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Poiseuille flow of Lennard-Jones fluids in narrow slit pores
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We present results from nonequilibrium molecular dynanidSMD) simulations of simple fluids
undergoing planar Poiseuille flow in a slit pore only a few molecular diameters in width. The
calculations reported in this publication build on previous results by including the effects of
attractive forces and studying the flow at narrower pore widths. Our aimélate:examine the role

of attractive forces in determining hydrodynamic properti@sto provide clearer evidence for the
existence of a non-Markovian generalization of Newtons [@\to examine the slip-stick boundary
conditions in more detail by using a high spatial resolution of the streaming velocity prédiles,
investigate the significance of the recently proposed cross-coupling coefficient on the temperature
profiles. The presence of attractive interactions gives rise to interesting packing effects, but
otherwise, does not significantly alter the spatial dependence of hydrodynamic quantities. We find
the strongest evidence to date that Newton’s Law breaks down for very narrow pores; the shear
viscosity exhibits singularities. We suggest a method to test the validity of the non-Markovian
generalization of Newton’s Law. No-slip boundary conditions are found to apply, even at these
microscopic length scales, provided one takes into account the finite size of the wall atoms. The
effects of any strain rate induced coupling to the heat flow are found to be insignificar200@
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I. INTRODUCTION flow at narrower pore widths. Our aims af® to examine
the role of attractive forces in determining hydrodynamic

Classical Navier—Stoked®NS) hydrodynamic theory, ap- properties,(2) to provide clearer evidence for the existence
plied to structureless fluids, predicts that in the case of planasf a non-Markovian generalization of Newtons La{8) to
Poiseuille flow, the streaming velocity of the fluid should examine the slip-stick boundary conditions in more detail by
depend quadratically on the coordinate normal to the confinusing a high spatial resolution of the streaming velocity pro-
ing boundaries. The NS equations assume that the transpdites, (4) to investigate the significance of the recently pro-
coefficients are independent of position and time, and thaposed cross-coupling coefficiéht® on the temperature pro-
the state variables of temperature and density do not varifjles.
appreciably, on length and time scales comparable to the We compare the properties of three different systems, A,
molecular mean free path and molecular relaxation timeB, and C. In system A, fluid—fluid, fluid—solid, and solid—
Computer simulation studies of confined fluigse, for ex- solid intermolecular interactions are governed by the purely
ample, Refs. 1-1)0show that the density in the direction of repulsive part of the Lennard-Jones, or Weeks—Chandler—
confinement can vary appreciably, especially close to théndersenWCA) potential** In system B, these same inter-
walls. In these cases it is therefore expected that the Navieractions are now governed by the full 12-6 Lennard-Jones
Stokes equations should fail. However, despite this, it is @otential, truncated at 25 In system C, solid—solid and
remarkable fact that approximately quadratic velocity pro-fluid—fluid interactions are governed by a WCA potential,
files are obtained in planar Poiseuille flow simulations ofbut interactions between a fluid atom and a wall atom are
simple fluids confined to channels only 10 molecular diam-governed by the same Lennard-Jones 12-6 potential as used
eters in width® Deviations from classical predictions are in system B. Table | summarizes these differences. To mini-
present, but they appear to be weak; for example, the shefpze the computational effort, we only conduct the system
stress exhibits weak oscillations about the classical lineaf Simulations at=4.0o. The data for the WCA fluid at
profile. At pore widths less than about 10 molecular diam-H=>5.10"is old data reproduced from an earlier publicatfon.
eter, the velocity profiles are no longer quadratit. The remaining data are new.

In this publication we present nonequilibrium molecular
dynamics(NEMD) simulation results for simple fluids un-
dergoing planar Poiseuille flow, building on previous resultsll. NAVIER-STOKES HYDRODYNAMICS

by including the effects of attractive forces and studying theA_ Streaming velocity and boundary conditions

dAuthor to whom correspondence should be addressed. Current address: In classical hydrOdynamlCS’ the streaming or flow veloc-

