1
ξ

(1− e−ξt) +

∫ t

0
dτ
∫ τ

0
τ ′e−ξ(τ−τ ′)F (τ ′),

from which we calculate the mean square displacement

〈(r(t)− r0)2〉v0 =
v2

0

ξ
(1− e−ξt)2 +

3kT
mξ2

(2ξt − 3 + 4e−ξt − e−2ξt).

206 / 470

Langevin equation

For very large t this becomes

〈(r(t)− r0)2〉 =
6kT
mξ

t

from which we get the Einstein relation

D =
kT
mξ

where we have used 〈(r(t)− r0)2〉 = 6Dt .

207 / 470

Topics for Week 8, February 21-25

Blocking and statistical analysis

I Repetition from last week
I Importance sampling, further discussion of codes
I Begin discussion of blocking and statistical analysis of data
I Definition of onebody densities.

Your tasks this week:
I Finalize importance sampling
I Start implementing blocking.
I Start computing one-body densities.
I Read about the conjugate gradient method in Thijssen’s

text till next week. Alternatively, chapter 10 of Numerical
Recipes gives a very good overview. The code dfpmin is
taken from chapter 10.7 of Numerical Recipes.

208 / 470

Definition of onebody density, needed in 1d

The harmonic oscillator-like functions for so-called nx = ny = 0 waves are rather
simple.
This means that if we use just the harmonic oscillator-like wave functions, our ground
state for the two electron dot is

Φ(r1, r2) = C exp
(
−ω(r2

1 + r2
2)/2

)
.

and the onebody density is defined as

ρ(r1) =

∫
dr2

∣∣∣C exp
(
−ω(r2

1 + r2
2)/2

)∣∣∣2 ,
if we use just the Harmonic oscillator wave functions. Remember that these are

eigenfunctions of the unperturbed problem.

209 / 470

Definition of onebody density, needed in 1d

With the onebody density defined as

ρ(r1) =

∫
dr2

∣∣∣C exp
(
−ω(r2

1 + r2
2)/2

)∣∣∣2 ,
your tasks are to find the constant C and then calculate the density for only a harmonic

oscillator state. Plot it as a function of x and y for the ground state.

210 / 470

Definition of onebody density, needed in 1d

In the next step the pure harmonic oscillator wave function is replaced by the optimal
trial wave function from our Monte Carlo calculations, namely ΨT . This gives a new
density given by

ρ(r1) =

∫
dr2 |ΨT (r1, r2))|2 .

Your task then is to compute the density for the ground state with the correlations baked

in and compare the result with the one obtained with the pure harmonic oscillator. You

have to compare this for different values of ω in order to study the role of correlations.

211 / 470

Why blocking?

Statistical analysis, see chapter 11.2 of lecture notes

I Monte Carlo simulations have to be treated as computer
experiments

I The results can be analysed with the same statistical tools
as we would use when analyzing experimental data.

I As in all experiments, we are looking for expectation values
and an estimate of how accurate they are, i.e., possible
sources for errors.

212 / 470

Why blocking?

Statistical analysis

I As in other experiments, Monte Carlo experiments have
two classes of errors:

I Statistical errors
I Systematical errors

I Statistical errors can be estimated using standard tools
from statistics

I Systematical errors are method specific and must be
treated differently from case to case. (In VMC a common
source is the step length or time step in importance
sampling)

213 / 470

Statistics and blocking

The probability distribution function (PDF) is a function p(x) on the domain which, in
the discrete case, gives us the probability or relative frequency with which these values
of X occur:

p(x) = Prob(X = x)

In the continuous case, the PDF does not directly depict the actual probability. Instead
we define the probability for the stochastic variable to assume any value on an
infinitesimal interval around x to be p(x)dx . The continuous function p(x) then gives
us the density of the probability rather than the probability itself. The probability for a
stochastic variable to assume any value on a non-infinitesimal interval [a, b] is then
just the integral:

Prob(a ≤ X ≤ b) =

∫ b

a
p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers chosen

as if by chance from some specified PDF so that the selection of a large set of these

numbers reproduces this PDF.

214 / 470

Statistics and blocking

Also of interest to us is the cumulative probability distribution function (CDF), P(x),
which is just the probability for a stochastic variable X to assume any value less than x :

P(x) = Prob(X ≤ x) =

∫ x

−∞
p(x ′)dx ′

The relation between a CDF and its corresponding PDF is then:

p(x) =
d
dx

P(x)

215 / 470

Statistics and blocking

A particularly useful class of special expectation values are the moments. The n-th
moment of the PDF p is defined as follows:

〈xn〉 ≡
∫

xnp(x) dx

The zero-th moment 〈1〉 is just the normalization condition of p. The first moment, 〈x〉,
is called the mean of p and often denoted by the letter µ:

〈x〉 = µ ≡
∫

xp(x) dx

216 / 470

Statistics and blocking

A special version of the moments is the set of central moments, the n-th central
moment defined as:

〈(x − 〈x〉)n〉 ≡
∫

(x − 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively. But
the second central moment, known as the variance of p, is of particular interest. For
the stochastic variable X , the variance is denoted as σ2

X or Var(X):

σ2
X = Var(X) = 〈(x − 〈x〉)2〉 =

∫
(x − 〈x〉)2p(x) dx

=

∫ (
x2 − 2x〈x〉 + 〈x〉2

)
p(x) dx

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance, σ =
√
〈(x − 〈x〉)2〉 is called the standard deviation of

p. It is clearly just the RMS (root-mean-square) value of the deviation of the PDF from

its mean value, interpreted qualitatively as the “spread” of p around its mean.

217 / 470

Statistics and blocking

Another important quantity is the so called covariance, a variant of the above defined
variance. Consider again the set {Xi} of n stochastic variables (not necessarily
uncorrelated) with the multivariate PDF P(x1, . . . , xn). The covariance of two of the
stochastic variables, Xi and Xj , is defined as follows:

Cov(Xi , Xj) ≡
〈
(xi − 〈xi 〉)(xj − 〈xj 〉)

〉
=

∫
· · ·
∫

(xi − 〈xi 〉)(xj − 〈xj 〉) P(x1, . . . , xn) dx1 . . . dxn (66)

with
〈xi 〉 =

∫
· · ·
∫

xi P(x1, . . . , xn) dx1 . . . dxn

218 / 470

Statistics and blocking

If we consider the above covariance as a matrix Cij = Cov(Xi , Xj), then the diagonal
elements are just the familiar variances, Cii = Cov(Xi , Xi) = Var(Xi). It turns out that
all the off-diagonal elements are zero if the stochastic variables are uncorrelated. This
is easy to show, keeping in mind the linearity of the expectation value. Consider the
stochastic variables Xi and Xj , (i 6= j):

Cov(Xi , Xj) =
〈
(xi − 〈xi 〉)(xj − 〈xj 〉)

〉
= 〈xi xj − xi 〈xj 〉 − 〈xi 〉xj + 〈xi 〉〈xj 〉〉
= 〈xi xj 〉 − 〈xi 〈xj 〉〉 − 〈〈xi 〉xj 〉+ 〈〈xi 〉〈xj 〉〉
= 〈xi xj 〉 − 〈xi 〉〈xj 〉 − 〈xi 〉〈xj 〉+ 〈xi 〉〈xj 〉
= 〈xi xj 〉 − 〈xi 〉〈xj 〉

219 / 470

Statistics and blocking

If Xi and Xj are independent, we get 〈xi xj 〉 = 〈xi 〉〈xj 〉, resulting in
Cov(Xi ,Xj) = 0 (i 6= j).
Also useful for us is the covariance of linear combinations of stochastic variables. Let
{Xi} and {Yi} be two sets of stochastic variables. Let also {ai} and {bi} be two sets of
scalars. Consider the linear combination:

U =
∑

i

ai Xi V =
∑

j

bj Yj

By the linearity of the expectation value

Cov(U,V) =
∑
i,j

ai bj Cov(Xi ,Yj)

220 / 470

Statistics and blocking

Now, since the variance is just Var(Xi) = Cov(Xi ,Xi), we get the variance of the linear
combination U =

∑
i ai Xi :

Var(U) =
∑
i,j

ai aj Cov(Xi ,Xj) (67)

And in the special case when the stochastic variables are uncorrelated, the
off-diagonal elements of the covariance are as we know zero, resulting in:

Var(U) =
∑

i

a2
i Cov(Xi ,Xi) =

∑
i

a2
i Var(Xi)

Var(
∑

i

ai Xi) =
∑

i

a2
i Var(Xi)

which will become very useful in our study of the error in the mean value of a set of

measurements.

221 / 470

Statistics and blocking

A stochastic process is a process that produces sequentially a chain of values:

{x1, x2, . . . xk , . . . }.

We will call these values our measurements and the entire set as our measured

sample. The action of measuring all the elements of a sample we will call a stochastic

experiment (since, operationally, they are often associated with results of empirical

observation of some physical or mathematical phenomena; precisely an experiment).

We assume that these values are distributed according to some PDF pX (x), where X

is just the formal symbol for the stochastic variable whose PDF is pX (x). Instead of

trying to determine the full distribution p we are often only interested in finding the few

lowest moments, like the mean µX and the variance σX .

222 / 470

Statistics and blocking

In practical situations a sample is always of finite size. Let that size be n. The
expectation value of a sample, the sample mean, is then defined as follows:

x̄n ≡
1
n

n∑
k=1

xk

The sample variance is:

Var(x) ≡
1
n

n∑
k=1

(xk − x̄n)2

its square root being the standard deviation of the sample. The sample covariance is:

Cov(x) ≡
1
n

∑
kl

(xk − x̄n)(xl − x̄n)

223 / 470

Statistics and blocking

Note that the sample variance is the sample covariance without the cross terms. In a
similar manner as the covariance in eq. (66) is a measure of the correlation between
two stochastic variables, the above defined sample covariance is a measure of the
sequential correlation between succeeding measurements of a sample.

These quantities, being known experimental values, differ significantly from and must

not be confused with the similarly named quantities for stochastic variables, mean µX ,

variance Var(X) and covariance Cov(X ,Y).

224 / 470

Statistics and blocking

The law of large numbers states that as the size of our sample grows to infinity, the
sample mean approaches the true mean µX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true mean µX .

What we need to find out is how good an approximation x̄n is to µX . In any stochastic

measurement, an estimated mean is of no use to us without a measure of its error. A

quantity that tells us how well we can reproduce it in another experiment. We are

therefore interested in the PDF of the sample mean itself. Its standard deviation will be

a measure of the spread of sample means, and we will simply call it the error of the

sample mean, or just sample error, and denote it by errX . In practice, we will only be

able to produce an estimate of the sample error since the exact value would require the

knowledge of the true PDFs behind, which we usually do not have.

225 / 470

Statistics and blocking

The straight forward brute force way of estimating the sample error is simply by

producing a number of samples, and treating the mean of each as a measurement.

The standard deviation of these means will then be an estimate of the original sample

error. If we are unable to produce more than one sample, we can split it up sequentially

into smaller ones, treating each in the same way as above. This procedure is known as

blocking and will be given more attention shortly. At this point it is worth while exploring

more indirect methods of estimation that will help us understand some important

underlying principles of correlational effects.

226 / 470

Statistics and blocking

Let us first take a look at what happens to the sample error as the size of the sample
grows. In a sample, each of the measurements xi can be associated with its own
stochastic variable Xi . The stochastic variable X n for the sample mean x̄n is then just a
linear combination, already familiar to us:

X n =
1
n

n∑
i=1

Xi

All the coefficients are just equal 1/n. The PDF of X n, denoted by pXn
(x) is the

desired PDF of the sample means.

227 / 470

Statistics and blocking

The probability density of obtaining a sample mean x̄n is the product of probabilities of
obtaining arbitrary values x1, x2, . . . , xn with the constraint that the mean of the set {xi}
is x̄n:

pXn
(x) =

∫
pX (x1) · · ·

∫
pX (xn) δ

(
x −

x1 + x2 + · · ·+ xn

n

)
dxn · · · dx1

And in particular we are interested in its variance Var(X n).

228 / 470

Statistics and blocking

It is generally not possible to express pXn
(x) in a closed form given an arbitrary PDF

pX and a number n. But for the limit n→∞ it is possible to make an approximation.
The very important result is called the central limit theorem. It tells us that as n goes to
infinity, pXn

(x) approaches a Gaussian distribution whose mean and variance equal
the true mean and variance, µX and σ2

X , respectively:

lim
n→∞

pXn
(x) =

(
n

2πVar(X)

)1/2
e−

n(x−x̄n)2

2Var(X) (68)

229 / 470

Statistics and blocking

The desired variance Var(X n), i.e. the sample error squared err2
X , is given by:

err2
X = Var(X n) =

1
n2

∑
ij

Cov(Xi ,Xj) (69)

We see now that in order to calculate the exact error of the sample with the above

expression, we would need the true means µXi
of the stochastic variables Xi . To

calculate these requires that we know the true multivariate PDF of all the Xi . But this

PDF is unknown to us, we have only got the measurements of one sample. The best

we can do is to let the sample itself be an estimate of the PDF of each of the Xi ,

estimating all properties of Xi through the measurements of the sample.

230 / 470

Statistics and blocking

Our estimate of µXi
is then the sample mean x̄ itself, in accordance with the the central

limit theorem:

µXi
= 〈xi 〉 ≈

1
n

n∑
k=1

xk = x̄

Using x̄ in place of µXi
we can give an estimate of the covariance in eq. (69):

Cov(Xi ,Xj) = 〈(xi − 〈xi 〉)(xj − 〈xj 〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉

≈
1
n

n∑
l

(
1
n

n∑
k

(xk − x̄n)(xl − x̄n)

)
=

1
n

1
n

∑
kl

(xk − x̄n)(xl − x̄n)

=
1
n

Cov(x)

231 / 470

Statistics and blocking
By the same procedure we can use the sample variance as an estimate of the variance
of any of the stochastic variables Xi :

Var(Xi) = 〈xi − 〈xi 〉〉 ≈ 〈xi − x̄n〉

≈
1
n

n∑
k=1

(xk − x̄n)

= Var(x) (70)

Now we can calculate an estimate of the error errX of the sample mean x̄n:

err2
X =

1
n2

∑
ij

Cov(Xi ,Xj)

≈
1
n2

∑
ij

1
n

Cov(x) =
1
n2

n2 1
n

Cov(x)

=
1
n

Cov(x) (71)

which is nothing but the sample covariance divided by the number of measurements in

the sample.

232 / 470

Statistics and blocking

In the special case that the measurements of the sample are uncorrelated (equivalently
the stochastic variables Xi are uncorrelated) we have that the off-diagonal elements of
the covariance are zero. This gives the following estimate of the sample error:

err2
X =

1
n2

∑
ij

Cov(Xi ,Xj) =
1
n2

∑
i

Var(Xi)

≈
1
n2

∑
i

Var(x)

=
1
n

Var(x) (72)

where in the second step we have used eq. (70). The error of the sample is then just its

standard deviation divided by the square root of the number of measurements the

sample contains. This is a very useful formula which is easy to compute. It acts as a

first approximation to the error, but in numerical experiments, we cannot overlook the

always present correlations.

233 / 470

Statistics and blocking

For computational purposes one usually splits up the estimate of err2
X , given by

eq. (71), into two parts:

err2
X =

1
n

Var(x) +
1
n

(Cov(x)− Var(x))

=
1
n2

n∑
k=1

(xk − x̄n)2 +
2
n2

∑
k<l

(xk − x̄n)(xl − x̄n) (73)

The first term is the same as the error in the uncorrelated case, eq. (72). This means

that the second term accounts for the error correction due to correlation between the

measurements. For uncorrelated measurements this second term is zero.

