
Slides from FYS4411 Lectures

Morten Hjorth-Jensen & Gustav R. Jansen

1Department of Physics and Center of Mathematics for Applications
University of Oslo, N-0316 Oslo, Norway

Spring 2012

1 / 95

Topics for Weeks 10-15, March 5 - April 15

Slater determinant, minimization and programming
strategies

◮ Many electrons and Slater determinant
◮ How to implement the Slater determinant
◮ Minimizing the energy expectation value (Conjugate

gradient method)
◮ Optimization

Project work: Project 1 should be about done before the end of
the period. Project 2 will be presented after easter.

2 / 95

Slater determinants

Φ(r1, r2, . . . , rN , α, β, . . . , σ) =
1√
N!

˛̨
˛̨
˛̨
˛̨
˛

ψα(r1) ψα(r2) ψα(rN)
ψβ(r1) ψβ(r2) ψβ(rN)
.
.

ψσ(r1) ψσ(r2) ψγ(rN)

˛̨
˛̨
˛̨
˛̨
˛
, (1)

where ri stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.

3 / 95

Slater determinants

The potentially most time-consuming part is the evaluation of the gradient and the
Laplacian of an N-particle Slater determinant. We have to differentiate the determinant
with respect to all spatial coordinates of all particles. A brute force differentiation would
involve N · d evaluations of the entire determinant which would even worsen the
already undesirable time scaling, making it Nd · O(N3) ∼ O(d · N4). This poses
serious hindrances to the overall efficiency of our code.
The efficiency can be improved however if we move only one electron at the time. The
Slater determinant matrix D is defined by the matrix elements

dij ≡ φj (xi) (2)

where φj(ri) is a single particle wave function. The columns correspond to the position

of a given particle while the rows stand for the various quantum numbers.

4 / 95

Slater determinants

What we need to realize is that when differentiating a Slater determinant with respect
to some given coordinate, only one row of the corresponding Slater matrix is changed.
Therefore, by recalculating the whole determinant we risk producing redundant
information. The solution turns out to be an algorithm that requires to keep track of the
inverse of the Slater matrix.
Let the current position in phase space be represented by the (N · d)-element vector
rold and the new suggested position by the vector rnew.
The inverse of D can be expressed in terms of its cofactors Cij and its determinant |D|:

d−1
ij =

Cji

|D|
(3)

Notice that the interchanged indices indicate that the matrix of cofactors is to be

transposed.

5 / 95

Slater determinants

If D is invertible, then we must obviously have D−1D = 1, or explicitly in terms of the
individual elements of D and D−1:

NX

k=1

dik d−1
kj = δij (4)

Consider the ratio, which we shall call R, between |D(rnew)| and |D(rold)|. By definition,
each of these determinants can individually be expressed in terms of the i th row of its
cofactor matrix

R ≡ |D(rnew)|
|D(rold)| =

PN
j=1 dij(rnew) Cij (rnew)

PN
j=1 dij(rold) Cij (rold)

(5)

6 / 95

Slater determinants

Suppose now that we move only one particle at a time, meaning that rnew differs from
rold by the position of only one, say the i th, particle. This means that D(rnew) and
D(rold) differ only by the entries of the i th row. Recall also that the i th row of a cofactor
matrix C is independent of the entries of the i th row of its corresponding matrix D. In
this particular case we therefore get that the i th row of C(rnew) and C(rold) must be
equal. Explicitly, we have:

Cij(r
new) = Cij(r

old) ∀ j ∈ {1, . . . ,N} (6)

7 / 95

Slater determinants

Inserting this into the numerator of eq. (5) and using eq. (3) to substitute the cofactors
with the elements of the inverse matrix, we get:

R =

PN
j=1 dij (rnew) Cij (rold)

PN
j=1 dij (rold) Cij (rold)

=

PN
j=1 dij(rnew) d−1

ji (rold)
PN

j=1 dij(rold) d−1
ji (rold)

(7)

8 / 95

Slater determinants

Now by eq. (4) the denominator of the rightmost expression must be unity, so that we
finally arrive at:

R =
NX

j=1

dij(r
new) d−1

ji (rold) =
NX

j=1

φj (r
new
i) d−1

ji (rold) (8)

What this means is that in order to get the ratio when only the i th particle has been

moved, we only need to calculate the dot product of the vector
`
φ1(rnew

i), . . . , φN(rnew
i)

´
of single particle wave functions evaluated at this new

position with the i th column of the inverse matrix D−1 evaluated at the original position.

Such an operation has a time scaling of O(N). The only extra thing we need to do is to

maintain the inverse matrix D−1(xold).

9 / 95

Slater determinants

The scheme is also applicable for the calculation of the ratios involving derivatives. It

turns out that differentiating the Slater determinant with respect to the coordinates of a

single particle ri changes only the i th row of the corresponding Slater matrix.

10 / 95

Slater determinants

The gradient and Laplacian can therefore be calculated as follows:

∇i |D(r)|
|D(r)|

=
NX

j=1

∇idij (r) d−1
ji (r) =

NX

j=1

∇iφj(ri) d−1
ji (r) (9)

and
∇2

i |D(r)|
|D(r)| =

NX

j=1

∇2
i dij(r) d−1

ji (r) =
NX

j=1

∇2
i φj(ri) d−1

ji (r) (10)

11 / 95

Slater determinants

If the new position rnew is accepted, then the inverse matrix can by suitably updated by
an algorithm having a time scaling of O(N2). This algorithm goes as follows. First we
update all but the i th column of D−1. For each column j 6= i , we first calculate the
quantity:

Sj = (D(rnew) ×D−1(rold))ij =
NX

l=1

dil(r
new) d−1

lj (rold) (11)

The new elements of the j th column of D−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold) −
Sj

R
d−1

ki (rold)
∀ k ∈ {1, . . . ,N}
j 6= i (12)

12 / 95

Slater determinants

Finally the elements of the i th column of D−1 are updated simply as follows:

d−1
ki (rnew) =

1

R
d−1

ki (rold) ∀ k ∈ {1, . . . ,N} (13)

We see from these formulas that the time scaling of an update of D−1 after changing

one row of D is O(N2).