Department of Chemistry, Imperial College, London SW7 2AY, United ity at a point is Obta_ined by solving the.Nav_ier—Stokes mo-
Kingdom. mentum flow equation. For planar Poiseuille flow at low
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TABLE I. Potentials employed in the three systems simulated. the transport properties, are expected to become significant.
Cuid—fuid Wall—fluid Wall—wall We note that even in wide channels, the dens.,|.ty apd hence
System interactions interactions interactions transport coefficients can depend on the |lagadsition if the

temperature varies strongly with position as a result of vis-
g WL%A WLCJA WEJA cous heating effects. The effect of these variations can be
c WCA LJ WCA incorporated in the Navier—Stokes formalism. The analysis
of Todd and Evaris for example, leads to a viscosity which
varies with the fourth power of, to leading order. To ac-
count for density variations resulting from confinement, Bit-
Reynolds number for a simple fluid confined between twosaniset al2 introduced a nonlocal viscosity which is not a
infinite parallel walls, the steady state continuity equationpoint function ofz, but, rather, a function of the local aver-
(for flow in the x-direction is age density at. The local average density ats obtained by
dIl,, dp averaging the local density over a spherical volume centered
=—— (1) onz with a diameter equal to. They called their method
dz dx the local average density model, or LADM. Application of
wherep is the equilibrium hydrostatic pressuilé,, is thexz ~ LADM requires a knowledge of the shear viscosity of a ho-
element of the viscous part of the pressure tendd=pP  mogeneous fluid as a function of density for a given tem-
—pl), and z is the direction normal to the walls. The perature, and an appropriately course grained density profile.
Navier—Stokes equation for momentum flow is then obtainedJsing LADM, Bitsaniset al calculated velocity profiles for
by substituting the linear constitutive relation appropriate fora number of flow situations corresponding to a fluid confined

an isotropic fluid, by smooth, structureless walls. For planar Poiseuille flow,
they obtained velocity profiles which deviated from the clas-
d
I,,(z)=—7 u(;((z) , (2)  sical quadratic behavior when the pore width was reduced to
z

80 or less. Pozhar—Gubbins thedfit® when used in con-

in Eq. (1). Here 7 is the shear viscosity coefficient angis  juction with a local generalization of E¢2) for the case of

the x-component of the streaming velocity. From Etj.and ~ Poiseuille flow of a WCA fluid in a narrow pore, also pre-
(2) we have dicts nonquadratic velocity profiles, though the deviations

are weal’® It was pointed out by the authors of this paper

2
77d Ux(z) _dp 3) that for pores as narrow as 5 molecular diameters, a possible
dZ dx’ replacement for the linear constitutive relation defined in Eq.

Solving Eq.(3) leads to the general solution, (2) is the nonlocal form,

1 dp 2 2 II (X)Z—fz R ’ ’
—— — a2 xz n(z,2—2")y(z")dZ, (5
Ud2) ==, ax @2, (4) 0
wherea is a constant determined by the boundary conditiondVherey(z) =du,/dz is the local strain rate. It is important to
(the second arbitrary constant vanishes by symmetry note that Eq(5) is still a linear relationship. Nonlinear cor-

To fully specify the streaming velocity, the usual prac- rections would involve the so-called Burnett coefficients.
tice is to assume no-slip boundary conditions, i.e., the tanFauation(5) implies that the stress generated at positios
gental component of the velocity vanishes at the boundary?0t Simply proportional to the strain rate at that point, but
With this assumption, the constaat,appearing in Eq4) is rather depends on the entire strain rate field which exists
equal toH/2. Computer simulation studies of LJ fluids flow- throughout the fluid. For sufficiently wide pores, where den-
ing past walls with molecular structure revealed that the noSity inhomogeneities are weak, the viscous kernal will be
slip condition was essentially corret*® In some cases, it proportional to a Dirac delta function, the constant of pro-
was found that the tangental component of the streamingortionality belr;g the Navier—Stokes shear viscosity. -
velocity extrapolated to zero at a position a few molecular _ Travisetal.” found that for a simple fluid confined in a
diameters inside or outside the fluid. Koplik and BanavarSlit-pore only five molecular diameters wide, the velocity

refer to this phenomenon as “microscopic slip,” though theyprofile contained points of inflexion which imply local strain
note that it is macroscopically insignificatt. rates of zero. Use of E42) would lead to the viscosity being

undefined at such points and lends weight to the use of Eq.
_ _ (5) instead of Eq(2) as the more useful definition of viscos-
B. Local vs nonlocal viscosity ity. The data obtained by Travét al® was from a simulation
In obtaining Eq(4) it has been assumed that the sheardt @ Single pore width using a model of the confined fluid in