234 / 470

Statistics and blocking

Computationally the uncorrelated first term is much easier to treat efficiently than the
second.

Var(x) =
1
n

n∑
k=1

(xk − x̄n)2 =

(
1
n

n∑
k=1

x2
k

)
− x̄2

n

We just accumulate separately the values x2 and x for every measurement x we

receive. The correlation term, though, has to be calculated at the end of the experiment

since we need all the measurements to calculate the cross terms. Therefore, all

measurements have to be stored throughout the experiment.

235 / 470

Statistics and blocking

Let us analyze the problem by splitting up the correlation term into partial sums of the
form:

fd =
1

n − d

n−d∑
k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms of fd :

2
n

∑
k<l

(xk − x̄n)(xl − x̄n) = 2
n−1∑
d=1

fd

The value of fd reflects the correlation between measurements separated by the
distance d in the sample samples. Notice that for d = 0, f is just the sample variance,
Var(x). If we divide fd by Var(x), we arrive at the so called autocorrelation function:

κd =
fd

Var(x)

which gives us a useful measure of the correlation pair correlation starting always at 1

for d = 0.

236 / 470

Statistics and blocking

The sample error (see eq. (73)) can now be written in terms of the autocorrelation
function:

err2
X =

1
n

Var(x) +
2
n
· Var(x)

n−1∑
d=1

fd
Var(x)

=

1 + 2
n−1∑
d=1

κd

 1
n

Var(x)

=
τ

n
· Var(x) (74)

and we see that errX can be expressed in terms the uncorrelated sample variance
times a correction factor τ which accounts for the correlation between measurements.
We call this correction factor the autocorrelation time:

τ = 1 + 2
n−1∑
d=1

κd (75)

237 / 470

Statistics and blocking

For a correlation free experiment, τ equals 1. From the point of view of eq. (74) we can
interpret a sequential correlation as an effective reduction of the number of
measurements by a factor τ . The effective number of measurements becomes:

neff =
n
τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated

estimate of err2
X ≈ Var(x)/n to be less than the true sample error. The estimate of the

error will be too “good”. On the other hand, the calculation of the full autocorrelation

time poses an efficiency problem if the set of measurements is very large.

238 / 470

Can we understand this? Time Auto-correlation
Function

The so-called time-displacement autocorrelation φ(t) for a quantityM is given by

φ(t) =

∫
dt ′
[
M(t ′)− 〈M〉

] [
M(t ′ + t)− 〈M〉

]
,

which can be rewritten as

φ(t) =

∫
dt ′
[
M(t ′)M(t ′ + t)− 〈M〉2

]
,

where 〈M〉 is the average value andM(t) its instantaneous value. We can discretize
this function as follows, where we used our set of computed valuesM(t) for a set of
discretized times (our Monte Carlo cycles corresponding to moving all electrons?)

φ(t) =
1

tmax − t

tmax−t∑
t′=0

M(t ′)M(t ′+ t)−
1

tmax − t

tmax−t∑
t′=0

M(t ′)×
1

tmax − t

tmax−t∑
t′=0

M(t ′+ t).

239 / 470

Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of the sums becomes
small and we end up integrating over a rather small time interval. This means that the
statistical error in φ(t) due to the random nature of the fluctuations inM(t) can
become large.
One should therefore choose t � tmax.
Note that the variableM can be any expectation values of interest.

The time-correlation function gives a measure of the correlation between the various

values of the variable at a time t ′ and a time t ′ + t . If we multiply the values ofM at

these two different times, we will get a positive contribution if they are fluctuating in the

same direction, or a negative value if they fluctuate in the opposite direction. If we then

integrate over time, or use the discretized version of, the time correlation function φ(t)

should take a non-zero value if the fluctuations are correlated, else it should gradually

go to zero. For times a long way apart the different values ofM are most likely

uncorrelated and φ(t) should be zero.

240 / 470

Time Auto-correlation Function

We can derive the correlation time by observing that our Metropolis algorithm is based
on a random walk in the space of all possible spin configurations. Our probability
distribution function ŵ(t) after a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
∑

i

αi v̂i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

∑
i

αi v̂i =
∑

i

λt
iαi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .

241 / 470

Time Auto-correlation Function

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
We can relate this property to an observable like the mean energy. With the probabilty
ŵ(t) (which in our case is the squared trial wave function) we can write the expectation
values as

〈M(t)〉 =
∑
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values ofMµ in its various

microstates µ.

242 / 470

Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
∑

i

λt
iαi v̂i mi .

If we define mi = v̂i mi as the expectation value ofM in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
∑

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean value is dominated by the the largest
eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

λt
iαi mi .

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

αi mi e−t/τi .

243 / 470

Time Auto-correlation Function

The quantities τi are the correlation times for the system. They control also the
auto-correlation function discussed above. The longest correlation time is obviously
given by the second largest eigenvalue τ1, which normally defines the correlation time
discussed above. For large times, this is the only correlation time that survives. If
higher eigenvalues of the transition matrix are well separated from λ1 and we simulate
long enough, τ1 may well define the correlation time. In other cases we may not be
able to extract a reliable result for τ1. Coming back to the time correlation function φ(t)
we can present a more general definition in terms of the mean magnetizations 〈M(t)〉.
Recalling that the mean value is equal to 〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

∑
i,j 6=0

miαi mjαj e−t/τi ,

which is appropriate for all times.

244 / 470

Correlation Time

If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −〈
t

log| φ(t)
φ(0)
|
〉.

If the decay is exponential, then∫ ∞
0

dtφ(t) =

∫ ∞
0

dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
∑

k

φ(k)

φ(0)
,

called the integrated correlation time.

245 / 470

What is blocking?

Blocking

I Blocking is a cheap (in terms of CPU expenditure) way of estimating statistical
errors

I Say that we have a set of samples from a Monte Carlo experiment

I Assuming (wrongly) that our samples are uncorrelated our best estimate of the
standard deviation of the mean 〈M〉 is given by

σ =

√
1
n

(
〈M2〉 − 〈M〉2

)
I If the samples are correlated we can rewrite our results to show that

σ =

√
1 + 2τ/∆t

n

(
〈M2〉 − 〈M〉2

)
where τ is the correlation time (the time between a sample and the next
uncorrelated sample) and ∆t is time between each sample

246 / 470

What is blocking?

Blocking

I If ∆t � τ our first estimate of σ still holds
I Much more common that ∆t < τ

I In the method of data blocking we divide the sequence of
samples into blocks

I We then take the mean 〈Mi〉 of block i = 1 . . . nblocks to
calculate the total mean and variance

I The size of each block must be so large that sample j of
block i is not correlated with sample j of block i + 1

I The correlation time τ would be a good choice

247 / 470

What is blocking?

Blocking

I Problem: We don’t know τ or it is too expensive to compute
I Solution: Make a plot of std. dev. as a function of block size
I The estimate of std. dev. of correlated data is too low→

the error will increase with increasing block size until the
blocks are uncorrelated, where we reach a plateau

I When the std. dev. stops increasing the blocks are
uncorrelated

248 / 470

Implementation

Main ideas
I Do a parallel Monte Carlo simulation, storing all samples to

files (one per process)
I Do the statistical analysis on these files, independently of

your Monte Carlo program
I Read the files into an array
I Loop over various block sizes
I For each block size nb, loop over the array in steps of nb

taking the mean of elements inb, . . . , (i + 1)nb

I Take the mean and variance of the resulting array
I Write the results for each block size to file for later analysis

249 / 470

Implementation

Example

I The files vmc para.cpp and vmc blocking.cpp contain a
parallel VMC simulator and a program for doing blocking
on the samples from the resulting set of files

I Will go through the parts related to blocking

250 / 470

http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_para.cpp
http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_blocking.cpp

Implementation

Parallel file output

I The total number of samples from all processes may get
very large

I Hence, storing all samples on the master node is not a
scalable solution

I Instead we store the samples from each process in
separate files

I Must make sure these files have different names

String handling

os t r ings t ream ost ;
os t << "blocks_rank" << my rank << ".dat" ;
b l o c k o f i l e . open (os t . s t r () . c s t r () , i os : : out | i os : :

b ina ry) ;

251 / 470

Implementation

Parallel file output

I Having separated the filenames it’s just a matter of taking
the samples and store them to file

I Note that there is no need for communication between the
processes in this procedure

File dumping

a l l e n e r g i e s = new double [number cycles + 1] ;
mc sampling (max var ia t ions , number cycles ,

cumulat ive e , cumulat ive e2 ,
a l l e n e r g i e s) ;

b l o c k o f i l e . write ((char ∗) (a l l e n e r g i e s +1) ,
number cycles∗sizeof (double)) ;

b l o c k o f i l e . close () ;

252 / 470

Implementation

Reading the files

I Reading the files is only about mirroring the output
I To make life easier for ourselves we find the filesize, and

hence the number of samples by using the C function stat

File loading
struct sta t resul t ;
i f (stat ("blocks_rank0.dat" , &resul t) == 0){

l o c a l n = resul t . s t s i z e / sizeof (double) ;
n = l o c a l n∗n procs ;

}

double∗ mc resu l ts = new double [n] ;
for (i n t i =0; i<n procs ; i ++){

os t r ings t ream ost ;
os t << "blocks_rank" << i << ".dat" ;
i f s t r eam i n f i l e ;
i n f i l e . open (os t . s t r () . c s t r () , i os : : in | i os : : b ina ry) ;
i n f i l e . read ((char∗) &(mc resu l t s [i∗ l o c a l n]) , resul t . s t s i z e) ;
i n f i l e . close () ;

}

253 / 470

Implementation

Blocking

I Loop over block sizes inb, . . . , (i + 1)nb

Loop over block sizes

for (i n t i =0; i<n block samples ; i ++){
b lock s i ze = min b lock s i ze+ i ∗ b l o c k s t e p l e n g t h ;
b lock ing (mc resu l ts , n , b lock s ize , res) ;
mean = res [0] ;
sigma = res [1] ;
o u t f i l e << b lock s i ze << "\t" << mean << "\t"

<< s q r t (sigma / ((n / b l ock s i ze) −1.0))
<< endl ;

}

254 / 470

Implementation
Blocking

I The blocking itself is now just a matter of finding the
number of blocks (note the integer division) and taking the
mean of each block

I Note the pointer aritmetic: Adding a number i to an array
pointer moves the pointer to element i in the array

Blocking function

void b lock ing (double ∗ vals , i n t n vals , i n t
b lock s ize , double ∗ res) {

i n t n b locks = n va ls / b l ock s i ze ;
double∗ b lock va l s = new double [n b locks] ;
for (i n t i =0; i<n b locks ; i ++)

b l ock va l s [i] = mean(va ls+ i ∗ b lock s ize ,
b l ock s i ze) ;

meanvar (b lock va ls , n blocks , res) ;
}

255 / 470

Topics for Week 11, March 14-18

Conjugate gradient method and onebody densities

I Repetition from last week
I Conjugate gradient method
I Many electrons and Slater determinant

Project work this week: finalize 1d and start with 1e.

256 / 470

Conjugate gradient (CG) method

The success of the CG method for finding solutions of non-linear problems is based on
the theory of conjugate gradients for linear systems of equations. It belongs to the
class of iterative methods for solving problems from linear algebra of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂− Âx̂,

where r̂ is the so-called residual or error in the iterative process.

257 / 470

Conjugate gradient method

The residual is zero when we reach the minimum of the quadratic equation

P(x̂) =
1
2

x̂T Âx̂− x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric. If we search for

a minimum of the quantum mechanical variance, then the matrix Â, which is called the

Hessian, is given by the second-derivative of the variance. This quantity is always

positive definite. If we vary the energy, the Hessian may not always be positive definite.

258 / 470

Conjugate gradient method

In the CG method we define so-called conjugate directions and two vectors ŝ and t̂ are
said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂T
i Âx̂j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner product.

Being conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂ is conjugate to ŝ.

259 / 470

Conjugate gradient method

An example is given by the eigenvectors of the matrix

v̂T
i Âv̂j = λv̂T

i v̂j ,

which is zero unless i = j .

260 / 470

Conjugate gradient method

Assume now that we have a symmetric positive-definite matrix Â of size n × n. At each
iteration i + 1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i + αi p̂i .

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i form
a basis of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
n∑

i=1

αi p̂i .

261 / 470

Conjugate gradient method

The coefficients are given by

Ax =
n∑

i=1

αi Api = b.

Multiplying with p̂T
k from the left gives

p̂T
k Âx̂ =

n∑
i=1

αi p̂T
k Âp̂i = p̂T

k b̂,

and we can define the coefficients αk as

αk =
p̂T

k b̂

p̂T
k Âp̂k

262 / 470

Conjugate gradient method and iterations

If we choose the conjugate vectors p̂k carefully, then we may not need all of them to
obtain a good approximation to the solution x̂. So, we want to regard the conjugate
gradient method as an iterative method. This also allows us to solve systems where n
is so large that the direct method would take too much time.
We denote the initial guess for x̂ as x̂0. We can assume without loss of generality that

x̂0 = 0,

or consider the system
Âẑ = b̂− Âx̂0,

instead.

263 / 470

Conjugate gradient method

Important, one can show that the solution x̂ is also the unique minimizer of the
quadratic form

f (x̂) =
1
2

x̂T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0, which
equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to the

gradient, hence the name conjugate gradient method.

264 / 470

Conjugate gradient method

Let r̂k be the residual at the k -th step:

r̂k = b̂− Âx̂k .

Note that r̂k is the negative gradient of f at x̂ = x̂k , so the gradient descent method
would be to move in the direction r̂k . Here, we insist that the directions p̂k are
conjugate to each other, so we take the direction closest to the gradient r̂k under the
conjugacy constraint. This gives the following expression

p̂k+1 = r̂k −
p̂T

k Âr̂k

p̂T
k Âp̂k

p̂k .

265 / 470

Conjugate gradient method

We can also compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αk p̂k),

or
(b̂− Âx̂k)− αk Âp̂k ,

which gives
r̂k+1 = r̂k − Âp̂k ,

266 / 470

Conjugate gradient method, our case

If we consider finding the minimum of a function f using Newton’s method, that is
search for a zero of the gradient of a function. Near a point xi we have to second order

f (x̂) = f (x̂i) + (x̂− x̂i)∇f (x̂i)
1
2

(x̂− x̂i)Â(x̂− x̂i)

giving
∇f (x̂) = ∇f (x̂i) + Â(x̂− x̂i).

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂− x̂i = Â−1∇f (x̂i).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1)−∇f (x̂i)).

267 / 470

Codes from numerical recipes

The codes are taken from chapter 10.7 of Numerical recipes. We use the functions
dfpmin and lnsrch. You can load down the package of programs from the webpage of
the course, see under project 1. The package is called NRcgm107.tar .gz and contains
the files dfmin.c, lnsrch.c, nrutil.c and nrutil.h. These codes are written in C.

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))

268 / 470

What you have to provide

The input to dfpmin

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))

is

I The starting vector p of length n

I The function func on which minimization is done

I The function dfunc where the gradient i calculated

I The convergence requirement for zeroing the gradient gtol .

It returns in p the location of the minimum, the number of iterations and the minimum

value of the function under study fret .

269 / 470

Simple example and demonstration

For the harmonic oscillator in one-dimension with a trial wave function and probability

ψT (x) = e−α
2x2

,PT (x)dx =
e−2α2x2

dx∫
dxe−2α2x2

with α as the variational parameter. We have the following local energy

EL[α] = α2 + x2
(

1
2
− 2α2

)
,

which results in the expectation value

〈EL[α]〉 =
1
2
α2 +

1
8α2

270 / 470

Simple example and demonstration

The derivative of the energy with respect to α gives

d〈EL[α]〉
dα

= α−
1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

d2〈EL[α]〉
dα2

= 1 +
3

4α4

The condition
d〈EL[α]〉

dα
= 0,

gives the optimal α = 1/
√

2.