13 / 95

Slater determinants

Thus, to calculate all the derivatives of the Slater determinant, we only need the
derivatives of the single particle wave functions (∇iφj(ri) and ∇2

i φj(ri)) and the
elements of the corresponding inverse Slater matrix (D−1(ri)). A calculation of a single
derivative is by the above result an O(N) operation. Since there are d · N derivatives,
the time scaling of the total evaluation becomes O(d · N2). With an O(N2) updating
algorithm for the inverse matrix, the total scaling is no worse, which is far better than
the brute force approach yielding O(d · N4).
Important note: In most cases you end with closed form expressions for the
single-particle wave functions. It is then useful to calculate the various derivatives and
make separate functions for them.

14 / 95

Slater determinant: Explicit expressions for various
Atoms, beryllium

The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) =
1√
4!

˛̨
˛̨
˛̨
˛̨

ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

˛̨
˛̨
˛̨
˛̨
.

The Slater determinant as written is zero since the spatial wave functions for the spin

up and spin down states are equal. But we can rewrite it as the product of two Slater

determinants, one for spin up and one for spin down.

15 / 95

Slater determinant: Explicit expressions for various
Atoms, beryllium

We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = Det ↑ (1, 2)Det ↓ (3, 4) − Det ↑ (1, 3)Det ↓ (2, 4)

−Det ↑ (1, 4)Det ↓ (3, 2) + Det ↑ (2, 3)Det ↓ (1, 4) − Det ↑ (2, 4)Det ↓ (1, 3)

+Det ↑ (3, 4)Det ↓ (1, 2),

where we have defined

Det ↑ (1, 2) =
1√
2

˛̨
˛̨ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

˛̨
˛̨ ,

and

Det ↓ (3, 4) =
1√
2

˛̨
˛̨ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

˛̨
˛̨ .

The total determinant is still zero!

16 / 95

Slater determinant: Explicit expressions for various
Atoms, beryllium

We want to avoid to sum over spin variables, in particular when the interaction does not
depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum Chem. 20
(1981) 1107, that for the variational energy we can approximate the Slater determinant
as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ Det ↑ (1, 2)Det ↓ (3, 4),

or more generally as
Φ(r1, r2, . . . rN) ∝ Det ↑ Det ↓,

where we have the Slater determinant as the product of a spin up part involving the
number of electrons with spin up only (3 for six-electron QD and 6 in 12-electron QD)
and a spin down part involving the electrons with spin down.
This ansatz is not antisymmetric under the exchange of electrons with opposite spins
but it can be shown that it gives the same expectation value for the energy as the full
Slater determinant.

As long as the Hamiltonian is spin independent, the above is correct. Exercise for next

week: convince yourself that this is correct.

17 / 95

Slater determinants

We will thus factorize the full determinant |D| into two smaller ones, where each can be
identified with ↑ and ↓ respectively:

|D| = |D|↑ · |D|↓ (14)

The combined dimensionality of the two smaller determinants equals the
dimensionality of the full determinant. Such a factorization is advantageous in that it
makes it possible to perform the calculation of the ratio R and the updating of the
inverse matrix separately for |D|↑ and |D|↓:

|D|new

|D|old
=

|D|new
↑

|D|old
↑

·
|D|new

↓

|D|old
↓

(15)

18 / 95

Slater determinants

This reduces the calculation time by a constant factor. The maximal time reduction
happens in a system of equal numbers of ↑ and ↓ particles, so that the two factorized
determinants are half the size of the original one.
Consider the case of moving only one particle at a time which originally had the
following time scaling for one transition:

OR(N) + Oinverse(N
2) (16)

For the factorized determinants one of the two determinants is obviously unaffected by

the change so that it cancels from the ratio R.

19 / 95

Slater determinants

Therefore, only one determinant of size N/2 is involved in each calculation of R and
update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) + Oinverse(N2/4) (17)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) + Oinverse(N3/4) (18)

which gives the same reduction as in the case of moving all particles at once.

20 / 95

Updating the Slater matrix

Computing the ratios discussed above requires that we maintain the inverse of the
Slater matrix evaluated at the current position. Each time a trial position is accepted,
the row number i of the Slater matrix changes and updating its inverse has to be
carried out. Getting the inverse of an N × N matrix by Gaussian elimination has a
complexity of order of O(N3) operations, a luxury that we cannot afford for each time a
particle move is accepted. We will use the expression

d−1
kj (xnew) =

8
>><
>>:

d−1
kj (xold) − d−1

ki (xold)

R

PN
l=1 dil(xnew)d−1

lj (xold) if j 6= i

d−1
ki (xold)

R

PN
l=1 dil(xold)d−1

lj (xold) if j = i

(19)

21 / 95

Updating the Slater matrix

This equation scales as O(N2). The evaluation of the determinant of an N × N matrix
by standard Gaussian elimination requires O(N3) calculations. As there are Nd
independent coordinates we need to evaluate Nd Slater determinants for the gradient
(quantum force) and Nd for the Laplacian (kinetic energy). With the updating algorithm
we need only to invert the Slater determinant matrix once. This can be done by
standard LU decomposition methods.