viscosity has no dependence preither explicitly or implic- ~ Which no attractive forces were present.
itly through any positional dependence of the state variables,
p andT. It is also assumed that the shear viscosity is inde—C T ‘ heat f dth | ductivit
pendent of the magnitude of the driving force, namely, the™ emperature, heat flux, and thermat conductivity
pressure gradient. In the weak flow limit, the last of these  The equation of change for the specific internal energy
assumptions will be valid but, for high degrees of confine-of a single component fluid composed of structureless, non-
ment, the positional dependence of the state variables, armdacting particles is
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du large. The system they studied is well into the nonlinear
Pgr =" VidoILVU-pV-u, (6)  regime since the local streaming velocity becomes super-
sonic towards the center of their channel. In this regime, one

whereU is the specific internal energy adg is the heat flux  would not expect heat induced strain rate coupling to be the

vector. For planar Poiseuille flow at steady state, B).  sole nonlinear contribution to the hydrodynamic picture, and

becomes other sources could lead to a quadratic term in the tempera-
dJ ture profile.
4z =—11,,(2) y(2). (7) Liem, Brown, and Clarkealso found deviations from

the hydrodynamic temperature profile in their results, ob-

The classical Navier—Stokes equation for heat flow aptained from computer simulations of planar Couette flow.
plicable to planar Poiseuille flow is obtained by substitutingSince there can be no strain rate induced heat flows for ide-
Fourier's Law, alized planar Couette flow, it seems likely that Lietal’s
dT temperature profile differed from the hydrodynamic predic-

(2) . . .

(8)  tion because of viscous heating effects.
dz Mansour et all® also found deviations between their

into Eq. (7), to give measured temperature profiles and those predicted from hy-
drodynamic theory. Their measured profiles were obtained
from planar Poiseuille flow simulations using hard spheres.
Their temperature profiles exhibited some quadratic charac-

where\ is the thermal conductivityassumed to be indepen- - They ascribed this effect to the breakdown of the as-
dent of position andT(2) is the local temperature at position SUMPtion of local thermodynamic equilibrium. By lowering

z Integrating Eq(9) leads to an expression for the tempera-the Knudsen numbeither by increasing the density or in-
ture profile for planar Poiseuille flow creasing the pore widjhthey found that the hydrodynamic

. temperature profile was recovered. When the mean free path
T(2)=To—Taz", (100 of the molecules is large compared to the pore width, local

where T, is the temperature at the midchannel plazie,0 equilibrium is seldom restored in the vicinity of the walls.

andT, is a constant determined by the boundary conditions, ~ Finally, there remains a question mark over the use of a
In very narrow channels, the assumption of constanf€mperature in Eq.11) which is based on the ideal gas ther-

thermal conductivity is expected to be invalid. In wide chan-mometer. Recently, Ayton, Jepps, and Evarfsave indi-
nels, viscous heating may induce local variations in the dencated that a temperature based upon the thermodynamic defi-
sity, which in turn can produce spatial variations in temperaition, (7U/dS)|y (the partial derivative of the internal
ture, and ultimately, in the thermal conductivity. Todd and&nergy with respect to the entropy at constant volymeay
Evand® have discussed the consequences of allowing foP® the appropriate temperature to use in@d). In the weak
these wide channel heat-induced variations upon the Navierflow regime, the ideal gas, or kinetic temperature, should
Stokes equations. Their analysis leads to a thermal condu€ecome equivalent to the thermodynamic temperature.
tivity that varies as the fourth power into leading order.
The temperature profile however, remains quartic. 1. METHOD

Baranyai, Evans, and Daivfsfound that heat flow in a A Simulation details
spatially inhomogeneous fluid could take place even in the

absence of a temperature gradient. Consequently, they pos- 1he NEMD technique used to simulate plzazr;ar Poiseuille
tulated a corrected version of Eg), flow has previously been described in def&if??3and here

) we only briefly outline the way in which the simulations
J (Z):_)\dT(Z) N dy“(2) 1y Vere carried out. In our simulations we apply a constant
Qz dz dz °’ force in thex direction to each particle, which has the same
effect as allowing gravity to initiate the flow of fluid down
the channel. The geometry of the system is shown in Fig. 1.
oth the fluid and the wall atoms interact via a cut and
shifted Lennard-Jones interatomic potential function defined

ol

0 r>rg

JoA2)=—A\

d*T(z2)
N7 W2 ¥(2), 9

which includes the possibility of heat flow arising from

variations in the square of the local strain rate. In the abov
equation,¢ is the strain rate induced cross coupling coeffi-
cient. Substituting Eq(11) into the Navier—Stokes heat flow