271 / 470

Simple example and demonstration

In general we end up computing the expectation value of the energy in terms of some
parameters α = {α0, α1, . . . , αn) and we search for a minimum in parameter space.
This leads to an energy minimization problem.
The elements of the gradient are (Ei is the first derivative wrt to the variational
parameter αi)

Ēi =

〈
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

〉
(76)

= 2
〈
ψi

ψ
(EL − Ē)

〉
(by Hermiticity). (77)

For our simple model we get the same expression for the first derivative (check it!).

272 / 470

Simple example and demonstration

Taking the second derivative the Hessian is

Ēij = 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē)

〉

−
〈
ψi

ψ

〉
Ēj −

〈
ψj

ψ

〉
Ēi +

〈
ψi

ψ
EL,j

〉]
. (78)

Note that our conjugate gradient approach does need the Hessian! Check again that

the simple models gives the same second derivative with the above expression.

273 / 470

Simple example and demonstration

We can also minimize the variance. In our simple model the variance is

σ2[α] =
1
2
α4 −

1
4

+
1

32α4
,

with first derivative
dσ2[α]

dα
= 2α3 −

1
8α5

and a second derivative which is always positive

d2σ2[α]

dα2
= 6α2 +

5
8α6

274 / 470

Conjugate gradient method, our case

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂− x̂i = Â−1∇f (x̂i).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1)−∇f (x̂i)).

275 / 470

Simple example and demonstration

In our case f can be either the energy or the variance. If we choose the energy then we
have

α̂i+1 − α̂i = Â−1(∇E(α̂i+1)−∇E(α̂i)).

In the simple model gradient and the Hessian Â are

d〈EL[α]〉
dα

= α−
1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

Â =
d2〈EL[α]〉

dα2
= 1 +

3
4α4

276 / 470

Simple example and demonstration

We get then

αi+1 =
4
3
αi −

α4
i

3α3
i+1

,

which can be rewritten as
α4

i+1 −
4
3
αiα

4
i+1 +

1
3
α4

i .

Our code does however not need the value of the Hessian since it produces an

estimate of the Hessian.

277 / 470

Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;

278 / 470

Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;

279 / 470

Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);
return value;

} // end of function to evaluate

280 / 470

Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

281 / 470

Using the conjugate gradient method

I Start your program with calling the CGM method (function dfpmin).

I This function needs the function for the expectation value of the local energy and
the derivative of the local energy. Change the functions func and dfunc in the
codes below.

I Your function func is now the Metropolis part with a call to the local energy
function. For every call to the function func I used 1000 Monte Carlo cycles for
the trial wave function

ΨT (r1, r2) = e−α(r1+r2)

I This gave me an expectation value for the energy which is returned by the
function func.

I When I call the local energy I also compute the first derivative of the expectaction
value of the local energy

d〈EL[α]〉
dα

= 2
〈
ψi

ψ
(EL[α]− 〈EL[α]〉)

〉
.

282 / 470

Using the conjugate gradient method

The expectation value for the local energy of the Helium atom with a simple Slater
determinant is given by

〈EL〉 = α2 − 2α
(

Z −
5

16

)
You should test your numerical derivative with the derivative of the last expression, that
is

d〈EL[α]〉
dα

= 2α− 2
(

Z −
5
16

)
.

283 / 470

Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;

284 / 470

Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;

285 / 470

Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

// Change here by calling your Metropolis function which
// returns the local energy

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);

return value;
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I
used 1000 cycles per call to get a new value of 〈EL[α]〉.

286 / 470

Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

// Change here by calling your Metropolis function.
// I compute both the local energy and its derivative for every call to func

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I

used 1000 cycles per call to get a new value of 〈EL[α]〉. When I compute the local

energy I also compute its derivative. After roughly 10-20 iterations I got a converged

result in terms of α.

287 / 470

Topics for Week 13, March 28- April 1

Slater determinant and programming strategies

I Repetition from last week
I How to program the Conjugate gradient method, see code

qdotsclass.cpp
I Many electrons and Slater determinant
I How to implement the Slater determinant

Project work this week: finalize 1e and start programming
Slater determinant.

288 / 470

Slater determinants

The potentially most time-consuming part is the evaluation of the gradient and the
Laplacian of an N-particle Slater determinant. We have to differentiate the determinant
with respect to all spatial coordinates of all particles. A brute force differentiation would
involve N · d evaluations of the entire determinant which would even worsen the
already undesirable time scaling, making it Nd · O(N3) ∼ O(d · N4). This poses
serious hindrances to the overall efficiency of our code.
The efficiency can be improved however if we move only one electron at the time. The
Slater determinant matrix D is defined by the matrix elements

dij ≡ φj (xi) (79)

where φj (ri) is a single particle wave function. The columns correspond to the position

of a given particle while the rows stand for the various quantum numbers.

289 / 470

Slater determinants

What we need to realize is that when differentiating a Slater determinant with respect
to some given coordinate, only one row of the corresponding Slater matrix is changed.
Therefore, by recalculating the whole determinant we risk producing redundant
information. The solution turns out to be an algorithm that requires to keep track of the
inverse of the Slater matrix.
Let the current position in phase space be represented by the (N · d)-element vector
rold and the new suggested position by the vector rnew.
The inverse of D can be expressed in terms of its cofactors Cij and its determinant |D|:

d−1
ij =

Cji

|D|
(80)

Notice that the interchanged indices indicate that the matrix of cofactors is to be

transposed.

290 / 470

Slater determinants

If D is invertible, then we must obviously have D−1D = 1, or explicitly in terms of the
individual elements of D and D−1:

N∑
k=1

dik d−1
kj = δij (81)

Consider the ratio, which we shall call R, between |D(rnew)| and |D(rold)|. By definition,
each of these determinants can individually be expressed in terms of the i th row of its
cofactor matrix

R ≡
|D(rnew)|
|D(rold)|

=

∑N
j=1 dij (rnew) Cij (rnew)∑N
j=1 dij (rold) Cij (rold)

(82)

291 / 470

Slater determinants

Suppose now that we move only one particle at a time, meaning that rnew differs from
rold by the position of only one, say the i th, particle. This means that D(rnew) and
D(rold) differ only by the entries of the i th row. Recall also that the i th row of a cofactor
matrix C is independent of the entries of the i th row of its corresponding matrix D. In
this particular case we therefore get that the i th row of C(rnew) and C(rold) must be
equal. Explicitly, we have:

Cij (rnew) = Cij (rold) ∀ j ∈ {1, . . . ,N} (83)

292 / 470

Slater determinants

Inserting this into the numerator of eq. (82) and using eq. (80) to substitute the
cofactors with the elements of the inverse matrix, we get:

R =

∑N
j=1 dij (rnew) Cij (rold)∑N
j=1 dij (rold) Cij (rold)

=

∑N
j=1 dij (rnew) d−1

ji (rold)∑N
j=1 dij (rold) d−1

ji (rold)
(84)

293 / 470

Slater determinants

Now by eq. (81) the denominator of the rightmost expression must be unity, so that we
finally arrive at:

R =
N∑

j=1

dij (rnew) d−1
ji (rold) =

N∑
j=1

φj (rnew
i) d−1

ji (rold) (85)

What this means is that in order to get the ratio when only the i th particle has been

moved, we only need to calculate the dot product of the vector(
φ1(rnew

i), . . . , φN (rnew
i)

)
of single particle wave functions evaluated at this new

position with the i th column of the inverse matrix D−1 evaluated at the original position.

Such an operation has a time scaling of O(N). The only extra thing we need to do is to

maintain the inverse matrix D−1(xold).

294 / 470

Slater determinants

If the new position rnew is accepted, then the inverse matrix can by suitably updated by
an algorithm having a time scaling of O(N2). This algorithm goes as follows. First we
update all but the i th column of D−1. For each column j 6= i , we first calculate the
quantity:

Sj = (D(rnew)×D−1(rold))ij =
N∑

l=1

dil (rnew) d−1
lj (rold) (86)

The new elements of the j th column of D−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold)−
Sj

R
d−1

ki (rold)
∀ k ∈ {1, . . . ,N}
j 6= i (87)

295 / 470

Slater determinants

Finally the elements of the i th column of D−1 are updated simply as follows:

d−1
ki (rnew) =

1
R

d−1
ki (rold) ∀ k ∈ {1, . . . ,N} (88)

We see from these formulas that the time scaling of an update of D−1 after changing

one row of D is O(N2).

296 / 470

Slater determinants

The scheme is also applicable for the calculation of the ratios involving derivatives. It

turns out that differentiating the Slater determinant with respect to the coordinates of a

single particle ri changes only the i th row of the corresponding Slater matrix.

297 / 470

Slater determinants

The gradient and Laplacian can therefore be calculated as follows:

∇i |D(r)|
|D(r)|

=
N∑

j=1

∇i dij (r) d−1
ji (r) =

N∑
j=1

∇iφj (ri) d−1
ji (r) (89)

and
∇2

i |D(r)|
|D(r)|

=
N∑

j=1

∇2
i dij (r) d−1

ji (r) =
N∑

j=1

∇2
i φj (ri) d−1

ji (r) (90)

298 / 470

Slater determinants

Thus, to calculate all the derivatives of the Slater determinant, we only need the
derivatives of the single particle wave functions (∇iφj (ri) and ∇2

i φj (ri)) and the
elements of the corresponding inverse Slater matrix (D−1(ri)). A calculation of a single
derivative is by the above result an O(N) operation. Since there are d · N derivatives,
the time scaling of the total evaluation becomes O(d · N2). With an O(N2) updating
algorithm for the inverse matrix, the total scaling is no worse, which is far better than
the brute force approach yielding O(d · N4).
Important note: In most cases you end with closed form expressions for the
single-particle wave functions. It is then useful to calculate the various derivatives and
make separate functions for them.

299 / 470

Slater determinant: Explicit expressions for various
Atoms, beryllium

The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) =
1
√

4!

∣∣∣∣∣∣∣∣
ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣ .
The Slater determinant as written is zero since the spatial wave functions for the spin

up and spin down states are equal. But we can rewrite it as the product of two Slater

determinants, one for spin up and one for spin down.

300 / 470

Slater determinant: Explicit expressions for various
Atoms, beryllium

We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = Det ↑ (1, 2)Det ↓ (3, 4)− Det ↑ (1, 3)Det ↓ (2, 4)

−Det ↑ (1, 4)Det ↓ (3, 2) + Det ↑ (2, 3)Det ↓ (1, 4)− Det ↑ (2, 4)Det ↓ (1, 3)

+Det ↑ (3, 4)Det ↓ (1, 2),

where we have defined

Det ↑ (1, 2) =
1
√

2

∣∣∣∣ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,
and

Det ↓ (3, 4) =
1
√

2

∣∣∣∣ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .
The total determinant is still zero!

301 / 470

Slater determinant: Explicit expressions for various
Atoms, beryllium

We want to avoid to sum over spin variables, in particular when the interaction does not
depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum Chem. 20
(1981) 1107, that for the variational energy we can approximate the Slater determinant
as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ Det ↑ (1, 2)Det ↓ (3, 4),

or more generally as
Φ(r1, r2, . . . rN) ∝ Det ↑ Det ↓,

where we have the Slater determinant as the product of a spin up part involving the
number of electrons with spin up only (3 for six-electron QD and 6 in 12-electron QD)
and a spin down part involving the electrons with spin down.
This ansatz is not antisymmetric under the exchange of electrons with opposite spins
but it can be shown that it gives the same expectation value for the energy as the full
Slater determinant.

As long as the Hamiltonian is spin independent, the above is correct. Exercise for next

week: convince yourself that this is correct.

302 / 470

Slater determinants

We will thus factorize the full determinant |D| into two smaller ones, where each can be
identified with ↑ and ↓ respectively:

|D| = |D|↑ · |D|↓ (91)

The combined dimensionality of the two smaller determinants equals the
dimensionality of the full determinant. Such a factorization is advantageous in that it
makes it possible to perform the calculation of the ratio R and the updating of the
inverse matrix separately for |D|↑ and |D|↓:

|D|new

|D|old
=
|D|new
↑

|D|old
↑
·
|D|new
↓

|D|old
↓

(92)

303 / 470

Slater determinants

This reduces the calculation time by a constant factor. The maximal time reduction
happens in a system of equal numbers of ↑ and ↓ particles, so that the two factorized
determinants are half the size of the original one.
Consider the case of moving only one particle at a time which originally had the
following time scaling for one transition:

OR(N) +Oinverse(N2) (93)

For the factorized determinants one of the two determinants is obviously unaffected by

the change so that it cancels from the ratio R.

304 / 470

Slater determinants

Therefore, only one determinant of size N/2 is involved in each calculation of R and
update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) +Oinverse(N2/4) (94)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) +Oinverse(N3/4) (95)

which gives the same reduction as in the case of moving all particles at once.

305 / 470

Updating the Slater matrix

Computing the ratios discussed above requires that we maintain the inverse of the
Slater matrix evaluated at the current position. Each time a trial position is accepted,
the row number i of the Slater matrix changes and updating its inverse has to be
carried out. Getting the inverse of an N × N matrix by Gaussian elimination has a
complexity of order of O(N3) operations, a luxury that we cannot afford for each time a
particle move is accepted. We will use the expression

d−1
kj (xnew) =

d−1

kj (xold)− d−1
ki (xold)

R
∑N

l=1 dil (xnew)d−1
lj (xold) if j 6= i

d−1
ki (xold)

R
∑N

l=1 dil (xold)d−1
lj (xold) if j = i

(96)

306 / 470

Updating the Slater matrix

This equation scales as O(N2). The evaluation of the determinant of an N × N matrix
by standard Gaussian elimination requires O(N3) calculations. As there are Nd
independent coordinates we need to evaluate Nd Slater determinants for the gradient
(quantum force) and Nd for the Laplacian (kinetic energy). With the updating algorithm
we need only to invert the Slater determinant matrix once. This can be done by
standard LU decomposition methods.

307 / 470

Slater Determinant and VMC

Determining a determinant of an N × N matrix by standard Gaussian elimination is of
the order of O(N3) calculations. As there are N · d independent coordinates we need
to evaluate Nd Slater determinants for the gradient (quantum force) and N · d for the
Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant matrix once.

This is done by calling standard LU decomposition methods.

308 / 470

How to compute the Slater Determinant

If you choose to implement the above recipe for the computation of the Slater
determinant, you need to LU decompose the Slater matrix. This is described in chapter
4 of the lecture notes.

You need to call the function ludcmp in lib.cpp. You need to transfer the Slater matrix

and its dimension. You get back an LU decomposed matrix.

309 / 470

LU Decomposition

The LU decomposition method means that we can rewrite this matrix as the product of
two matrices B and C where

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

1 0 0 0

b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

 .

The matrix A ∈ Rn×n has an LU factorization if the determinant is different from zero. If
the LU factorization exists and A is non-singular, then the LU factorization is unique
and the determinant is given by

det{A} = c11c22 . . . cnn.

310 / 470

How should we structure our code?

What do you think is reasonable to split into subtasks defined
by classes?

I Single-particle wave functions?
I External potentials?
I Operations on rij and the correlation function?
I Mathematical operations like the first and second

derivative of the trial wave function? How can you split the
derivatives into various subtasks?

I Matrix and vector operations?
Your task is to figure out how to structure your code in order to
compute the Slater determinant for the six electron dot. This
should be compared with the brute force case. Do not include
the correlation factor in the first attempt nor the
electron-electron repulsion.