22 / 95

Slater Determinant and VMC

Determining a determinant of an N × N matrix by standard Gaussian elimination is of
the order of O(N3) calculations. As there are N · d independent coordinates we need
to evaluate Nd Slater determinants for the gradient (quantum force) and N · d for the
Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant matrix once.

This is done by calling standard LU decomposition methods.

23 / 95

How to compute the Slater Determinant

If you choose to implement the above recipe for the computation of the Slater
determinant, you need to LU decompose the Slater matrix. This is described in chapter
4 of the lecture notes.

You need to call the function ludcmp in lib.cpp. You need to transfer the Slater matrix

and its dimension. You get back an LU decomposed matrix.

24 / 95

LU Decomposition

The LU decomposition method means that we can rewrite this matrix as the product of
two matrices B and C where
0
BB@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1
CCA =

0
BB@

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

1
CCA

0
BB@

c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

1
CCA .

The matrix A ∈ R
n×n has an LU factorization if the determinant is different from zero. If

the LU factorization exists and A is non-singular, then the LU factorization is unique
and the determinant is given by

det{A} = c11c22 . . . cnn.

25 / 95

How should we structure our code?

What do you think is reasonable to split into subtasks defined
by classes?

◮ Single-particle wave functions?
◮ External potentials?
◮ Operations on rij and the correlation function?
◮ Mathematical operations like the first and second

derivative of the trial wave function? How can you split the
derivatives into various subtasks?

◮ Matrix and vector operations?

Your task is to figure out how to structure your code in order to
compute the Slater determinant for the six electron dot. This
should be compared with the brute force case. Do not include
the correlation factor in the first attempt nor the
electron-electron repulsion.

26 / 95

A useful piece of code, distances

double r i (double∗∗ , i n t) ;
/ / d is tance between nucleus and e lec t ron i
double r i j (double∗∗ , in t , i n t) ;
/ / d is tance between e lec t rons i and j

You should also make functions for the single-particle wave
functions, their first and second derivatives as well.

27 / 95

The function to set up a determinant
/ / Determinant f u n c t i o n
double determinant (double∗∗ A, i n t dim) {

i f (dim == 2)
return A [0] [0] ∗A [1] [1] − A [0] [1] ∗A [1] [0] ;

double sum = 0;
for (i n t i = 0 ; i < dim ; i ++) {

double∗∗ sub = new double ∗ [dim−1];
for (i n t j = 0 ; j < i ; j ++)

sub [j] = &A[j] [1] ;
for (i n t j = i +1; j < dim ; j ++)

sub [j −1] = &A[j] [1] ;
i f (i % 2 == 0)

sum += A[i] [0] ∗ determinant (sub , dim−1) ;
else

sum −= A[i] [0] ∗ determinant (sub , dim−1) ;

delete [] sub ;
}
return sum;

}
28 / 95

Set up the Slater determinant
N is the number of electrons and N2 is half the number of
electrons.

/ / S la ter−determinant
double s l a t e r (double∗∗ R, double alpha , double N,

double N2) {
double∗∗ DUp = (double∗∗) mat r ix (N2 , N2, sizeof (

double)) ;
double∗∗ DDown = (double∗∗) mat r ix (N2, N2 , sizeof (

double)) ;
for (i n t i = 0 ; i < N2; i ++) {

for (i n t j = 0 ; j < N2; j ++) {
DUp[i] [j] = ph i (j ,R, i , alpha) ;
DDown[i] [j] = ph i (j ,R, i +N2 , alpha) ;

}
}
/ / Returns product o f spin up and spin down dets
double det = determinant (DUp,N2) ∗determinant (

DDown, N2) ;
f r e e m a t r i x ((void ∗∗) DUp) ;
f r e e m a t r i x ((void ∗∗) DDown) ;
return det ;

29 / 95

Jastrow factor
/ / Jastrow f a c t o r
double j as t r ow (double∗∗ R, double beta , double N,

double N2) {
double arg = 0;
for (i n t i = 1 ; i < N; i ++)

for (i n t j = 0 ; j < i ; j ++)
i f ((i < N2 && j < N2) | | (i >= N2 && j >= N2

)) {
double r i j = r i j (R, i , j) ;
arg += 0.33333333∗ r i j / (1+ beta∗ r i j) ; / /

same spin
}
else {

double r i j = r i j (R, i , j) ;
arg += 1.0∗ r i j / (1+ beta∗ r i j) ; / / oppos i te

spin
}

return exp (arg) ;
}

30 / 95

/ / Check of s i n g u l a r i t y a t R = 0
bool S i n g u l a r i t y (double∗∗ R, i n t N) {

for (i n t i = 0 ; i < N; i ++)
i f (r i (R, i) < 1e−10)

return true ;

for (i n t i = 0 ; i < N − 1; i ++)
for (i n t j = i +1; j < N; j ++)

i f (r i j (R, i , j) < 1e−10)
return true ;

return fa lse ;
}

31 / 95

Efficient calculations of wave function ratios

The expectation value of the kinetic energy expressed in atomic units for electron i is

〈bKi 〉 = −1

2

〈Ψ|∇2
i |Ψ〉

〈Ψ|Ψ〉
, (20)

Ki = −1

2

∇2
i Ψ

Ψ
. (21)

∇2Ψ

Ψ
=

∇2(ΨD ΨC)

ΨD ΨC
=

∇·[∇(ΨD ΨC)]

ΨD ΨC
=

∇·[ΨC∇ΨD + ΨD∇ΨC]

ΨD ΨC

=
∇ΨC · ∇ΨD + ΨC∇2ΨD + ∇ΨD · ∇ΨC + ΨD∇2ΨC

ΨD ΨC

(22)