Eq. (7) leads to a temperature profile of the form,

T(2)=To+T,22+T,2* (12 _ <
(2)=To+T, 4 ) d(re) r rc, 3

o(r)=

which includes some quadratic character. Todd and Evans
conducted Poiseuille flow simulations at a pore width of69
and found that their temperature profiles indeed contained wherer is the scalar interatomic distanag,is the truncation
quadratic signature, in agreement with E#j2) and in sup- distance, and(r.) is the value of the potential energy at the
port of the correctness of E¢L1). The existence of seems  point of truncation whileo and € are the Lennard-Jones dis-
unquestionable, but whether it can explain the results ofance and energy parameters. In all our simulations the wall
Todd and Evaris is less clear. The value af they obtain  atoms and fluid atoms have the same Lennard-Jones param-
(about 100 in Lennard-Jones reduced yniseems rather eters and the same mass.
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S T =0.75, whereN is the number of fluid atoms and is the
? ® ® volume accessible to the fluid. However the mean density
MWall atoms calculated in the simulations was lower than this. We note
[ v that there is no unique average density of the fluid because
™~ plane of closest approach there is no unambiguous definition for the volume accessible
to the fluid. For the purpose of these simulations, we define
the volumeV=L,L,I,, wherel, is H—o (see Fig. 1
ig The walls of the system were maintained at a constant
temperature off* =Tkg/e=0.722 and a number density of
— ny (=3N})=0.85. Temperature control was achieved by ap-
m periodic image of wall plication of a Gaussian thermosfatWe stress here that the
) thermostat is applied to the wall atoms only. Viscous heat
@ ® generated by the fluid is removed via conduction through the
walls.
FIG. 1. Simulation geometry for planar Poiseuille flow. Fhaxis is normal In all our simulations, we use a value of the applied
to the page. force of 0.1(e/o). This particular value was chosen in line
with earlier work? where 0.1(e/lo) was found to be large
enough to promote measurable fluxes yet low enough to en-
Throughout the remainder of this paper we give allsure that the system response remained linear. The simula-
quantities in terms of Lennard-Jones reduced uuitits de-  tions were started by equilibrating an initially crystalline
fined in terms ofo, € and the particle mass and will be fluid for two million time steps followed by a similar period
denoted by the asterisk notatjon of equilibration with the external field switched on. Produc-
The WCA potential is a special case of the cut andtion runs consisted of 1.6—2410" time steps with a re-
shifted Lennard-Jones potential which is generated by trunduced time step™ = 7(1/o") \'e/m=0.001.
cating the potential at the distance for which it is a minimum,
2Y6y. Because the WCA potential is shifted at the location
of the energy minimum, it is a purely r(_apulsive potential. WeB_ Calculation of hydrodynamic quantities
also consider a Lennard-Jones potential truncated and shifted
atr,=2.50. This potential, which we henceforth refer to as  To calculate the hydrodynamic properties of interest, we
the Lennard-Joned.J) potential, contains both an attractive Used the planes method of calculating the kinetic properties
and a repulsive contribution. (PKP).2>9 Briefly, one divides the simulation cell along the
The system is surrounded by periodic images of itself indirection into a number of equally spaced planes of drea
each of the three Cartesian dimensions. We note here that thely. The number density, kinetic energy density, and mo-
simulation geometry is such that the applied force is inthe mentum density can then be evaluated at the planes positions
direction and the heat flow is in thedirection. We examine Py keeping track of the numbers of particles crossing each
two different pore widthsH =5.10 andH=4.0c. Here,H is plane in a given direction with a given velocity and kinetic
defined as the separation in thelirection between the cen- €nergy. The temperature and streaming velocity at the plane
ters of the first layer of wall atoms adjacent to the fluid. ForPositions can then be evaluated using their hydrodynamic
the H=5.10 simulations we used a total of 360 fluid atoms definitions. The expression for the momentum density at a
bound by 216 wall atoms which were three atomic layersPlane ig°
thick (72 atoms per layer In the H=4.00 simulations we o 1 m¥ ()
used 288 fluid atoms but kept the number of wall atoms the  J,(z) = lim — E .—“('),
same. e TA T o<l < 12t
The_ wall ato_ms were fixe(_j in a fcc_ lattice structure bywhere_x(z) is the average momentum density za{t ,(;,}
harmonic ;eSto””g forc‘?s with a spring cons-tant Sel 106 the timesr at which thez coordinate of particléis equal
150.15(6/0_), together with a holonomic constraint mecha- to z % andZ are thex and z components of velocity of
nism that fixed the center-of-mass of each layer of wall particlei, mits mass 7 is time interval over which we aver-
oms, while allowlng |pd|V|QUaI wal atoms the freedom to age the planes calculations aAds the xy-plane area. The
wprate about thelr Iat_tlce sites. There is only one three—atomr—nean number density at a pladz), is given by a similar
thick wall per simulation cell. The second wall is simply the expression
periodic image of the first wall. This periodicity also ensures
that the total density of the system remains constant. Each