311 / 470

A useful piece of code, distances

double r i (double ∗∗ , i n t) ;
/ / d is tance between nucleus and e lec t r on i
double r i j (double ∗∗ , int , i n t) ;
/ / d is tance between e lec t rons i and j

You should also make functions for the single-particle wave
functions, their first and second derivatives as well.

312 / 470

The function to set up a determinant
/ / Determinant f u n c t i o n
double determinant (double∗∗ A, i n t dim) {

i f (dim == 2)
return A [0] [0] ∗A [1] [1] − A [0] [1] ∗A [1] [0] ;

double sum = 0;
for (i n t i = 0 ; i < dim ; i ++) {

double∗∗ sub = new double ∗ [dim−1];
for (i n t j = 0 ; j < i ; j ++)

sub [j] = &A[j] [1] ;
for (i n t j = i +1; j < dim ; j ++)

sub [j −1] = &A[j] [1] ;
i f (i % 2 == 0)

sum += A[i] [0] ∗ determinant (sub , dim−1) ;
else

sum −= A[i] [0] ∗ determinant (sub , dim−1) ;

delete [] sub ;
}
return sum;

}
313 / 470

Set up the Slater determinant
N is the number of electrons and N2 is half the number of
electrons.
/ / S la te r−determinant
double s l a t e r (double∗∗ R, double alpha , double N,

double N2) {
double∗∗ DUp = (double ∗∗) mat r i x (N2, N2, sizeof (

double)) ;
double∗∗ DDown = (double ∗∗) mat r i x (N2, N2, sizeof (

double)) ;
for (i n t i = 0 ; i < N2; i ++) {

for (i n t j = 0 ; j < N2; j ++) {
DUp[i] [j] = ph i (j ,R, i , alpha) ;
DDown[i] [j] = ph i (j ,R, i +N2, alpha) ;

}
}
/ / Returns product o f sp in up and spin down dets
double det = determinant (DUp,N2) ∗determinant (

DDown,N2) ;
f r e e m a t r i x ((void ∗∗) DUp) ;
f r e e m a t r i x ((void ∗∗) DDown) ;
return det ;

}

314 / 470

Jastrow factor
/ / Jastrow f a c t o r
double j as t row (double∗∗ R, double beta , double N,

double N2) {
double arg = 0;
for (i n t i = 1 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
i f ((i < N2 && j < N2) | | (i >= N2 && j >= N2

)) {
double r i j = r i j (R, i , j) ;
arg += 0.33333333∗ r i j / (1+ beta∗ r i j) ; / /

same spin
}
else {

double r i j = r i j (R, i , j) ;
arg += 1.0∗ r i j / (1+ beta∗ r i j) ; / / oppos i te

sp in
}

return exp (arg) ;
}

315 / 470

/ / Check o f s i n g u l a r i t y a t R = 0
bool S i n g u l a r i t y (double∗∗ R, i n t N) {

for (i n t i = 0 ; i < N; i ++)
i f (r i (R, i) < 1e−10)

return true ;

for (i n t i = 0 ; i < N − 1; i ++)
for (i n t j = i +1; j < N; j ++)

i f (r i j (R, i , j) < 1e−10)
return true ;

return fa lse ;
}

316 / 470

Efficient calculations of wave function ratios

The expectation value of the kinetic energy expressed in atomic units for electron i is

〈K̂i 〉 = −
1
2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉

, (97)

Ki = −
1
2
∇2

i Ψ

Ψ
. (98)

∇2Ψ

Ψ
=

∇2(ΨD ΨC)

ΨD ΨC
=

∇·[∇(ΨD ΨC)]

ΨD ΨC
=

∇·[ΨC∇ΨD + ΨD∇ΨC]

ΨD ΨC

=
∇ΨC ·∇ΨD + ΨC∇2ΨD + ∇ΨD ·∇ΨC + ΨD∇2ΨC

ΨD ΨC

(99)

∇2Ψ

Ψ
=

∇2ΨD

ΨD
+
∇2ΨC

ΨC
+ 2

∇ΨD

ΨD
·
∇ΨC

ΨC
(100)

317 / 470

Summing up: Bringing it all together, Local energy

The second derivative of the Jastrow factor divided by the Jastrow factor (the way it
enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik

∂x2
k

+
N∑

k=1

k−1∑
i=1

∂gik

∂xk
−

N∑
i=k+1

∂gki

∂xi

2

But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f (rij) = exp

∑
i<j

arij

1 + βrij

,
and it is easy to see that for particle k we have

∇2
k ΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)

rki rkj
f ′(rki)f ′(rkj) +

∑
j 6=k

(
f ′′(rkj) +

2
rkj

f ′(rkj)

)

318 / 470

Bringing it all together, Local energy

Using

f (rij) =
arij

1 + βrij
,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle k we

have

∇2
k ΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)

rki rkj

a
(1 + βrki)2

a
(1 + βrkj)2

+
∑
j 6=k

(
2a

rkj (1 + βrkj)2
−

2aβ
(1 + βrkj)3

)

319 / 470

Local energy

The gradient and Laplacian can be calculated as follows:

∇i |D(r)|
|D(r)|

=
N∑

j=1

∇i dij (r) d−1
ji (r) =

N∑
j=1

∇iφj (ri) d−1
ji (r)

and
∇2

i |D(r)|
|D(r)|

=
N∑

j=1

∇2
i dij (r) d−1

ji (r) =
N∑

j=1

∇2
i φj (ri) d−1

ji (r)

320 / 470

Local energy function
double E l oc a l (double∗∗ R, double alpha , double

beta , i n t N, double∗∗ F , double∗∗ DinvUp ,
double∗∗ DinvDown , i n t N2, double∗∗

detgrad , double∗∗ j a s t g rad) {

/ / K i n e t i c energy
double k i n e t i c = 0 ;
/ / Determinant pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {

i f (i < N2)
for (i n t l = 0 ; l < N2; l ++)

k i n e t i c −= p h i d e r i v 2 (l ,R, i , j , alpha) ∗
DinvUp [l] [i] ;

else
for (i n t l = 0 ; l < N2; l ++)

k i n e t i c −= p h i d e r i v 2 (l ,R, i , j , alpha) ∗
DinvDown [l] [i−N2] ;

}
} 321 / 470

Jastrow part

/ / Jastrow pa r t
double r i j , a ;
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
k i n e t i c −= jas tg rad [i] [j]∗ j a s t g rad [i] [j] ;

}
}
for (i n t i = 0 ; i < N−1; i ++) {

for (i n t j = i +1; j < N; j ++) {
i f ((j < N2 && i < N2) | | (j >= N2 && i >= N2

))
a = 0.33333333;

else
a = 1 . 0 ;

r i j = r i j (R, i , j) ;
k i n e t i c −= 4∗a / (r i j ∗pow(1+ beta∗ r i j , 3)) ;

}
}

322 / 470

Local energy

/ / ” I n t e r f e r e n c e ” pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
k i n e t i c −= 2∗detgrad [i] [j]∗ j a s t g rad [i] [j] ;

}
}

k i n e t i c ∗= . 5 ;

323 / 470

/ / P o t e n t i a l energy
/ / e lec t ron−nucleus p o t e n t i a l
double p o t e n t i a l = 0 ;
for (i n t i = 0 ; i < N; i ++)

p o t e n t i a l −= Z / r i (R, i) ;

/ / e lec t ron−e lec t r on p o t e n t i a l
for (i n t i = 0 ; i < N − 1; i ++)

for (i n t j = i +1; j < N; j ++)
p o t e n t i a l += 1 / r i j (R, i , j) ;

return p o t e n t i a l + k i n e t i c ;
}

324 / 470

Determinant part in quantum force

The gradient for the determinant is

∇i |D(r)|
|D(r)|

=
N∑

j=1

∇i dij (r) d−1
ji (r) =

N∑
j=1

∇iφj (ri) d−1
ji (r).

325 / 470

Quantum force
void calcQF (double∗∗ R, double∗∗ F , double alpha ,

double beta ,
i n t N, double∗∗ DinvUp , double∗∗

DinvDown , i n t N2, double∗∗ detgrad ,
double∗∗ j a s t g rad) {

double sum;
/ / Determinant pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
sum = 0;
i f (i < N2)

for (i n t l = 0 ; l < N2; l ++)
sum += p h i d e r i v (l ,R, i , j , alpha) ∗DinvUp [l

] [i] ;
else

for (i n t l = 0 ; l < N2; l ++)
sum += p h i d e r i v (l ,R, i , j , alpha) ∗DinvDown [

l] [i−N2] ;
detgrad [i] [j] = sum;

}
} 326 / 470

Jastrow gradient in quantum force

We have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij

1 + βrij

,
the gradient needed for the quantum force and local energy is easy to compute. We get
for particle k

∇k ΨC

ΨC
=
∑
j 6=k

rkj

rkj

a
(1 + βrkj)2

,

which is rather easy to code. Remember to sum over all particles when you compute

the local energy.

327 / 470

Jastrow part

/ / Jastrow pa r t
double r i l , a ;
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
sum = 0;
for (i n t l = 0 ; l < N; l ++) {

i f (l ! = i) {
i f ((l < N2 && i < N2) | | (l >= N2 && i

>= N2))
a = 0.33333333;

else
a = 1 . 0 ;

328 / 470

r i l = r i j (R, i , l) ;
sum += (R[i] [j]−R[l] [j]) ∗a / (r i l ∗pow(1+

beta∗ r i l , 2)) ;
}

}
j a s t g rad [i] [j] = sum;

}
}
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < dimension ; j ++)
F [i] [j] = 2∗ (detgrad [i] [j] + j as tg rad [i] [j]) ;

}

329 / 470

Metropolis-Hastings part

/ / I n i t i a l i z e p o s i t i o n s
double∗∗ R = (double ∗∗) mat r i x (N, dimension , sizeof

(double)) ;
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < dimension ; j ++)
R[i] [j] = gauss ian dev ia te (&idum) ;

i n t N2 = N/ 2 ; / / dimension o f S l a t e r mat r i x

330 / 470

Metropolis Hastings part

We need to compute the ratio between wave functions, in particular for the Slater
determinants.

R =
N∑

j=1

dij (rnew) d−1
ji (rold) =

N∑
j=1

φj (rnew
i) d−1

ji (rold)

What this means is that in order to get the ratio when only the i th particle has been

moved, we only need to calculate the dot product of the vector(
φ1(rnew

i), . . . , φN (rnew
i)

)
of single particle wave functions evaluated at this new

position with the i th column of the inverse matrix D−1 evaluated at the original position.

Such an operation has a time scaling of O(N). The only extra thing we need to do is to

maintain the inverse matrix D−1(xold).

331 / 470

Jastrow factor in Metropolis Hastings

We have

RC =
Ψnew

C

Ψcur
C

=
eUnew

eUcur
= e∆U , (101)

where

∆U =

k−1∑
i=1

(
f new
ik − f cur

ik
)

+
N∑

i=k+1

(
f new
ki − f cur

ki
)

(102)

One needs to develop a special algorithm that runs only through the elements of the
upper triangular matrix g and have k as an index.

332 / 470

Metropolis-Hastings part

/ / I n i t i a l i z e inverse S l a t e r matr ices f o r sp in up
and spin down

double∗∗ DinvUp = (double ∗∗) mat r i x (N2, N2, sizeof (
double)) ;

double∗∗ DinvDown = (double ∗∗) mat r i x (N2, N2,
sizeof (double)) ;

for (i n t i = 0 ; i < N2; i ++) {
for (i n t j = 0 ; j < N2; j ++) {

DinvUp [i] [j] = ph i (j ,R, i , alpha) ;
DinvDown [i] [j] = ph i (j ,R, i +N2, alpha) ;

}
}
i nverse (DinvUp ,N2) ;
inverse (DinvDown ,N2) ;

333 / 470

Metropolis-Hastings part

/ / Inverse S l a t e r mat r i x i n new p o s i t i o n
double∗∗ DinvUp new = (double ∗∗) mat r i x (N2, N2,

sizeof (double)) ;
double∗∗ DinvDown new = (double ∗∗) mat r i x (N2, N2,

sizeof (double)) ;
for (i n t i = 0 ; i < N2; i ++) {

for (i n t j = 0 ; j < N2; j ++) {
DinvUp new [i] [j] = DinvUp [i] [j] ;
DinvDown new [i] [j] = DinvDown [i] [j] ;

}
}

334 / 470

Metropolis-Hastings part

/ / Gradients o f determinant and and Jastrow f a c t o r
double∗∗ detgrad = (double ∗∗) mat r i x (N, dimension ,

sizeof (double)) ;
double∗∗ j a s t g rad = (double ∗∗) mat r i x (N, dimension

, sizeof (double)) ;
double∗∗ detgrad new = (double ∗∗) mat r i x (N,

dimension , sizeof (double)) ;
double∗∗ jas tgrad new = (double ∗∗) mat r i x (N,

dimension , sizeof (double)) ;

/ / I n i t i a l i z e quantum fo rce
double∗∗ F = (double ∗∗) mat r i x (N, dimension , sizeof

(double)) ;
calcQF (R, F , alpha , beta ,N, DinvUp , DinvDown , N2,

detgrad , j as tg rad) ;

335 / 470

Metropolis-Hastings part

double EL ; / / Local energy
double s q r t d t = s q r t (d e l t a t) ;
double D = . 5 ; / / d i f f u s i o n constant
/ / For Met ropo l is−Hast ings algo :
double∗∗ R new = (double ∗∗) mat r i x (N, dimension ,

sizeof (double)) ;
double∗∗ F new = (double ∗∗) mat r i x (N, dimension ,

sizeof (double)) ;
double greens ra t i o ; / / Rat io between Green ’ s

f u nc t i o ns
double d e t r a t i o ; / / Rat io between S l a t e r

determinants
double j a s t r a t i o ; / / Rat io between Jastrow f a c t o r s
double ro ld , rnew , a ;
double alphader iv , be tader i v ;

336 / 470

Metropolis-Hastings part, inside Monte Carlo loop

/ / Rat io between S l a t e r determinants
i f (i < N2) {

d e t r a t i o = 0 ;
for (i n t l = 0 ; l < N2; l ++)

d e t r a t i o += ph i (l , R new , i , alpha) ∗ DinvUp
[l] [i] ;

}
else {

d e t r a t i o = 0 ;
for (i n t l = 0 ; l < N2; l ++)

d e t r a t i o += ph i (l , R new , i , alpha) ∗
DinvDown [l] [i−N2] ;

}

337 / 470

Metropolis-Hastings part

/ / Inverse S l a t e r mat r i x i n new p o s i t i o n
i f (i < N2) { / / Spinn up

for (i n t j = 0 ; j < N2; j ++) {
i f (j ! = i) {

Sj = 0 ;
for (i n t l = 0 ; l < N2; l ++) {

Sj += ph i (l , R new , i , alpha) ∗ DinvUp [l
] [j] ;

}
for (i n t l = 0 ; l < N2; l ++)

DinvUp new [l] [j] = DinvUp [l] [j] − Sj
∗ DinvUp [l] [i] / d e t r a t i o ;

}
}
for (i n t l = 0 ; l < N2; l ++)

DinvUp new [l] [i] = DinvUp [l] [i] /
d e t r a t i o ;

}

338 / 470

Metropolis-Hastings part

else { / / Spinn−ned
for (i n t j = 0 ; j < N2; j ++) {

i f (j ! = i−N2) {
Sj = 0 ;
for (i n t l = 0 ; l < N2; l ++) {

Sj += ph i (l , R new , i , alpha) ∗ DinvDown
[l] [j] ;

}
for (i n t l = 0 ; l < N2; l ++)