∇2Ψ

Ψ
=

∇2ΨD

ΨD
+

∇2ΨC

ΨC
+ 2

∇ΨD

ΨD
· ∇ΨC

ΨC
(23)

32 / 95

Summing up: Bringing it all together, Local energy

The second derivative of the Jastrow factor divided by the Jastrow factor (the way it
enters the kinetic energy) is

»∇2ΨC

ΨC

–

x
= 2

NX

k=1

k−1X

i=1

∂2gik

∂x2
k

+
NX

k=1

0
@

k−1X

i=1

∂gik

∂xk
−

NX

i=k+1

∂gki

∂xi

1
A

2

But we have a simple form for the function, namely

ΨC =
Y

i<j

exp f (rij) = exp

8
<
:
X

i<j

arij

1 + βrij

9
=
;,

and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
X

ij 6=k

(rk − ri)(rk − rj)

rki rkj
f ′(rki)f

′(rkj) +
X

j 6=k

f ′′(rkj) +

2

rkj
f ′(rkj)

!

33 / 95

Bringing it all together, Local energy

Using

f (rij) =
arij

1 + βrij
,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle k we

have

∇2
kΨC

ΨC
=
X

ij 6=k

(rk − ri)(rk − rj)

rki rkj

a

(1 + βrki)2

a

(1 + βrkj)2
+
X

j 6=k

2a

rkj(1 + βrkj)2
− 2aβ

(1 + βrkj)3

!

34 / 95

Local energy

The gradient and Laplacian can be calculated as follows:

∇i |D(r)|
|D(r)|

=
NX

j=1

∇idij (r) d−1
ji (r) =

NX

j=1

∇iφj(ri) d−1
ji (r)

and
∇2

i |D(r)|
|D(r)| =

NX

j=1

∇2
i dij(r) d−1

ji (r) =
NX

j=1

∇2
i φj(ri) d−1

ji (r)

35 / 95

Local energy function
double E l o c a l (double∗∗ R, double alpha , double

beta , i n t N, double∗∗ F , double∗∗ DinvUp ,
double∗∗ DinvDown , i n t N2, double∗∗

detgrad , double∗∗ j as tg rad) {

/ / K i n e t i c energy
double k i n e t i c = 0;
/ / Determinant pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {

i f (i < N2)
for (i n t l = 0 ; l < N2; l ++)

k i n e t i c −= p h i d e r i v 2 (l ,R, i , j , alpha) ∗
DinvUp [l] [i] ;

else
for (i n t l = 0 ; l < N2; l ++)

k i n e t i c −= p h i d e r i v 2 (l ,R, i , j , alpha) ∗
DinvDown [l] [i−N2] ;

}
}

36 / 95

Jastrow part

/ / Jastrow par t
double r i j , a ;
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
k i n e t i c −= jas tg rad [i] [j]∗ j as tg rad [i] [j] ;

}
}
for (i n t i = 0 ; i < N−1; i ++) {

for (i n t j = i +1; j < N; j ++) {
i f ((j < N2 && i < N2) | | (j >= N2 && i >= N2

))
a = 0.33333333;

else
a = 1 . 0 ;

r i j = r i j (R, i , j) ;
k i n e t i c −= 4∗a / (r i j ∗pow(1+ beta∗ r i j , 3)) ;

}
}

37 / 95

Local energy

/ / ” I n t e r f e r e n c e ” pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
k i n e t i c −= 2∗detgrad [i] [j]∗ j as tg rad [i] [j] ;

}
}

k i n e t i c ∗= . 5 ;

38 / 95

/ / P o t e n t i a l energy
/ / e lec t ron−nucleus p o t e n t i a l
double p o t e n t i a l = 0 ;
for (i n t i = 0 ; i < N; i ++)

p o t e n t i a l −= Z / r i (R, i) ;

/ / e lec t ron−e lec t ron p o t e n t i a l
for (i n t i = 0 ; i < N − 1; i ++)

for (i n t j = i +1; j < N; j ++)
p o t e n t i a l += 1 / r i j (R, i , j) ;

return p o t e n t i a l + k i n e t i c ;
}

39 / 95

Determinant part in quantum force

The gradient for the determinant is

∇i |D(r)|
|D(r)|

=
NX

j=1

∇idij (r) d−1
ji (r) =

NX

j=1

∇iφj (ri) d−1
ji (r).

40 / 95

Quantum force
void calcQF (double∗∗ R, double∗∗ F , double alpha ,

double beta ,
i n t N, double∗∗ DinvUp , double∗∗

DinvDown , i n t N2, double∗∗ detgrad ,
double∗∗ j as tg rad) {

double sum;
/ / Determinant pa r t
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
sum = 0;
i f (i < N2)

for (i n t l = 0 ; l < N2; l ++)
sum += p h i d e r i v (l ,R, i , j , alpha) ∗DinvUp [l

] [i] ;
else

for (i n t l = 0 ; l < N2; l ++)
sum += p h i d e r i v (l ,R, i , j , alpha) ∗DinvDown [

l] [i−N2] ;
detgrad [i] [j] = sum ;

}
}

41 / 95

Jastrow gradient in quantum force

We have

ΨC =
Y

i<j

g(rij) = exp

8
<
:
X

i<j

arij

1 + βrij

9
=
;,

the gradient needed for the quantum force and local energy is easy to compute. We get
for particle k

∇kΨC

ΨC
=
X

j 6=k

rkj

rkj

a

(1 + βrkj)2
,

which is rather easy to code. Remember to sum over all particles when you compute

the local energy.