2 =0 plane

(14)

1

layer of wall atoms has a surface densitg =N, n(z)::ifl JZ o<i <+ |zi(tai)] (19
02/(LXLy)=O.615 (whereN,, is the number of wall atoms _ _ _ _
per wall layey, while the layer separation is 1.085For The average streaming velocity at a plane is defined
details of the governing equations of motion and the integratthrough the hydrodynamic expression
ing scheme used to solve them, the reader is referred to Refs. — .

° 34(2)=mn(2)uy(2), (16)

7,22, 23.
The target density for all systems was =No°/V  while the local temperature is defined through
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FIG. 2. Number density profiles for system(#/CA system, filled circles
and system BLJ system, open circl¢gor H* =5.1 (error bars are too small
to display.

FIG. 4. Number density profiles as a functionofor H* =4.0: system A
(WCA system, filled circles system B(LJ system, open circlgsand sys-
tem C (fluid—fluid and solid—solid WCA, fluid—solid LJ, open triangles

walls, as is evident in Fig. 2. The existence of high density
fluid layers close to the walls induces the formation of fluid
layers adjacent to these, which, in turn induce further layer-
ing, the effect becoming weaker with increasing distance
from the walls. The induced layering effect is stronger in
where § is the number of degrees of freedom used up insystem B than in A, a fact attributed to the presence of at-
determining the local streaming velocity. The quantity on thetractive forces in the former. Since the fluid cannot support
left-hand side of Eq(17) is the local peculiar kinetic energy the existence of more than three layers in a slit pore of five
at a plane. Note that thg's appearing in Eq(17) are labo- molecular diameters, induced layering results in an oscilla-
ratory momenta. tory midchannel density profile, but these oscillations are

In all our simulations we use a total of 200 planes torelatively weak. We note that in both cases, the density falls
achieve a high resolution of properties. to zero atz* = +2.25 while the walls are physically located
atz* = = 2.55 a fact which reflects the excluded volume aris-
ing from the finite size of the wall atoms.

The density profiles obtained from th&" =4.0 simula-
tions are shown in Fig. 3. Once again, the system B profile

The number density profiles obtained from the two porenas five maxima present but now, the midchannel peak has
widths are shown in Figs. 2 and 3. Taking first the 5.1 poregecome more intense than the two surrounding peaks. The
width (Fig. 2), we see that system B density profile showssystem A profile has only three maxima, corresponding to
five maxima, whereas system A profile shows four discernthree fluid layers, while the system C profile possesses four
ible peaks and one very weak peak in midchannel. The tWenaxima. A 20% decrease in slit-width has resulted in large
peaks nearest the walls show that the fluid forms layers. Thgifferences between the fluid structure in the three systems,
Strength of the wall-fluid interaction determines the denSityA, B, and C. Once more, we see that the presence of attrac-
of these layers. Attractive wall—fluid interactions result intive wall—fluid forces leads to the formation of boundary
more ordered layeréand hence higher densjtyiear to the  |iquid layers of higher density than is the case for repulsive
wall-fluid interactions. The density of these layers is highest
in system C, where the fluid atoms have a greater affinity for
the wall atoms than they do for each other. The density pro-
files in both systems A and B fall to zero at the location of
the walls, i.e.z* = = 2.0. In the case of system C, the density
profile does not go to zero at the location of the walls indi-

1 N
om 241 [pi—mu(z)]-[pi—mu(z)]

- 272 Tapk,

5 17

IV. RESULTS AND DISCUSSION
A. Density profiles

n*(z)

“o : . cating that the fluid atoms are wetting the walls.

061 : L : In Fig. 4 we show the density profiles in the direction of
oal e s A4 L o ] flow for theH* =4.0 simulations. In obtaining these profiles,
" g [ we have averaged over tlg@ndz variations. We see that the
=T £ 1 fluids are highly structured in all three systems. The density
0.0 A_I;s.g - : i %%;A oscillates with a wavelength of the order af Clearly the

o wall structure has been imposed upon the fluid. This lateral
ordering effect has been seen previously in equilibrium
simulations of confined fluid$The amplitude of the density
oscillations increases with the inclusion of attractive wall-
fluid contributions and is largest for system C.