DinvDown new [l] [j] = DinvDown [l] [j] −
Sj ∗ DinvDown [l] [i−N2] /

d e t r a t i o ;
}

}
for (i n t l = 0 ; l < N2; l ++)

DinvDown new [l] [i−N2] = DinvDown [l] [i−N2]
/ d e t r a t i o ;

}

339 / 470

Jastrow ratio

/ / Rat io between Jastrow f a c t o r s
j a s t r a t i o = 0 ;
for (i n t l = 0 ; l < N; l ++) {

i f (l ! = i) {
i f ((l < N2 && i < N2) | | (l >= N2 && i

>= N2))
a = 0.33333333;

else
a = 1 . 0 ;

r o l d = r i j (R, l , i) ;
rnew = r i j (R new , l , i) ;
j a s t r a t i o += a ∗ (rnew / (1+ beta∗rnew) −

r o l d / (1+ beta∗ r o l d)) ;
}

}
j a s t r a t i o = exp (j a s t r a t i o) ;

340 / 470

Green’s functions

/ / quantum fo rce i n new p o s i t i o n
calcQF (R new , F new , alpha , beta ,N, DinvUp new ,

DinvDown new , N2, detgrad new , jastgrad new)
;

/ / Rat io between Green ’ s f u n c t i o n s
greens ra t i o = 0 ;
for (i n t i i = 0 ; i i < N; i i ++)

for (i n t j = 0 ; j < 3; j ++)
g reens ra t i o += . 5∗ (F new [i i] [j]+F [i i] [j])

∗ (. 5∗D∗ d e l t a t ∗ (F [i i] [j]−F new [i i] [
j]) + R[i i] [j] − R new [i i] [j]) ;

g reens ra t i o = exp (g reens ra t i o) ;

341 / 470

Metropolis Hastings test

/ / Met ropo l is−Hastings−t e s t
i f (ran2 (&idum) < greens ra t i o ∗ d e t r a t i o ∗

d e t r a t i o ∗ j a s t r a t i o ∗ j a s t r a t i o) {
/ / Accept move abd update inve rs S l a t e r

mat r i x
i f (i < N2)

for (i n t l = 0 ; l < N2; l ++)
for (i n t m = 0; m < N2; m++)

DinvUp [l] [m] = DinvUp new [l] [m] ;
else

for (i n t l = 0 ; l < N2; l ++)
for (i n t m = 0; m < N2; m++)

DinvDown [l] [m] = DinvDown new [l] [m] ;

342 / 470

/ / Update pos i t i on , quantum fo rce and
grad ien ts

for (i n t i i = 0 ; i i < N; i i ++) {
for (i n t j = 0 ; j < 3; j ++) {

R[i i] [j] = R new [i i] [j] ;
F [i i] [j] = F new [i i] [j] ;
detgrad [i i] [j] = detgrad new [i i] [j] ;
j a s tg rad [i i] [j] = jastgrad new [i i] [j] ;

.
} / / End loop of e l ec t r on t h a t has been moved

343 / 470

Proof for updating algorithm of the Slater matrix

As a starting point we may consider that each time a new position is suggested in the
Metropolis algorithm, a row of the current Slater matrix experiences some kind of
perturbation. Hence, the Slater matrix with its orbitals evaluated at the new position
equals the old Slater matrix plus a perturbation matrix,

djk (xnew) = djk (xold) + ∆jk , (103)

where

∆jk = δik [φj (xnew
i)− φj (xold

i)] = δik (∆φ)j . (104)

344 / 470

Proof for updating algorithm of the Slater matrix

Computing the inverse of the transposed matrix we arrive to

dkj (xnew)−1 = [dkj (xold) + ∆kj]
−1. (105)

The evaluation of the right hand side (rhs) term above is carried out by applying the
identity (A + B)−1 = A−1 − (A + B)−1BA−1. In compact notation it yields

[DT (xnew)]−1 = [DT (xold) + ∆T]−1

= [DT (xold)]−1 − [DT (xold) + ∆T]−1∆T [DT (xold)]−1

= [DT (xold)]−1 − [DT (xnew)]−1︸ ︷︷ ︸
By Eq.105

∆T [DT (xold)]−1.

345 / 470

Proof for updating algorithm of the Slater matrix

Using index notation, the last result may be expanded by

d−1
kj (xnew) = d−1

kj (xold)−
∑

l

∑
m

d−1
km (xnew)∆T

ml d
−1
lj (xold)

= d−1
kj (xold)−

∑
l

∑
m

d−1
km (xnew)∆lmd−1

lj (xcur)

= d−1
kj (xold)−

∑
l

∑
m

d−1
km (xnew) δim(∆φ)l︸ ︷︷ ︸

By Eq. 104

d−1
lj (xold)

= d−1
kj (xold)− d−1

ki (xnew)
N∑

l=1

(∆φ)l d
−1
lj (xold)

= d−1
kj (xold)− d−1

ki (xnew)
N∑

l=1

[φl (rnew
i)− φl (rold

i)]︸ ︷︷ ︸
By Eq.104

D−1
lj (xold).

346 / 470

Proof for updating algorithm of the Slater matrix

Using

D−1(xold) =
adjD
|D(xold)|

and D−1(xnew) =
adjD

|D(xnew)|
,

and dividing these two equations we get

D−1(xold)

D−1(xnew)
=
|D(xnew)|
|D(xold)|

= R ⇒ d−1
ki (xnew) =

d−1
ki (xold)

R
.

Therefore,

d−1
kj (xnew) = d−1

kj (xold)−
d−1

ki (xold)

R

N∑
l=1

[φl (rnew
i)− φl (rold

i)]d−1
lj (xold),

347 / 470

Proof for updating algorithm of the Slater matrix

or

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)

R

N∑
l=1

φl (rnew
i)d−1

lj (xold)

+
d−1

ki (xold)

R

N∑
l=1

φl (rold
i)d−1

lj (xold)

= d−1
kj (xold) −

d−1
ki (xold)

R

N∑
l=1

dil (xnew)d−1
lj (xold)

+
d−1

ki (xold)

R

N∑
l=1

dil (xold)d−1
lj (xold).

348 / 470

Proof for updating algorithm of the Slater matrix

In this equation, the first line becomes zero for j = i and the second for j 6= i .
Therefore, the update of the inverse for the new Slater matrix is given by

d−1
kj (xnew) =

d−1

kj (xold)− d−1
ki (xold)

R
∑N

l=1 dil (xnew)d−1
lj (xold) if j 6= i

d−1
ki (xold)

R
∑N

l=1 dil (xold)d−1
lj (xold) if j = i

349 / 470

Topics for Week 15, April 11-15

Slater determinants and Density functional theory

I Repetition from last week
I Hints and tips when computing the Slater determinant
I Begin density functional theory (DFT):

1. The equations, overview
2. Reminder on variational calculus and
3. Hartree-Fock theory

Project work this week: start programming the Slater
determinant. This part should be finalized before May 1.
Thursday April 28 we discuss how to program the Kohn-Sham
equations. Read chapters 4.1-4.5 (Hartree-Fock) and 5.1-5.3
(DFT) of Thijssen.

350 / 470

DFT: Selected literature

I R. van Leeuwen: Density functional approach to the many-body problem: key
concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003).
(Mathematical foundations of DFT)

I R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the
quantum many-body problem. (Introductory book)

I W. Koch and M. C. Holthausen: A chemist’s guide to density functional theory.
(Introductory book, less formal than Dreizler/Gross)

I E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24,
243-277 (1983). (Mathematical analysis of DFT)

351 / 470

Density Functional Theory (DFT)

Hohenberg and Kohn proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static
external potential (for example, the atomic nuclei) is a unique functional of the charge
density. The minimum value of the total energy functional is the ground state energy of
the system. The electronic charge density which yields this minimum defines the
ground state energy.
In Hartree-Fock theory one works with large basis sets. This poses a problem for large
systems. An alternative to the HF methods is DFT. DFT takes into account electron
correlations but is less demanding computationally than full scale diagonalization or
Monte Carlo methods.

352 / 470

Density Functional Theory

The electronic energy E is said to be a functional of the electronic density, E [ρ], in the
sense that for a given function ρ(r), there is a single corresponding energy. The
Hohenberg-Kohn theorem confirms that such a functional exists, but does not tell us
the form of the functional. As shown by Kohn and Sham, the exact ground-state energy
E of an N-electron system can be written as

E [ρ] = −
1
2

N∑
i=1

∫
Ψ∗i (r1)∇2

1Ψi (r1)dr1−
∫

Z
r1
ρ(r1)dr1+

1
2

∫
ρ(r1)ρ(r2)

r12
dr1dr2+EEXC [ρ]

with Ψi the Kohn-Sham (KS) orbitals.

353 / 470

Density Functional Theory

The ground-state charge density is given by

ρ(r) =
N∑

i=1

|Ψi (r)|2,

where the sum is over the occupied Kohn-Sham orbitals. The last term, EEXC [ρ], is the

exchange-correlation energy which in theory takes into account all non-classical

electron-electron interaction. However, we do not know how to obtain this term exactly,

and are forced to approximate it. The KS orbitals are found by solving the Kohn-Sham

equations, which can be found by applying a variational principle to the electronic

energy E [ρ]. This approach is similar to the one used for obtaining the HF equation.

354 / 470

Density Functional Theory

The KS equations reads{
−

1
2
∇2

1 −
Z
r1

+

∫
ρ(r2)

r12
dr2 + VEXC(r1)

}
Ψi (r1) = εi Ψi (r1)

where εi are the KS orbital energies, and where the exchange-correlation potential is
given by

VEXC [ρ] =
δEEXC [ρ]

δρ
.

355 / 470

Density Functional Theory

The KS equations are solved in a self-consistent fashion. A variety of basis set
functions can be used, and the experience gained in HF calculations are often useful.
The computational time needed for a DFT calculation formally scales as the third
power of the number of basis functions.
The main source of error in DFT usually arises from the approximate nature of EEXC . In
the local density approximation (LDA) it is approximated as

EEXC =

∫
ρ(r)εEXC [ρ(r)]dr,

where εEXC [ρ(r)] is the exchange-correlation energy per electron in a homogeneous

electron gas of constant density. The LDA approach is clearly an approximation as the

charge is not continuously distributed. To account for the inhomogeneity of the electron

density, a nonlocal

356 / 470

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

Ĥ = T̂ + V̂ + Ŵ ,

or second quantized form

Ĥ = −
~2

2m

∫
d3rΨ̂†(r)∇2Ψ̂(r) +

∫
d3rΨ̂†(r)v(r)Ψ̂(r)

+
1
2

∫
d3r

∫
d3r ′Ψ̂†(r)Ψ̂†(r′)w(r, r′)Ψ̂(r′)Ψ̂(r),

Ψ̂, Ψ̂† = annihilation, creation field operators

357 / 470

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

Ĥ = T̂ + V̂ + Ŵ ,

or second quantized form

Ĥ = −
~2

2m

∫
d3rΨ̂†(r)∇2Ψ̂(r) +

∫
d3rΨ̂†(r)v(r)Ψ̂(r)

+
1
2

∫
d3r

∫
d3r ′Ψ̂†(r)Ψ̂†(r′)w(r, r′)Ψ̂(r′)Ψ̂(r),

Ψ̂, Ψ̂† = annihilation, creation field operators

358 / 470

Ψ̂(r) ≡
∑

k

ψk(r)ak

Ψ̂†(r) ≡
∑

k

ψ∗k (r)a†k

k = collection of quantum numbers

T̂ = kinetic energy operator

V̂ = external single-particle potential operator

Ŵ = two-particle interaction operator

359 / 470

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

Ĥ = T̂ + V̂ + Ŵ ,

or second quantized form

Ĥ = −
~2

2m

∫
d3rΨ̂†(r)∇2Ψ̂(r) +

∫
d3rΨ̂†(r)v(r)Ψ̂(r)

+
1
2

∫
d3r

∫
d3r ′Ψ̂†(r)Ψ̂†(r′)w(r, r′)Ψ̂(r′)Ψ̂(r),

Ψ̂, Ψ̂† = annihilation, creation field operators

360 / 470

The Hohenberg-Kohn theorem

Assume Hamiltonian of many-fermion system

Ĥ = T̂ + V̂ + Ŵ ,

or second quantized form

Ĥ = −
~2

2m

∫
d3rΨ̂†(r)∇2Ψ̂(r) +

∫
d3rΨ̂†(r)v(r)Ψ̂(r)

+
1
2

∫
d3r

∫
d3r ′Ψ̂†(r)Ψ̂†(r′)w(r, r′)Ψ̂(r′)Ψ̂(r),

Ψ̂, Ψ̂† = annihilation, creation field operators

361 / 470

V = set of external single-particle potentials v s.t.

Ĥφ =
(

T̂ + V̂ + Ŵ
)

= Eφ, V̂ ∈ V,

gives a non-degenerate N-particle ground state Ψ

=⇒ C : V(C) −→ Ψ surjective,

where Ψ = set of ground states (GS) Ψ

362 / 470

V = set of external single-particle potentials v s.t.

Ĥφ =
(

T̂ + V̂ + Ŵ
)

= Eφ, V̂ ∈ V,

gives a non-degenerate N-particle ground state Ψ

=⇒ C : V(C) −→ Ψ surjective,

where Ψ = set of ground states (GS) Ψ

363 / 470

The density

ρ(r) = N
∑

i

∫
dx2 . . .

∫
dxN |Ψ(ri, x2, . . . , xN)|2

gives a second map
D : Ψ −→ N ,

where N = set of GS densities. The map trivially surjective.

Lemma
Hohenberg-Kohn states: C and D also injective (one-to-one; x1 6= x2 ⇒ Tx1 6= Tx2)

=⇒ C and D bijective (surjective and bijective)

=⇒ CD : V(CD) −→ N bijective

364 / 470

The density

ρ(r) = N
∑

i

∫
dx2 . . .

∫
dxN |Ψ(ri, x2, . . . , xN)|2

gives a second map
D : Ψ −→ N ,

where N = set of GS densities. The map trivially surjective.

Lemma
Hohenberg-Kohn states: C and D also injective (one-to-one; x1 6= x2 ⇒ Tx1 6= Tx2)

=⇒ C and D bijective (surjective and bijective)

=⇒ CD : V(CD) −→ N bijective

365 / 470

Proof I.
Let us prove C : V(C) −→ Ψ injective:

V̂ 6= V̂ ′ + constant ?
=⇒ Ψ 6= Ψ′,

where V̂ , V̂ ′ ∈ V

Reductio ad absurdum:
Assume Ψ = Ψ′ for some V̂ 6= V̂ ′ + const, V̂ , V̂ ′ ∈ V
T̂ 6= T̂ [V], Ŵ 6= Ŵ [V] =⇒1

(
V̂ − V̂ ′

)
Ψ =

(
Egs − E ′gs

)
Ψ.

=⇒ V̂ − V̂ ′ = Egs − E ′gs

=⇒ V̂ = V̂ ′ + constant Contradiction!

1Unique continuation theorem: Ψ 6= 0 on a set of positive measure
366 / 470

Proof I.
Let us prove C : V(C) −→ Ψ injective:

V̂ 6= V̂ ′ + constant ?
=⇒ Ψ 6= Ψ′,

where V̂ , V̂ ′ ∈ V

Reductio ad absurdum:
Assume Ψ = Ψ′ for some V̂ 6= V̂ ′ + const, V̂ , V̂ ′ ∈ V
T̂ 6= T̂ [V], Ŵ 6= Ŵ [V] =⇒1

(
V̂ − V̂ ′

)
Ψ =

(
Egs − E ′gs

)
Ψ.

=⇒ V̂ − V̂ ′ = Egs − E ′gs

=⇒ V̂ = V̂ ′ + constant Contradiction!