42 / 95

Jastrow part

/ / Jastrow par t
double r i l , a ;
for (i n t i = 0 ; i < N; i ++) {

for (i n t j = 0 ; j < dimension ; j ++) {
sum = 0;
for (i n t l = 0 ; l < N; l ++) {

i f (l ! = i) {
i f ((l < N2 && i < N2) | | (l >= N2 && i

>= N2))
a = 0.33333333;

else
a = 1 . 0 ;

43 / 95

r i l = r i j (R, i , l) ;
sum += (R[i] [j]−R[l] [j]) ∗a / (r i l ∗pow(1+

beta∗ r i l , 2)) ;
}

}
j as tg rad [i] [j] = sum ;

}
}
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < dimension ; j ++)
F [i] [j] = 2∗ (detgrad [i] [j] + jas tg rad [i] [j]) ;

}

44 / 95

Metropolis-Hastings part

/ / I n i t i a l i z e p o s i t i o n s
double∗∗ R = (double∗∗) mat r ix (N, dimension , sizeof

(double)) ;
for (i n t i = 0 ; i < N; i ++)

for (i n t j = 0 ; j < dimension ; j ++)
R[i] [j] = gauss ian dev ia te (&idum) ;

i n t N2 = N/ 2 ; / / dimension of S l a t e r mat r ix

45 / 95

Metropolis Hastings part

We need to compute the ratio between wave functions, in particular for the Slater
determinants.

R =
NX

j=1

dij(r
new) d−1

ji (rold) =
NX

j=1

φj (r
new
i) d−1

ji (rold)

What this means is that in order to get the ratio when only the i th particle has been

moved, we only need to calculate the dot product of the vector
`
φ1(rnew

i), . . . , φN(rnew
i)

´
of single particle wave functions evaluated at this new

position with the i th column of the inverse matrix D−1 evaluated at the original position.

Such an operation has a time scaling of O(N). The only extra thing we need to do is to

maintain the inverse matrix D−1(xold).

46 / 95

Jastrow factor in Metropolis Hastings

We have

RC =
Ψnew

C

Ψcur
C

=
eUnew

eUcur
= e∆U , (24)

where

∆U =

k−1X

i=1

`
f new
ik − f cur

ik

´
+

NX

i=k+1

`
f new
ki − f cur

ki

´
(25)

One needs to develop a special algorithm that runs only through the elements of the
upper triangular matrix g and have k as an index.

47 / 95

Metropolis-Hastings part

/ / I n i t i a l i z e inverse S l a t e r matr ices f o r spin up
and spin down

double∗∗ DinvUp = (double∗∗) mat r ix (N2, N2 , sizeof (
double)) ;

double∗∗ DinvDown = (double∗∗) mat r ix (N2 , N2,
sizeof (double)) ;

for (i n t i = 0 ; i < N2; i ++) {
for (i n t j = 0 ; j < N2; j ++) {

DinvUp [i] [j] = ph i (j ,R, i , alpha) ;
DinvDown [i] [j] = ph i (j ,R, i +N2 , alpha) ;

}
}
inverse (DinvUp ,N2) ;
inverse (DinvDown , N2) ;

48 / 95

Metropolis-Hastings part

/ / Inverse S l a t e r mat r ix i n new p o s i t i o n
double∗∗ DinvUp new = (double∗∗) mat r ix (N2, N2 ,

sizeof (double)) ;
double∗∗ DinvDown new = (double∗∗) mat r ix (N2 , N2,

sizeof (double)) ;
for (i n t i = 0 ; i < N2; i ++) {

for (i n t j = 0 ; j < N2; j ++) {
DinvUp new [i] [j] = DinvUp [i] [j] ;
DinvDown new [i] [j] = DinvDown [i] [j] ;

}
}

49 / 95

Metropolis-Hastings part

/ / Gradients o f determinant and and Jastrow f a c t o r
double∗∗ detgrad = (double∗∗) mat r ix (N, dimension ,

sizeof (double)) ;
double∗∗ j as tg rad = (double∗∗) mat r ix (N, dimension

, sizeof (double)) ;
double∗∗ detgrad new = (double∗∗) mat r ix (N,

dimension , sizeof (double)) ;
double∗∗ jas tgrad new = (double∗∗) mat r ix (N,

dimension , sizeof (double)) ;

/ / I n i t i a l i z e quantum fo rce
double∗∗ F = (double∗∗) mat r ix (N, dimension , sizeof

(double)) ;
calcQF (R, F , alpha , beta ,N, DinvUp , DinvDown , N2,

detgrad , jas tg rad) ;

50 / 95

Metropolis-Hastings part

double EL ; / / Local energy
double s q r t d t = s q r t (d e l t a t) ;
double D = . 5 ; / / d i f f u s i o n constant
/ / For Met ropo l is−Hastings algo :
double∗∗ R new = (double∗∗) mat r ix (N, dimension ,

sizeof (double)) ;
double∗∗ F new = (double∗∗) mat r ix (N, dimension ,

sizeof (double)) ;
double greens ra t io ; / / Rat io between Green ’ s

f u n c t i o n s
double d e t r a t i o ; / / Rat io between S l a t e r

determinants
double j a s t r a t i o ; / / Rat io between Jastrow f a c t o r s
double ro ld , rnew , a ;
double a lphader iv , be tade r i v ;

51 / 95

Metropolis-Hastings part, inside Monte Carlo loop

/ / Rat io between S l a t e r determinants
i f (i < N2) {

d e t r a t i o = 0;
for (i n t l = 0 ; l < N2; l ++)

d e t r a t i o += ph i (l , R new , i , alpha) ∗ DinvUp
[l] [i] ;