1Unique continuation theorem: Ψ 6= 0 on a set of positive measure
367 / 470

Proof I.
Let us prove C : V(C) −→ Ψ injective:

V̂ 6= V̂ ′ + constant ?
=⇒ Ψ 6= Ψ′,

where V̂ , V̂ ′ ∈ V

Reductio ad absurdum:
Assume Ψ = Ψ′ for some V̂ 6= V̂ ′ + const, V̂ , V̂ ′ ∈ V
T̂ 6= T̂ [V], Ŵ 6= Ŵ [V] =⇒1

(
V̂ − V̂ ′

)
Ψ =

(
Egs − E ′gs

)
Ψ.

=⇒ V̂ − V̂ ′ = Egs − E ′gs

=⇒ V̂ = V̂ ′ + constant Contradiction!

1Unique continuation theorem: Ψ 6= 0 on a set of positive measure
368 / 470

Proof I.
Let us prove C : V(C) −→ Ψ injective:

V̂ 6= V̂ ′ + constant ?
=⇒ Ψ 6= Ψ′,

where V̂ , V̂ ′ ∈ V

Reductio ad absurdum:
Assume Ψ = Ψ′ for some V̂ 6= V̂ ′ + const, V̂ , V̂ ′ ∈ V
T̂ 6= T̂ [V], Ŵ 6= Ŵ [V] =⇒1

(
V̂ − V̂ ′

)
Ψ =

(
Egs − E ′gs

)
Ψ.

=⇒ V̂ − V̂ ′ = Egs − E ′gs

=⇒ V̂ = V̂ ′ + constant Contradiction!

1Unique continuation theorem: Ψ 6= 0 on a set of positive measure
369 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

370 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

371 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

372 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

373 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

374 / 470

Proof II.
Let us prove D : Ψ −→ N injective:

Ψ 6= Ψ′
?

=⇒ ρ(r) 6= n′(r)

Reductio ad absurdum:
Assume ρ(r) = n′(r) for some Ψ 6= Ψ′

Ritz principle =⇒
Egs = ΨĤΨ < Ψ′ĤΨ′

Ψ′ĤΨ′ = Ψ′Ĥ′ + V̂ − V̂ ′Ψ′ = E ′gs +

∫
n′(r)[v(r)− v ′(r)]d3r

=⇒ E ′gs < Egs +

∫
n′(r)[v(r)− v ′(r)]d3r (106)

By symmetry

=⇒ Egs < E ′gs +

∫
n′(r)[v ′(r)− v(r)]d3r (107)

(106) & (107) =⇒

Egs + E ′gs < Egs + E ′gs Contradiction!

375 / 470

Define
Ev0 [ρ] := Ψ[ρ]T̂ + Ŵ + V̂0Ψ[ρ]

V̂0 = external potential, n0(r) = corresponding GS density, E0 = GS energy

Rayleigh-Ritz principle =⇒ second statement of H-K theorem:

E0 = min
n∈N

Ev0 [ρ]

Last satement of H-K theorem:

FHK [ρ] ≡ Ψ[ρ]T̂ + Ŵ Ψ[ρ]

is universal (FHK 6= FHK [V̂0])

376 / 470

Define
Ev0 [ρ] := Ψ[ρ]T̂ + Ŵ + V̂0Ψ[ρ]

V̂0 = external potential, n0(r) = corresponding GS density, E0 = GS energy

Rayleigh-Ritz principle =⇒ second statement of H-K theorem:

E0 = min
n∈N

Ev0 [ρ]

Last satement of H-K theorem:

FHK [ρ] ≡ Ψ[ρ]T̂ + Ŵ Ψ[ρ]

is universal (FHK 6= FHK [V̂0])

377 / 470

Define
Ev0 [ρ] := Ψ[ρ]T̂ + Ŵ + V̂0Ψ[ρ]

V̂0 = external potential, n0(r) = corresponding GS density, E0 = GS energy

Rayleigh-Ritz principle =⇒ second statement of H-K theorem:

E0 = min
n∈N

Ev0 [ρ]

Last satement of H-K theorem:

FHK [ρ] ≡ Ψ[ρ]T̂ + Ŵ Ψ[ρ]

is universal (FHK 6= FHK [V̂0])

378 / 470

Topics for Week 17, April 25-29

Density functional theory

I Repetition from last week
I More density functional theory (DFT):

1. The equations, overview
2. Reminder on variational calculus and
3. Hartree-Fock theory

Project work this week: Try to finalize the Slater determinant
part. This part should be finalized before May 1.

379 / 470

Intermezzo: Variational Calculus and Lagrangian
Multiplier

The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E [Φ] =

∫ b

a
f (Φ(x),

∂Φ

∂x
, x)dx ,

where E is the quantity which is sought minimized or maximized. The problem is that

although f is a function of the variables Φ, ∂Φ/∂x and x , the exact dependence of Φ

on x is not known. This means again that even though the integral has fixed limits a

and b, the path of integration is not known. In our case the unknown quantities are the

single-particle wave functions and we wish to choose an integration path which makes

the functional E [Φ] stationary. This means that we want to find minima, or maxima or

saddle points. In physics we search normally for minima. Our task is therefore to find

the minimum of E [Φ] so that its variation δE is zero subject to specific constraints. In

our case the constraints appear as the integral which expresses the orthogonality of

the single-particle wave functions. The constraints can be treated via the technique of

Lagrangian multipliers

380 / 470

Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E [Φ] is
stationary. There are infinitely many such paths. The difference between two paths δΦ
is called the variation of Φ.
We call the variation η(x) and it is scaled by a factor α. The function η(x) is arbitrary
except for

η(a) = η(b) = 0,

and we assume that we can model the change in Φ as

Φ(x , α) = Φ(x , 0) + αη(x),

and
δΦ = Φ(x , α)− Φ(x , 0) = αη(x).

381 / 470

Euler-Lagrange equations

We choose Φ(x , α = 0) as the unkonwn path that will minimize E . The value
Φ(x , α 6= 0) describes a neighbouring path.
We have

E [Φ(α)] =

∫ b

a
f (Φ(x , α),

∂Φ(x , α)

∂x
, x)dx .

In the slides I will use the shorthand

Φx (x , α) =
∂Φ(x , α)

∂x
.

In our case a = 0 and b =∞ and we know the value of the wave function.

382 / 470

Euler-Lagrange equations

The condition for an extreme of

E [Φ(α)] =

∫ b

a
f (Φ(x , α),Φx (x , α), x)dx ,

is [
∂E [Φ(α)]

∂x

]
α=0

= 0.

The α dependence is contained in Φ(x , α) and Φx (x , α) meaning that[
∂E [Φ(α)]

∂α

]
=

∫ b

a

(
∂f
∂Φ

∂Φ

∂α
+

∂f
∂Φx

∂Φx

∂α

)
dx .

We have defined
∂Φ(x , α)

∂α
= η(x)

and thereby
∂Φx (x , α)

∂α
=

d(η(x))

dx
.

383 / 470

Euler-Lagrange equations

Using
∂Φ(x , α)

∂α
= η(x),

and
∂Φx (x , α)

∂α
=

d(η(x))

dx
,

in the integral gives[
∂E [Φ(α)]

∂α

]
=

∫ b

a

(
∂f
∂Φ

η(x) +
∂f
∂Φx

d(η(x))

dx

)
dx .

Integrate the second term by parts∫ b

a

∂f
∂Φx

d(η(x))

dx
dx = η(x)

∂f
∂Φx
|ba −

∫ b

a
η(x)

d
dx

∂f
∂Φx

dx ,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain[
∂E [Φ(α)]

∂α

]
=

∫ b

a

(
∂f
∂Φ
−

d
dx

∂f
∂Φx

)
η(x)dx = 0.

384 / 470

Euler-Lagrange equations

[
∂E [Φ(α)]

∂α

]
=

∫ b

a

(
∂f
∂Φ
−

d
dx

∂f
∂Φx

)
η(x)dx = 0,

can also be written as

α

[
∂E [Φ(α)]

∂α

]
α=0

=

∫ b

a

(
∂f
∂Φ
−

d
dx

∂f
∂Φx

)
δΦ(x)dx = δE = 0.

The condition for a stationary value is thus a partial differential equation

∂f
∂Φ
−

d
dx

∂f
∂Φx

= 0,

known as Euler’s equation. Can easily be generalized to more variables.

385 / 470

Lagrangian Multipliers

Consider a function of three independent variables f (x , y , z) . For the function f to be
an extreme we have

df = 0.

A necessary and sufficient condition is

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

due to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz.

In physical problems the variables x , y , z are often subject to constraints (in our case Φ

and the orthogonality constraint) so that they are no longer all independent. It is

possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.

386 / 470

Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x , y , z

φ(x , y , z) = 0,

resulting in

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz = 0.

Now we cannot set anymore

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.

387 / 470

Lagrangian Multipliers

However, we can add to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz,

a multiplum of dφ, viz. λdφ, resulting in

df + λdφ = (
∂f
∂z

+ λ
∂φ

∂x
)dx + (

∂f
∂y

+ λ
∂φ

∂y
)dy + (

∂f
∂z

+ λ
∂φ

∂z
)dz = 0.

Our multiplier is chosen so that

∂f
∂z

+ λ
∂φ

∂z
= 0.

388 / 470

Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

∂f
∂x

+ λ
∂φ

∂x
= 0,

and
∂f
∂y

+ λ
∂φ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns, x , y , z and λ.
Actually we want only x , y , z, λ need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints φk we have the
equations

∂f
∂xi

+
∑

k

λk
∂φk

∂xi
= 0.

389 / 470

Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =

∫
dxdydzψ∗(x , y , z)Ĥψ(x , y , z),

with the constraint ∫
dxdydzψ∗(x , y , z)ψ(x , y , z) = 1,

and a Hamiltonian
Ĥ = −

1
2
∇2 + V (x , y , z).

I will skip the variables x , y , z below, and write for example V (x , y , z) = V .

390 / 470

Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function ψ vanishes strongly for large values of x , y , z,∫

dxdydzψ∗
(
−

1
2
∇2
)
ψdxdydz = ψ∗∇ψ|+

∫
dxdydz

1
2
∇ψ∗∇ψ.

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

δE = δ

{∫
dxdydz

(
1
2
∇ψ∗∇ψ + Vψ∗ψ

)}
= 0.

391 / 470

Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form as∫
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational minimum we
obtain the final variational equation

δ

{∫
dxdydz

(
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ

)}
= 0.

Introducing the function f

f =
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ =

1
2

(ψ∗xψx + ψ∗yψy + ψ∗zψz) + Vψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x , y , z and introduced the shorthand ψx ,

ψy and ψz for the various derivatives.

392 / 470

Variational Calculus and Lagrangian Multiplier

For ψ∗ the Euler equation results in

∂f
∂ψ∗

−
∂

∂x
∂f
∂ψ∗x

−
∂

∂y
∂f
∂ψ∗y

−
∂

∂z
∂f
∂ψ∗z

= 0,

which yields

−
1
2

(ψxx + ψyy + ψzz) + Vψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrödinger equation and the variational
approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.

393 / 470

Finding the Hartree-Fock functional E [Φ]

We rewrite our Hamiltonian

Ĥ = −
N∑

i=1

1
2
∇2

i −
N∑

i=1

Z
ri

+
N∑

i<j

1
rij
,

as

Ĥ = Ĥ0 + Ĥ1 =
N∑

i=1

ĥi +
N∑

i<j=1

1
rij
,

ĥi = −
1
2
∇2

i −
Z
ri
.

394 / 470

Finding the Hartree-Fock functional E [Φ]

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .

395 / 470

Finding the Hartree-Fock functional E [Φ]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

∑
P

(−)PPψα(r1)ψβ(r2) . . . ψν(rN) =
√

N!AΦH ,

where we have introduced the anti-symmetrization operator A defined by the
summation over all possible permutations of two eletrons. It is defined as

A =
1

N!

∑
P

(−)PP,

with the the Hartree-function given by the simple product of all possible single-particle
function (two for helium, four for beryllium and ten for neon)

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN).

396 / 470

Finding the Hartree-Fock functional E [Φ]

Both Ĥ1 and Ĥ2 are invariant under electron permutations, and hence commute with A

[H0,A] = [H1,A] = 0.

Furthermore, A satisfies
A2 = A,

since every permutation of the Slater determinant reproduces it.

397 / 470

Finding the Hartree-Fock functional E [Φ]

The expectation value of Ĥ1∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗HAĤ0AΦHdτ

is readily reduced to ∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗H Ĥ0AΦHdτ,

which can be rewritten as

∫
Φ∗Ĥ0Φdτ =

N∑
i=1

∑
P

(−)P
∫

Φ∗H ĥi PΦHdτ.

398 / 470

Finding the Hartree-Fock functional E [Φ]

The integral vanishes if two or more electrons are permuted in only one of the
Hartree-functions ΦH because the individual orbitals are orthogonal. We obtain then

∫
Φ∗Ĥ0Φdτ =

N∑
i=1

∫
Φ∗H ĥi ΦHdτ.

Orthogonality allows us to further simplify the integral, and we arrive at the following
expression for the expectation values of the sum of one-body Hamiltonians

∫
Φ∗Ĥ0Φdτ =

N∑
µ=1

∫
ψ∗µ(ri)ĥiψµ(ri)dri ,

or just as ∫
Φ∗Ĥ0Φdτ =

N∑
µ=1

〈µ|h|µ〉.

399 / 470

Finding the Hartree-Fock functional E [Φ]

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have ∫

Φ∗Ĥ1Φdτ = N!

∫
Φ∗HAĤ1AΦHdτ,

which reduces to

∫
Φ∗Ĥ1Φdτ =

N∑
i≤j=1

∑
P

(−)P
∫

Φ∗H
1
rij

PΦHdτ,

by following the same arguments as for the one-body Hamiltonian. Because of the
dependence on the inter-electronic distance 1/rij , permutations of two electrons no
longer vanish, and we get

∫
Φ∗Ĥ1Φdτ =

N∑
i<j=1

∫
Φ∗H

1
rij

(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges electrons i and j .

400 / 470

Finding the Hartree-Fock functional E [Φ]

We use the assumption that the orbitals are orthogonal, and obtain

∫
Φ∗Ĥ1Φdτ =

1
2

N∑
µ=1

N∑
ν=1

[∫
ψ∗µ(ri)ψ

∗
ν(rj)

1
rij
ψµ(ri)ψν(rj)dri drj

−
∫
ψ∗µ(ri)ψ

∗
ν(rj)

1
rij
ψµ(rj)ψν(ri)dridrj

]
.

The first term is the so-called direct term or Hartree term, while the second is due to
the Pauli principle and is called exchange term or Fock term. The factor 1/2 is
introduced because we now run over all pairs twice.
The compact notation is

1
2

N∑
µ=1

N∑
ν=1

[
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

]
.

401 / 470

Variational Calculus and Lagrangian Multiplier,
Hartree-Fock

Our functional is written as

E [Φ] =
N∑
µ=1

∫
ψ∗µ(ri)ĥiψµ(ri)dri +

1
2

N∑
µ=1

N∑
ν=1

[∫
ψ∗µ(ri)ψ

∗
ν(rj)

1
rij
ψµ(ri)ψν(rj)dri drj

−
∫
ψ∗µ(ri)ψ

∗
ν(rj)

1
rij
ψν(ri)ψµ(rj)dri drj

]
The more compact version is

E [Φ] =
N∑
µ=1

〈µ|h|µ〉+
1
2

N∑
µ=1

N∑
ν=1

[
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

]
.

402 / 470

Variational Strategies

With the given functional, we can perform at least two types of variational strategies.