}
else {

d e t r a t i o = 0;
for (i n t l = 0 ; l < N2; l ++)

d e t r a t i o += ph i (l , R new , i , alpha) ∗
DinvDown [l] [i−N2] ;

}

52 / 95

Metropolis-Hastings part

/ / Inverse S l a t e r mat r ix i n new p o s i t i o n
i f (i < N2) { / / Spinn up

for (i n t j = 0 ; j < N2; j ++) {
i f (j ! = i) {

Sj = 0;
for (i n t l = 0 ; l < N2; l ++) {

Sj += ph i (l , R new , i , alpha) ∗ DinvUp [l
] [j] ;

}
for (i n t l = 0 ; l < N2; l ++)

DinvUp new [l] [j] = DinvUp [l] [j] − Sj
∗ DinvUp [l] [i] / d e t r a t i o ;

}
}
for (i n t l = 0 ; l < N2; l ++)

DinvUp new [l] [i] = DinvUp [l] [i] /
d e t r a t i o ;

}

53 / 95

Metropolis-Hastings part

else { / / Spinn−ned
for (i n t j = 0 ; j < N2; j ++) {

i f (j ! = i−N2) {
Sj = 0;
for (i n t l = 0 ; l < N2; l ++) {

Sj += ph i (l , R new , i , alpha) ∗ DinvDown
[l] [j] ;

}
for (i n t l = 0 ; l < N2; l ++)

DinvDown new [l] [j] = DinvDown [l] [j] −
Sj ∗ DinvDown [l] [i−N2] /

d e t r a t i o ;
}

}
for (i n t l = 0 ; l < N2; l ++)

DinvDown new [l] [i−N2] = DinvDown [l] [i−N2]
/ d e t r a t i o ;

}

54 / 95

Jastrow ratio

/ / Rat io between Jastrow f a c t o r s
j a s t r a t i o = 0;
for (i n t l = 0 ; l < N; l ++) {

i f (l ! = i) {
i f ((l < N2 && i < N2) | | (l >= N2 && i

>= N2))
a = 0.33333333;

else
a = 1 . 0 ;

r o l d = r i j (R, l , i) ;
rnew = r i j (R new , l , i) ;
j a s t r a t i o += a ∗ (rnew / (1+ beta∗rnew) −

r o l d / (1+ beta∗ r o l d)) ;
}

}
j a s t r a t i o = exp (j a s t r a t i o) ;

55 / 95

Green’s functions

/ / quantum fo rce i n new p o s i t i o n
calcQF (R new , F new , alpha , beta ,N, DinvUp new ,

DinvDown new , N2 , detgrad new , jas tgrad new)
;

/ / Rat io between Green ’ s f u n c t i o n s
greens ra t io = 0;
for (i n t i i = 0 ; i i < N; i i ++)

for (i n t j = 0 ; j < 3; j ++)
g reens ra t io += . 5∗ (F new [i i] [j]+F [i i] [j])

∗ (. 5∗D∗ d e l t a t ∗ (F [i i] [j]−F new [i i] [
j]) + R[i i] [j] − R new [i i] [j]) ;

g reens ra t io = exp (g reens ra t io) ;

56 / 95

Metropolis Hastings test

/ / Met ropo l is−Hastings−t e s t
i f (ran2 (&idum) < greens ra t io ∗ d e t r a t i o ∗

d e t r a t i o ∗ j a s t r a t i o ∗ j a s t r a t i o) {
/ / Accept move abd update inve rs S l a t e r

mat r ix
i f (i < N2)

for (i n t l = 0 ; l < N2 ; l ++)
for (i n t m = 0; m < N2; m++)

DinvUp [l] [m] = DinvUp new [l] [m] ;
else

for (i n t l = 0 ; l < N2 ; l ++)
for (i n t m = 0; m < N2; m++)

DinvDown [l] [m] = DinvDown new [l] [m] ;

57 / 95

/ / Update pos i t i on , quantum fo rce and
grad ien ts

for (i n t i i = 0 ; i i < N; i i ++) {
for (i n t j = 0 ; j < 3; j ++) {

R[i i] [j] = R new [i i] [j] ;
F [i i] [j] = F new [i i] [j] ;
detgrad [i i] [j] = detgrad new [i i] [j] ;
j as tg rad [i i] [j] = jas tgrad new [i i] [j] ;

.
} / / End loop of e lec t r on t h a t has been moved

58 / 95

Proof for updating algorithm of the Slater matrix

As a starting point we may consider that each time a new position is suggested in the
Metropolis algorithm, a row of the current Slater matrix experiences some kind of
perturbation. Hence, the Slater matrix with its orbitals evaluated at the new position
equals the old Slater matrix plus a perturbation matrix,

djk (xnew) = djk (xold) + ∆jk , (26)

where

∆jk = δik [φj(x
new
i) − φj(x

old
i)] = δik (∆φ)j . (27)

59 / 95

Proof for updating algorithm of the Slater matrix

Computing the inverse of the transposed matrix we arrive to

dkj(x
new)−1 = [dkj(x

old) + ∆kj]
−1. (28)

The evaluation of the right hand side (rhs) term above is carried out by applying the
identity (A + B)−1 = A−1 − (A + B)−1BA−1. In compact notation it yields

[DT (xnew)]−1 = [DT (xold) + ∆T]−1

= [DT (xold)]−1 − [DT (xold) + ∆T]−1∆T [DT (xold)]−1

= [DT (xold)]−1 − [DT (xnew)]−1

| {z }
By Eq.28

∆T [DT (xold)]−1.