I Vary the Slater determinant by changing the spatial part of the single-particle
wave functions themselves. This is what we will do.

I Expand the single-particle functions in a known basis and vary the coefficients,
that is, the new single-particle wave function |a〉 is written as a linear expansion
in terms of a fixed basis (harmonic oscillator, Laguerre polynomials etc)

ψa =
∑
λ

Caλψλ,

Both cases lead to a new Slater determinant which is related to the previous via a
unitary transformation.

403 / 470

Small exercise

1. Consider a Slater determinant built up of single-particle orbitals ψλ, with
λ = 1, 2, . . . ,N.

The unitary transformation
ψa =

∑
λ

Caλψλ,

brings us into the new basis. Show that the new basis is orthonormal.

2. Show that the new Slater determinant constructed from the new single-particle
wave functions can be written as the determinant based on the previous basis
and the determinant of the matrix C.

3. Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C is a unitary matrix).

404 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

We will use the second method and expand the single-particle functions in a known
basis and vary the coefficients, that is, the new single-particle wave function is written
as a linear expansion in terms of a fixed chosen orthogonal basis (for example
harmonic oscillator, Laguerre polynomials etc)

ψa =
∑
λ

Caλψλ. (108)

In this case we vary the coefficients Caλ. If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.
The single-particle wave functions ψλ(r), defined by the quantum numbers λ and r are
defined as the overlap

ψλ(r) = 〈r|λ〉.

405 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

〈µν|V |µν〉 =

∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψµ(ri)ψν(rj)dri drj ,

and
〈µν|V |νµ〉 =

∫
ψ∗µ(ri)ψ

∗
ν(rj)V (rij)ψν(ri)ψµ(rj)dri drj .

406 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have

〈µν|V |µν〉 = 〈νµ|V |νµ〉,

or in the more general case

〈µν|V |στ〉 = 〈νµ|V |τσ〉.

407 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .

408 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

With these notations we rewrite the Hartree-Fock functional as

∫
Φ∗Ĥ1Φdτ =

1
2

A∑
µ=1

A∑
ν=1

〈µν|V |µν〉AS . (109)

Combining Eqs. (13) and (109) we obtain the energy functional

E [Φ] =
N∑
µ=1

〈µ|h|µ〉+
1
2

N∑
µ=1

N∑
ν=1

〈µν|V |µν〉AS . (110)

which we will use as our starting point for the Hartree-Fock calculations.

409 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |µ〉, this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (108). We
can then rewrite the energy functional as

E [Ψ] =
N∑

a=1

〈a|h|a〉+
1
2

N∑
ab=1

〈ab|V |ab〉AS , (111)

where Ψ is the new Slater determinant defined by the new basis of Eq. (108).

410 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (108) we can rewrite Eq. (111) as

E [Ψ] =
N∑

a=1

∑
αβ

C∗aαCaβ〈α|h|β〉+
1
2

N∑
ab=1

∑
αβγδ

C∗aαC∗bβCaγCbδ〈αβ|V |γδ〉AS . (112)

411 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since 〈a|b〉 = δa,b and 〈α|β〉 = δα,β , the coefficients Caγ obey
the relation

〈a|b〉 = δa,b =
∑
αβ

C∗aαCaβ〈α|β〉 =
∑
α

C∗aαCaα,

which allows us to define a functional to be minimized that reads

E [Ψ]−
N∑

a=1

εa
∑
α

C∗aαCaα. (113)

412 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C∗kα, remembering that C∗kα and Ckα are independent, we
obtain

d
dC∗kα

[
E [Ψ]−

∑
a
εa
∑
α

C∗aαCaα

]
= 0, (114)

which yields for every single-particle state k the following Hartree-Fock equations

∑
γ

Ckγ〈α|h|γ〉+
N∑

a=1

∑
βγδ

C∗aβCaδCkγ〈αβ|V |γδ〉AS = εk Ckα. (115)

413 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

∑
γ

〈α|h|γ〉+
N∑
a

∑
βδ

C∗aβCaδ〈αβ|V |γδ〉AS

Ckγ = εk Ckα. (116)

Note that the sums over greek indices run over the number of basis set functions (in

principle an infinite number).

414 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

Defining

hHF
αγ = 〈α|h|γ〉+

N∑
a=1

∑
βδ

C∗aβCaδ〈αβ|V |γδ〉AS ,

we can rewrite the new equations as∑
γ

hHF
αγCkγ = εk Ckα. (117)

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).

415 / 470

Hartree-Fock by varying the coefficients of a wave
function expansion

The advantage of this approach is that we can calculate and tabulate the matrix
elements α|h|γ〉 and 〈αβ|V |γδ〉AS once and for all. If the basis |α〉 is chosen properly,
then the matrix elements can also serve as a good starting point for a Hartree-Fock
calculation. Eq. (117) is nothing but an eigenvalue problem. The eigenvectors are
defined by the coefficients Ckγ .

The size of the matrices to diagonalize are seldomly larger than 100× 100 and can be

solved by the standard eigenvalue methods that are discussed in chapter 12 of the

lecture notes. Jacobi’s method is enough!!

416 / 470

Topics for Week 18, May 2-6

Density functional theory

I Repetition from last week and the final equations to
program

I More density functional theory (DFT), Kohn-Sham
equations

I Expressions for the Coulomb interaction and the
single-particle wave functions.

Project work this week: start programming the Kohn-Sham
equations with only a Hartree term. Set up the Hartree-Fock
matrix and write a program which iterates the HF/Kohn-Sham
equations.

417 / 470

The Basic Kohn-Sham Equations

I So far:
H-K variational principle =⇒
exact GS density of many-particle system
Practically intractable !!

I Next step:
Kohn and Sham (1965): single-particle picture
−→ equations solved selfconsistently (iterative scheme)

418 / 470

Hamiltonian of N non-interacting particles:

Ĥs = T̂ + V̂s

Hohenberg and Kohn =⇒ ∃ unique energy functional

Es[ρ] = Ts[ρ] +

∫
vs(r)ρ(r)d3r

s. t. δEs[ρ] = 0 gives GS density ρs(r) corresp. to Ĥs

419 / 470

Theorem
Let

vs(r) = local single-particle pot.,

ρ(r) = GS density of interacting system,

ρs(r) = GS density of non-interacting system

=⇒ for any interacting system,

∃ a vs(r) s. t. ρs(r) = ρ(r)

Proof in book by Dreizler/Gross, Sec. 4.2

420 / 470

Theorem
Let

vs(r) = local single-particle pot.,

ρ(r) = GS density of interacting system,

ρs(r) = GS density of non-interacting system

=⇒ for any interacting system,

∃ a vs(r) s. t. ρs(r) = ρ(r)

Proof in book by Dreizler/Gross, Sec. 4.2

421 / 470

Assume nondegenerate GS. Then

ρ(r) = ρs(r) =
N∑

i=1

|φi (r)|2 ,

where φi (r) are determined by(
−

~2

2m
∇2 + vs(r)

)
φi (r) = εiφi (r), ε1 ≤ ε2 ≤

If ∃ vs(r), then H-K theorem gives uniqueness of vs(r)
Consequently, we may write

φi (r) = φi ([ρ(r)]) !!

422 / 470

Assume nondegenerate GS. Then

ρ(r) = ρs(r) =
N∑

i=1

|φi (r)|2 ,

where φi (r) are determined by(
−

~2

2m
∇2 + vs(r)

)
φi (r) = εiφi (r), ε1 ≤ ε2 ≤

If ∃ vs(r), then H-K theorem gives uniqueness of vs(r)
Consequently, we may write

φi (r) = φi ([ρ(r)]) !!

423 / 470

Assume
v0(r) = ext. potential
ρ0(r) = GS density

of interacting system

I Wanted: single-particle potential vs(r) of non-interacting system

424 / 470

Exchange-correlation functional

Many-particle energy functional:

Ev0 [ρ] = FL[ρ] +

∫
d3v0(r)ρ(r)

=

(
Ts[ρ] +

1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′) + Eexc[ρ]

)
+

∫
d3rv0(r)ρ(r)

Here exchange-correlation functional defined:

Eexc[ρ] = FL[ρ]−
1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)− Ts[ρ]

425 / 470

The exchange-correlation functional defined:

Eexc[ρ] = FL[ρ]−
1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)− Ts[ρ]

Explicit form of FL[ρ] as functional of ρ unknown

I Eexc[ρ] unknown functional, must be approximated
Otherwise, Kohn-Sham scheme exact

426 / 470

Definition
Let F : B → R be a functional from normed function space B to real numbers R.

The functional derivative
δF [ρ] ≡ δF [ρ]/δρ(r) is defined as

δF
δρ

[ϕ] = lim
ε→0

F [ρ+ εϕ]− F [ρ]

ε

Another useful definition of δF [ρ]:

〈δF [ρ], ϕ〉 =
d
dε

F [ρ+ εφ]

∣∣∣∣∣
ε=0

,

where
〈δF [ρ], ϕ〉 ≡

∫
dr(δF [ρ(r)])ϕ(r),

ϕ = test function

427 / 470

Let us derive expression for single-particle potential vs(r) of non-interacting system:

H-K variational principle:

0 = δEv0 = Ev0 [ρ0 + δρ]− Ev0 [ρ0]

= δTs +

∫
d3rδρ(r)

[
v0(r) +

∫
w(r, r′)d3r ′ + vexc([ρ0]; r)

]
, (118)

where exchange-coorelation potential

vexc([ρ0]; r) =
δEexc[ρ]

δρ(r)

∣∣∣∣∣
ρ0

,

ρ0(r) = GS density

428 / 470

ρ0(r) + δρ(r) non-interacting v -representable =⇒ unique representation
φi,0(r) + δφi (r)

δTs =
N∑
i

∫
d3r

[
δφ∗i (r)

(
−

~2

2m
∇2
)
φi,0(r) + φ∗i,0(r)

(
−

~2

2m
∇2
)
δφi (r)

]

=
N∑
i

∫
d3r

[
δφ∗i (r)

(
−

~2

2m
∇2
)
φi,0(r) + δφ∗i,0(r)

(
−

~2

2m
∇2
)
φi (r)

]
(119)

6

Green’s first identity

429 / 470

Green’s first identity:∫
V

f ∇2g dV =

∮
S

f (∇g · n) dS −
∫

V
∇f · ∇g dV ,

where V ∈ R3, S ≡ ∂V ∈ R2 and f , g = arb. real scalar functions

Let surface ∂V approach infinity w.r.t. origin,
assume f , g −→ 0 on ∂V ,
Apply Green’s first identity twice =⇒∫

V
f ∇2g dV = 0−

∫
V
∇f · ∇g dV

= −
(

0−
∫

V
∇f · ∇g dV

)
=

∫
V

g ∇2f dV

430 / 470

The orbitals φi,0(r) in Eq. (119) satisfy

(
−

~2

2m
∇2 + vs,0(r)

)
φi,0(r) = εiφi,0(r), ε1 ≥ ε2 ≥ (120)

Using this relation, we may rewrite Eq. (119) as

δTs =
N∑
i

∫
d3r

[
δφ∗i (r)

(
εi − vs,0(r)

)
φi,0(r) + δφi (r)

(
εi − vs,0(r)

)
φ∗i (r)

]
=

N∑
i=1

εi

∫
d3rδ|φi (r)|2 −

N∑
i=1

∫
d3rvs,0(r)δ|φi (r)|2. (121)

431 / 470

Since ∫
d3rδ|φi (r)|2 =

∫
d3r

[
|φi,0(r) + δφi,0(r)|2 − |φi,0(r)|2

]
= 1− 1 = 0, (122)

the first term of Eq. (121) vanishes, and we get

δTs = −
∫

d3rvs,0(r)δρ(r). (123)

Combine Eqs. (118) and (123): =⇒ total single-particle potential:

vs,0(r) = v0(r) +

∫
d3r ′w(r, r′)ρ0(r′) + vexc([ρ0]; r) (124)

432 / 470

The Kohn-Sham scheme I

The classic Kohn-Sham scheme:(
−

~2

2m
∇2 + vs,0(r)

)
φi,0(r) = εiφi,0(r), ε1 ≥ ε2 ≥ . . . ,

where
vs,0(r) = v0(r) +

∫
d3r ′w(r, r′)ρ0(r′) + vexc([ρ0]; r)

The density calculated as

ρ0(r) =
N∑

i=1

|φi,0(r)|2,

Equation solved selfconsistently
Total energy:

E =
N∑

i=1

εi −
1
2

∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′) + Eexc[ρ]−

∫
d3rvexc([ρ]; r)ρ(r)

433 / 470

The Kohn-Sham scheme I

The classic Kohn-Sham scheme:(
−

~2

2m
∇2 + vs,0(r)

)
φi,0(r) = εiφi,0(r), ε1 ≥ ε2 ≥ . . . ,

where
vs,0(r) = v0(r) +

∫
d3r ′w(r, r′)ρ0(r′) + vexc([ρ0]; r)

The density calculated as

ρ0(r) =
N∑

i=1

|φi,0(r)|2,

Equation solved selfconsistently
Total energy:

E =
N∑

i=1

εi −
1
2

∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′) + Eexc[ρ]−

∫
d3rvexc([ρ]; r)ρ(r)

434 / 470

The Kohn-Sham scheme II

Kohn-Sham scheme for systems with degenerate GS:(
−

~2

2m
∇2 + vs,0(r)

)
φi,0(r) = εiφi,0(r), ε1 ≥ ε2 ≥ . . . ,

where
vs,0(r) = v0(r) +

∫
d3r ′w(r, r′)ρ0(r′) + vexc([ρ0]; r)

and

vexc([ρ]; r) =
δEexc[ρ]

δρ(r)

=
δ

δρ(r)

(
FL[ρ]−

1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)− TL[ρ]

)

435 / 470

The Kohn-Sham scheme II

Density of degen. K-S scheme:

ρ0(r) =
N∑

i=1

γi |φi,0(r)|2,

occupation numbers γi satisfy

γi = 1 : εi < µ

0 ≤ γi ≤ 1 : εi = µ

γi = 0 : εi > µ

and
N∑

i=1

γi = N

436 / 470

Exchange Energy and Correlation Energy

Hartree-Fock equation:(
−

~2

2m
∇2 + v0(r) +

∫
d3r ′w(r, r′)ρ(r′)

)
φk (r)

−
N∑

l=1

∫
d3r ′φ∗l (r′)w(r, r′)φk (r′)φl (r)

︸ ︷︷ ︸
exchange term

= εkφk (r),

Non-local exchange term (Pauli exclusion principle)

Kohn-Sham equation:

− ~2

2m
∇2 + v0(r) +

∫
d3r ′w(r, r′)ρ(r′) + vexc([ρ]; r)︸ ︷︷ ︸

exchange + correlation

φk (r) = εkφk (r),

Local exchange-correlation term

437 / 470

Exchange-correlation energy = Exchange energy + Correlation energy

Eexc[ρ] = Ex [ρ] + Ec [ρ]

From earlier:

Eexc[ρ] = FL[ρ]− Ts[ρ]−
1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)

We want to show: Ec [ρ] ≤ 0

438 / 470

Here we have (assume FL[ρ] = FLL[ρ])

FL[ρ] ≡ inf
Ψ→n

ΨT̂ + Ŵ Ψ

= Ψmin
n T̂ + Ŵ Ψmin

n ,

and

Ts[ρ] ≡ inf
Ψ→n

ΨT̂ Ψ = Φmin
n T̂ Φmin

n ,

Ψ = normalized, antisymm. N-particle wavefunction,
Φmin

n lin. komb. of Slater determinants of

single-particle orbitals ψi (rj)

439 / 470

Eq. (4.35) in J. M. Thijssen: Computational Physics:

Φmin
n Ŵ Φmin

n =
1
2

∑
k,l

[∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)

−
∫∫

d3rd3r ′ψ∗l (r)ψl (r′)w(r, r′)ψ∗k (r′)ψk (r)

]
By definition,

Ex [ρ] ≡ −
1
2

∑
k,l

∫∫
d3rd3r ′ψ∗l (r)ψl (r′)w(r, r′)ψ∗k (r′)ψk (r)

440 / 470

Using expressions from previous pages gives

Ec [ρ] = Eexc[ρ]− Ex [ρ]

= FL[ρ]− Ts[ρ]−
1
2

∫∫
d3rd3r ′ρ(r)w(r, r′)ρ(r′)

+
1
2

∑
k,l

∫∫
d3rd3r ′ψ∗l (r)ψl (r′)w(r, r′)ψ∗k (r′)ψk (r)

= Ψmin
n T̂ + Ŵ Ψmin

n − Φmin
n T̂ + Ŵ Φmin

n

Since
Ψmin

n T̂ + Ŵ Ψmin
n = inf

Ψ→n
ΨT̂ + Ŵ Ψ,

we see that
Ec [ρ] ≤ 0

441 / 470

Structure of part 2

The structure of the Hartree-Fock/DFT part involves
1. Choice of basis: Harmonic oscillator. If we use polar

coordinates we need a function to compute the Laguerre
polynomials. This function will be discussed next week.

2. Diagonalization of an eigenvalue problem in order to find
the coefficients. One can use Jacobi’s method or
Householder’s with Givens’ transformations, see chapter
12 of lecture notes. Included in lib.cpp as tred2 and tqli.

3. Computation of the Coulomb matrix elements. We provide
a function and closed-form expression for programming the
Coulomb interaction. There is no need for numerical
integration.

442 / 470

Useful expressions for the Coulomb term and code

The expression is taken from E. Anisimovas and A. Matulis, J. Phys.: Condens. Matter
10, 601 (1998).
This function computes the Coulomb matrix element
〈αβ|V |γδ〉as = 〈α(ri)β(rj)|V (rij)|γ(ri)δ(rj)〉as where the α, β, γ and δ are four state
indices and ri, rj the positions of particle i and j . Each state |k〉 can be rewritten in
terms of its quantum numbers. In two dimensions, it reads |k〉 = |nk mk sk 〉. For
simplicity the angular momentum projection quantum number ml will just be written as
m in the following equations.

443 / 470

Useful expressions for the Coulomb term and code

The complete anti-symmetrized Coulomb matrix element reads

〈αβ|V |γδ〉as = 〈αβ|V |γδ〉︸ ︷︷ ︸
direct
term

−〈αβ|V |δγ〉︸ ︷︷ ︸
exchange

term

, (125)

444 / 470

Useful expressions for the Coulomb term and code

The exchange term 〈αβ|V |δγ〉 expands as follow

〈αβ|V |δγ〉 = δms1,ms4 δms2,ms3 〈(n1,m1), (n2,m2)|V |(n4,m4), (n3,m3), 〉 (126)

= δms1,ms4 δms2,ms3 Vαβδγ (127)

where we separate the spin part from the spatial part Vαβ|V |δγ . Which are the
constraints for the direct part?
Note that the function coulomb(n1,m1,n2,m2,n3,m3,n4,m4) only computes V1234
where the numbers 1→ 4 are state indices similar to α, β, γ, δ.

We will not need the exchange in our Kohn-Sham equations!

445 / 470

Useful expressions for the Coulomb term and code
The expression for the Coulomb integral can be written as

V1234 = δm1+m2,m3+m4

√√√√[4∏
i=1

ni !

(ni + |mi |!)

]

×
n1,...,n4∑

j1=0,...,j4=0

[
(−1)j1+j2+j3+j4

j1!j2!j3!j4!

[4∏
k=1

(
nk + |mk |

k − jk

)]
1

2
G+1

2

×
γ1=0,...,γ4=0∑
l1=0,...,l4=0

(
δl1,l2 δl3,l4 (−1)γ2+γ3−l2−l3

[4∏
t=1

(
γt
lt

)]
Γ

(
1 +

Λ

2

)
Γ

(
G − Λ + 1

2

))]
(128)

where

γ1 = j1 + j4 +
|m1|+ m1

2
+
|m4| −m4

2

γ2 = j2 + j3 +
|m2|+ m2

2
+
|m3| −m3

2

γ3 = j3 + j2 +
|m3|+ m3

2
+
|m2| −m2

2

γ4 = j4 + j1 +
|m4|+ m4

2
+
|m1| −m1

2
G = γ1 + γ2 + γ3 + γ4

Λ = l1 + l2 + l3 + l4,

when the basis set is built upon the single harmonic oscillator orbitals.

446 / 470

Useful expressions for the Coulomb term and code

As a note, our implementation of the function coulomb(. . .) includes the following
subfunctions:

I minusPower(int k) which computes (−1)k

I LogFac(int n) which computes loge(n!)

I LogRatio1(int j1,int j2,int j3,int j4) which computes the loge of
1

j1!j2!j3!j4!

I LogRatio2(int G) which computes the loge of 1

2
G+1

2

and

447 / 470

Useful expressions for the Coulomb term and code

and

I Product1 (int n1,int m1,int n2,int m2, int n3,int m3,int
n4,int m4) which computes the explicit (not the loge) product√[∏4

i=1
ni !

(ni +|mi |!)

]
I LogProduct2(int n1,int m1,int n2,int m2, int n3,int m3,int

n4,int m4, int j1,int j2,int j3,int j4) which computes the loge of∏4
k=1

(
nk + |mk |

nk − jk

)
I LogProduct3(int l1,int l2,int l3,int l4, int γ1,int γ2,int

γ3,int γ4) which computes the loge of
∏4

t=1

(
γt
lt

)
I lgamma(double x) which computes the loge [Γ(x)]

448 / 470

Topics for Week 19, May 9-13

Density functional theory

I Repetition from last week and the final equations to
program

I How to compute the local density term and Laguerre
polynomials

I How to use the variational Monte Carlo results to obtain
the correlation and exchange energy EXC

449 / 470

Laguerre functions

In our VMC codes we have used Cartesian coordinates and Hermite polynomials. In
our HF/DFT codes it is more convenient to work with spherical coordinates and thereby
Laguerre polynomials. The single-particle wave function is given by (with α =

√
mω/~)

ψHO
nml

(r , θ) = α exp (ımθ)

√
n!

π(n + |m|)!
(αr)|m|L|m|n (α2r2)) exp (−α2r2/2), (129)

with energy ~ω(2n + |m|+ 1).

450 / 470

Laguerre functions

In cartesian coordinates we have

φnx ,ny (x , y) = AHnx (
√
ωx)Hny (

√
ωy) exp (−ω(x2 + y2)/2.

with energy ~ω(nx + ny + 1). A function for computing the generalized Laguerre

polynomials L|m|n (α2r2) is provided at the webpage of the course under the program

link (laguerre.cpp).

451 / 470

Laguerre functions and densities

The reason we focus on this is that when we want to compare our densities from the
HF/DFT calculations with those from the Monte Carlo calculations we must pay
attention to the fact that one calculation runs in cartesian coordinates while the other is
set up in spherical coordinates. This means that in the Monte Carlo calculation we
have a density given by

ρVMC(r1) =

∫
dr2dr3 . . . drN |Ψ(r1, r2, . . . , rN)|2

with Ψ our best possible VMC wave function while for the DFT/HF calculation we have

ρDFT (r1) =
N∑

a=1

|ψa(r1)|2,

where ψa are the Kohn-Sham or Hartree-Fock single-particle wave functions and the

sum runs over all single-particle up till the Fermi level.

452 / 470

Laguerre functions and densities

In our DFT/HF code (due to the matrix eigenvalue problem) we do not obtain the
explicit radial dependence of the Kohn-Sham or Hartree-Fock single-particle wave
functions ψa that enter

ρDFT (r1) =
N∑

a=1

|ψa(r1)|2,

since we obtain only the single particle energies ea and the coefficients Caλ in

ψa(r1) =
∑
λ

Caλψ
HO
λ (r1).

453 / 470

Laguerre functions and densities

To compute the Kohn-Sham or Hartree-Fock single-particle wave functions ψa that
enter

ρDFT (r1) =
N∑

a=1

|ψa(r1)|2,

we need therefore the harmonic oscillator wave functions of Eq. (129) in

ψa(r1) =
∑
λ

Caλψ
HO
λ (r1).

The coefficients Caλ result from our DFT calculations. With these ingredients we can

then compare densities and see if there are large differences.

454 / 470

Computing EXC from ab initio calculations

Question: can we compute the ’exact’ EXC that enters DFT calculations? Yes!
Let us define a continuous variable λ and a Hamiltonian which depends on this variable

Ĥλ = T̂ + λV̂ + v̂ext,

where T̂ is the kinetic energy, V̂ is in our case the Coulomb interaction between two
electrons an v̂ext is our external potential, here the two-dimensional harmonic oscillator
potential.

For λ = 0 we have the non-interacting system, whose solution in our case is a single

Slater determinant for the ground state (non-degenerate case). For λ = 1 we have the

full interacting case.

455 / 470

Computing EXC from ab initio calculations

The standard variational principle is to find the minimum of

Eλ[v̂ext] = inf
Ψ→ρ
〈Ψλ|Ĥλ|Ψλ〉,

with respect to the wave function Ψλ. If a maximizing potential v̂λext exists, then
according to the Hohenberg and Kohn, it is the one which has the density ρ as the
ground state density and we have a functional

Fλ[ρ] = Eλ[v̂λext]−
∫

drρ(r)v̂λext(r).

456 / 470

Computing EXC from ab initio calculations

Which leads to the Lieb variational principle

Fλ[ρ] = sup
v̂ext

(
Eλ[v̂λext]−

∫
drρ(r)v̂λext(r)

)
.

We define
Fλ[ρ] = 〈Ψλ|T̂ + λV̂ |Ψλ〉,

which we rewrite as

Fλ[ρ] = 〈Ψλ|T̂ |Ψλ〉+ λJ[ρ] + EXC [ρ],

with the standard Hartree term

J =
1
2

∫
dr1dr2ρ(r1)ρ(r2)V (r12).

457 / 470

Computing EXC from ab initio calculations

We want to find EXC [ρ] in

Fλ[ρ] = 〈Ψλ|T̂ |Ψλ〉+ λJ[ρ] + EXC [ρ].

To do this, since we use a variational method, we can employ the Hellmann-Feynman
theorem, which states that

∆E =

∫ λ2

λ1

dλ
∂Eλ
∂λ

=

∫ λ2

λ1

dλ〈Ψλ|
∂Ĥλ
∂λ
|Ψλ〉.

Setting λ1 = 0 and λ2 = 1 we arrive at

∆E =

∫ 1

0
dλ〈Ψλ|V̂ |Ψλ〉,

where the wave function at λ = 0 is our single Slater determinant (no Jastrow factor).

For λ = 1 we can use our best variational Monte Carlo function. Note that V̂ is the full

interaction at λ = 1!

458 / 470

Computing EXC from ab initio calculations

We wish to relate

∆E =

∫ 1

0
dλ〈Ψλ|V̂ |Ψλ〉,

to EXC . Recalling that we defined

〈Ψλ|λV̂ |Ψλ〉 = λJ[ρ] + EXC [ρ],

we rewrite our equation as

EXC =

∫ 1

0
dλ〈Ψλ|Ŵλ|Ψλ〉,

where
Wλ = 〈Ψλ|λV̂ |Ψλ〉 − J.

459 / 470

Computing EXC from ab initio calculations

Using the fundamental theorem of calculus we have then

EXC = 〈Ψ1|V̂ |Ψ1〉 − 〈Ψ0|V̂ |Ψ0〉.

We need thus simply to compute the expectation value of V̂ for the single Slater
determinant λ = 0 and the fully correlated wave function with the Jastrow factor as well
for the λ = 1 case. This is what is needed in exercise 2c). This results should then be
compared with the correlation energy from the local density approximation in 2b).
The total correlation energy, including kinetic energy is then (computed at a fixed
density) equal to

EC = 〈Ψ1|T̂ + V̂ |Ψ1〉 − 〈Ψ0|T̂ + V̂ |Ψ0〉.

460 / 470

Topics for Week 20, May 16-20

Finalize the project

I Discussion of the structure of the report
I Only project work

461 / 470

The report

What should it contain? A possible structure

I An introduction where you explain the rational for the
physics case and what you have done. At the end of the
introduction you should give a brief summary of the
structure of the report

I Theoretical models and technicalities. This is the methods
section.

I Results and discussion
I Conclusions and perspectives
I Appendix with extra material
I Bibliography

462 / 470

The report

What should I focus on? Introduction
You don’t need to answer all questions in a chronological order.
When you write the introduction you could focus on the
following aspects

I A central aim is to study the role of correlations due to the
repulsion between the electrons.

I To do this we have singled out three closed-shell systems
with 2, 6 and 12 electrons.

I We use variational Monte Carlo and try different trial wave
functions to see how close we get to experiment/exact
result for a given Hamiltonian

I We test also the wave functions by computing onebody
densities and compare these with those obtained with a
non-interacting wave function.

463 / 470

The report
What should I focus on? Methods sections

I Describe the methods (quantum mechanical and
algorithms)

I You need to explain variational Monte Carlo and
Hartree-Fock

I The trial wave functions. Why do you choose the functions
you do?

I Why do you do importance sampling? And blocking and
Conjugate gradient. You don’t need to explain in detail
these methods.

I You need to explain how you implemented the methods
and also say something about the structure of your
algorithm and present some parts of your code (Slater det
and Jastrow factor).

I You can also plug in some calculations to demonstrate your
code, such as selected runs from for the two-electron case.

464 / 470

The report

What should I focus on? Results
I You could focus on say the six-electron case
I As an example, you should present results for the ∆t

dependence for this case but keep in the appendix some
selected ∆t for N = 2 and N = 12.

I Same applies to the blocking analysis and the conjugate
gradient method

I Same for the onebody densities, focus on N = 6 and
various wave functions.

I Discuss the results for different approaches to the wave
functions. What do we learn?

465 / 470

The report

What should I focus on? Conclusions
I State your main findings and interpretations
I Try as far as possible to present perspectives for future

work
I Try to discuss the pros and cons of the methods and

possible improvements

466 / 470

The report

What should I focus on? additional material
I Additional calculations used to validate the codes
I Selected calculations, these can be listed with few

comments
I Listing of the code if you feel this is necessary

You can consider moving parts of the material from the
methods section to the appendix. You can also place additional
material on your webpage.

467 / 470

The report

What should I focus on? References
I Give always references to material you base your work on,

either scientific articles/reports or books.
I Wikipedia is not accepted as a scientific reference. Under

no circumstances.
I Refer to articles as: name(s) of author(s), journal, volume

(boldfaced), page and year in parenthesis.
I Refer to books as: name(s) of author(s), title of book,

publisher, place and year, eventual page numbers

468 / 470

The exam

Dates and structure
I Date: Friday June 10. for day and time as soon as

possible. Actual times are 9-17 both days.
I Duration 45 minutes
I Give a presentation of your report, 30 mins. Slides only.
I Then questions and feedback.
I Your final grade will be based on the report, your

presentation and what you have done in total.

469 / 470

Topics for Week 21, May 23-27

Last session
I Summary of course
I Discussion of the structure of the report and finalization of

report
I Only project work

470 / 470

	Weeks 3 and 4
	Weeks 5
	Weeks 6
	Week 7
	Week 8
	Week 11
	Week 13
	Week 15
	Week 17
	Week 18
	Week 19
	Week 20
	Week 21