60 / 95

Proof for updating algorithm of the Slater matrix

Using index notation, the last result may be expanded by

d−1
kj (xnew) = d−1

kj (xold) −
X

l

X

m

d−1
km (xnew)∆T

ml d
−1
lj (xold)

= d−1
kj (xold) −

X

l

X

m

d−1
km (xnew)∆lmd−1

lj (xcur)

= d−1
kj (xold) −

X

l

X

m

d−1
km (xnew) δim(∆φ)l| {z }

By Eq. 27

d−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)

NX

l=1

(∆φ)l d
−1
lj (xold)

= d−1
kj (xold) − d−1

ki (xnew)
NX

l=1

[φl(r
new
i) − φl (r

old
i)]

| {z }
By Eq.27

D−1
lj (xold).

61 / 95

Proof for updating algorithm of the Slater matrix

Using

D−1(xold) =
adjD

|D(xold)|
and D−1(xnew) =

adjD
|D(xnew)|

,

and dividing these two equations we get

D−1(xold)

D−1(xnew)
=

|D(xnew)|
|D(xold)|

= R ⇒ d−1
ki (xnew) =

d−1
ki (xold)

R
.

Therefore,

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)

R

NX

l=1

[φl(r
new
i) − φl(r

old
i)]d−1

lj (xold),

62 / 95

Proof for updating algorithm of the Slater matrix

or

d−1
kj (xnew) = d−1

kj (xold) −
d−1

ki (xold)

R

NX

l=1

φl (r
new
i)d−1

lj (xold)

+
d−1

ki (xold)

R

NX

l=1

φl (r
old
i)d−1

lj (xold)

= d−1
kj (xold) −

d−1
ki (xold)

R

NX

l=1

dil(x
new)d−1

lj (xold)

+
d−1

ki (xold)

R

NX

l=1

dil (x
old)d−1

lj (xold).

63 / 95

Proof for updating algorithm of the Slater matrix

In this equation, the first line becomes zero for j = i and the second for j 6= i .
Therefore, the update of the inverse for the new Slater matrix is given by

d−1
kj (xnew) =

8
>><
>>:

d−1
kj (xold) − d−1

ki (xold)

R

PN
l=1 dil(xnew)d−1

lj (xold) if j 6= i

d−1
ki (xold)

R

PN
l=1 dil(xold)d−1

lj (xold) if j = i

64 / 95

Newton’s method

If we consider finding the minimum of a function f using Newton’s method, that is
search for a zero of the gradient of a function. Near a point xi we have to second order

f (x̂) = f (x̂i) + (x̂ − x̂i)∇f (x̂i) +
1

2
(x̂ − x̂i)Â(x̂ − x̂i)

giving
∇f (x̂) = ∇f (x̂i) + Â(x̂ − x̂i).

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂ − x̂i = Â−1∇f (x̂i).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1) −∇f (x̂i)).

65 / 95

Conjugate gradient (CG) method

The success of the CG method for finding solutions of non-linear problems is based on
the theory of conjugate gradients for linear systems of equations. It belongs to the
class of iterative methods for solving problems from linear algebra of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂ − Âx̂,

where r̂ is the so-called residual or error in the iterative process.

66 / 95

Conjugate gradient method

The residual is zero when we reach the minimum of the quadratic equation

P(x̂) =
1

2
x̂T Âx̂ − x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric. If we search for

a minimum of the quantum mechanical variance, then the matrix Â, which is called the

Hessian, is given by the second-derivative of the variance. This quantity is always

positive definite. If we vary the energy, the Hessian may not always be positive definite.

67 / 95

Conjugate gradient method

In the CG method we define so-called conjugate directions and two vectors ŝ and t̂ are
said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂T
i Âx̂j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner product.

Being conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂ is conjugate to ŝ.

68 / 95

Conjugate gradient method

An example is given by the eigenvectors of the matrix

v̂T
i Âv̂j = λv̂T

i v̂j ,

which is zero unless i = j .

69 / 95

Conjugate gradient method

Assume now that we have a symmetric positive-definite matrix Â of size n × n. At each
iteration i + 1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i + αi p̂i .

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i form
a basis of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
nX

i=1

αi p̂i .

70 / 95

Conjugate gradient method

The coefficients are given by

Ax =
nX

i=1

αiApi = b.

Multiplying with p̂T
k from the left gives

p̂T
k Âx̂ =

nX

i=1

αi p̂
T
k Âp̂i = p̂T

k b̂,

and we can define the coefficients αk as

αk =
p̂T

k b̂

p̂T
k Âp̂k

71 / 95

Conjugate gradient method and iterations

If we choose the conjugate vectors p̂k carefully, then we may not need all of them to
obtain a good approximation to the solution x̂. So, we want to regard the conjugate
gradient method as an iterative method. This also allows us to solve systems where n
is so large that the direct method would take too much time.
We denote the initial guess for x̂ as x̂0. We can assume without loss of generality that

x̂0 = 0,

or consider the system
Âẑ = b̂ − Âx̂0,

instead.

72 / 95

Conjugate gradient method

Important, one can show that the solution x̂ is also the unique minimizer of the
quadratic form

f (x̂) =
1

2
x̂T Âx̂ − x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0, which
equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to the

gradient, hence the name conjugate gradient method.

73 / 95

Conjugate gradient method

Let r̂k be the residual at the k -th step:

r̂k = b̂ − Âx̂k .

Note that r̂k is the negative gradient of f at x̂ = x̂k , so the gradient descent method
would be to move in the direction r̂k . Here, we insist that the directions p̂k are
conjugate to each other, so we take the direction closest to the gradient r̂k under the
conjugacy constraint. This gives the following expression

p̂k+1 = r̂k −
p̂T

k Âr̂k

p̂T
k Âp̂k

p̂k .

74 / 95

Conjugate gradient method

We can also compute the residual iteratively as

r̂k+1 = b̂ − Âx̂k+1,

which equals
b̂ − Â(x̂k + αk p̂k),

or
(b̂ − Âx̂k) − αk Âp̂k ,

which gives
r̂k+1 = r̂k − Âp̂k ,

75 / 95

Codes from numerical recipes

The codes are taken from chapter 10.7 of Numerical recipes. We use the functions
dfpmin and lnsrch. You can load down the package of programs from the webpage of
the course, see under project 1. The package is called NRcgm107.tar .gz and contains
the files dfmin.c, lnsrch.c, nrutil .c and nrutil .h. These codes are written in C.

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))

76 / 95

What you have to provide

The input to dfpmin

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))

is

◮ The starting vector p of length n

◮ The function func on which minimization is done

◮ The function dfunc where the gradient i calculated

◮ The convergence requirement for zeroing the gradient gtol .

It returns in p the location of the minimum, the number of iterations and the minimum

value of the function under study fret .

77 / 95

Simple example and demonstration

For the harmonic oscillator in one-dimension with a trial wave function and probability

ψT (x) = e−α2x2
,PT (x)dx =

e−2α2x2
dxR

dxe−2α2x2

with α as the variational parameter. We have the following local energy

EL[α] = α2 + x2
„

1

2
− 2α2

«
,

which results in the expectation value

〈EL[α]〉 =
1

2
α2 +

1

8α2

78 / 95

Simple example and demonstration

The derivative of the energy with respect to α gives

d〈EL[α]〉
dα

= α− 1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

d2〈EL[α]〉
dα2

= 1 +
3

4α4

The condition
d〈EL[α]〉

dα
= 0,

gives the optimal α = 1/
√

2.

79 / 95

Simple example and demonstration

In general we end up computing the expectation value of the energy in terms of some
parameters α = {α0, α1, . . . , αn}) and we search for a minimum in parameter space.
This leads to an energy minimization problem.
The elements of the gradient are (Ei is the first derivative wrt to the variational
parameter αi)

Ēi =

fi
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

fl
(29)

= 2
fi
ψi

ψ
(EL − Ē)

fl
(by Hermiticity). (30)

For our simple model we get the same expression for the first derivative (check it!).

80 / 95

Simple example and demonstration

Taking the second derivative the Hessian is

Ēij = 2

"fi„
ψij

ψ
+
ψiψj

ψ2

«
(EL − Ē)

fl

−
fi
ψi

ψ

fl
Ēj −

fi
ψj

ψ

fl
Ēi +

fi
ψi

ψ
EL,j

fl#
. (31)

Note that our conjugate gradient approach does need the Hessian! Check again that

the simple models gives the same second derivative with the above expression.

81 / 95

Simple example and demonstration

We can also minimize the variance. In our simple model the variance is

σ2[α] =
1

2
α4 − 1

4
+

1

32α4
,

with first derivative
dσ2[α]

dα
= 2α3 − 1

8α5

and a second derivative which is always positive

d2σ2[α]

dα2
= 6α2 +

5

8α6

82 / 95

Conjugate gradient method, our case

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂ − x̂i = Â−1∇f (x̂i).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1) −∇f (x̂i)).

83 / 95

Simple example and demonstration

In our case f can be either the energy or the variance. If we choose the energy then we
have

α̂i+1 − α̂i = Â−1(∇E(α̂i+1) −∇E(α̂i)).

In the simple model gradient and the Hessian Â are

d〈EL[α]〉
dα

= α− 1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

Â =
d2〈EL[α]〉

dα2
= 1 +

3

4α4

84 / 95

Simple example and demonstration

We get then

αi+1 =
4

3
αi −

α4
i

3α3
i+1

,

which can be rewritten as

α4
i+1 − 4

3
αiα

4
i+1 +

1

3
α4

i .

Our code does however not need the value of the Hessian since it produces an

estimate of the Hessian.

85 / 95

Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;

86 / 95

Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;

87 / 95

Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);
return value;

} // end of function to evaluate

88 / 95

Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

89 / 95

Using the conjugate gradient method

◮ Start your program with calling the CGM method (function dfpmin).

◮ This function needs the function for the expectation value of the local energy and
the derivative of the local energy. Change the functions func and dfunc in the
codes below.

◮ Your function func is now the Metropolis part with a call to the local energy
function. For every call to the function func I used 1000 Monte Carlo cycles for
the trial wave function

ΨT (r1, r2) = e−α(r1+r2)

◮ This gave me an expectation value for the energy which is returned by the
function func.

◮ When I call the local energy I also compute the first derivative of the expectaction
value of the local energy

d〈EL[α]〉
dα

= 2
fi
ψi

ψ
(EL[α] − 〈EL[α]〉)

fl
.

90 / 95

Using the conjugate gradient method

The expectation value for the local energy of the Helium atom with a simple Slater
determinant is given by

〈EL〉 = α2 − 2α
„

Z − 5

16

«

You should test your numerical derivative with the derivative of the last expression, that
is

d〈EL[α]〉
dα

= 2α− 2
„

Z − 5

16

«
.

91 / 95

Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;

92 / 95

Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;

93 / 95

Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

// Change here by calling your Metropolis function which
// returns the local energy

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);

return value;
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I
used 1000 cycles per call to get a new value of 〈EL[α]〉.

94 / 95

Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

// Change here by calling your Metropolis function.
// I compute both the local energy and its derivative for every call to

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I

used 1000 cycles per call to get a new value of 〈EL[α]〉. When I compute the local

energy I also compute its derivative. After roughly 10-20 iterations I got a converged

result in terms of α.

95 / 95

	Week 10-11