FIG. 3. Number density profiles for system(®WCA system, filled circles
system B(LJ system, open circl¢sand system Gfluid—fluid and solid—
solid WCA, fluid—solid LJ, open trianglg$or H* =4.0 (error bars are too
small to display.
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0.15 ' - , v ~ - The nonzero value of the velocity profiles at the wall
\ v locations has been interpreted by Koplik and BanHvas
microscopic slip. At the pore widths we have studied, the
pore volume cannot be expressed without ambiguity. The
excluded volume of implicit wall atoms becomes increas-
ingly significant as the pore width decreases. If the pore
width is defined by the plane of closest approach to the wall
atoms then the velocity profiles appear to extrapolate to zero
atthis point (at least within the statistical uncertainties of our
datg. With this interpretation, our results could be taken to
imply that slip does not occur. More precise data is needed to
qualify this.
FIG. 5. Streaming velocity data fé1* =5.1 together with curves obtained The location of the no-slip plqne_s Seems to be mdep_en—
from fitting Eq. (18) to the velocity data. Only the data lying inside the dent of the nature of the wall—fluid interaction and also in-
no-slip planes is shown; system(WCA system, filled circlesand system  dependent of whether the wall-fluid and fluid—fluid interac-
B (LJ system, open circlgs tions are the same. Furthermore, it appears to be independent
of pore width, being located 0.5 molecular diameters away
from the walls in all cases.

Following Traviset al.® we have tried a functional fit to

The streaming velocity profiles obtained from th our streaming velocity data that retains the Navier—Stokes
=5.1 simulations are shown in Fig. 5. The profiles for bothsolution with the addition of a truncated Fourier cosine se-
systems A and B are of similar shape. Neither profile isries, to account for the deviations from classical behavior.
qguadratic; however, they possess an underlying quadrati€his latter contribution is justified on the grounds that for a
signature with superimposed oscillations. The two velocityfully periodic system, the local streaming velocity will be a
profiles differ in magnitude, possibly a result of their differ- periodic function of thez coordinate. Thus, the velocity is
ence in fluid temperaturésee Figs. 13 and 14The side fitted to
lobes on the system B profile are also more pronounced than Nimax 2m(n—1)z
for system A, and the profile is flatter towards the center o (7)—a +a,722+ > a, cos{ —
the pore. The velocity, in both cases, extrapolates to zero at n=2 H

* H —
z= ﬂ_.uz_o Wh'lﬁ the v;:alls are chatedl af,_ i2.f5_|5. ‘ h wheren is an integerH* ¢ is the effective pore width and
Figure 6 shows the streaming velocity profiles from t €the quantitiesy. ..a, are undetermined constants. We define

. . X . .
H*=4.0 simulations. All profiles deviate from the con- o effective pore width to be twice the value of the no-slip
tinuum quadratic form. In the system B case, there are fou lane location. For the two pore widths we studiét®

clear maxima present, while for systems A and C, only thre 2 4.0 andH* =5.1. H** turns out to be 3 and 4 resp,)ec-

are discernible. While all three_ VSlocity profiles extrapolatetively' We find that 8 terms are needed to adequately repre-
to zero at roughly the same poirt(= £ 1.5), the cuvature  gonithei* — 5 1 data. FoH* =4.0, 9 terms are required to
of the profiles close to the point of zero velocity is different. fit the systemC velocity profile, 8 terms are needed for the

The system A vc_alocityllprofile is closest in form to that pre- gy stom B data, and only 6 terms are required to describe the
dicted by Bitsanist al.** for the same pore width, although system A profile. Figures 5-6 show the velocity data from

the side lobes on our simulateq profile are much more Proy* — 4.0 and 5.1 simulations together with the least squares
nounced than their theory predicts. fit curves obtained from fitting the data to H4.8). Equation
(18) provides a reasonable fit to the profiles, but it tends to
lead to incorrect behavior close to the no-slip plane.

0.10

u *(z)

0.05

0.00 &

B. Flow velocity profiles

, (18

C. Strain rate profiles

The scalar strain rate is defined as the nonvanishing
component of the strain rate tens®u, which, for planar
Poiseuille flow is

y(2)= dudz) : (19)

dz
from which it follows that the classical Navier—Stokes strain
rate profile will be a linear function of the coordinatenor-
mal to the confining walls. Since our simulated streaming
FIG. 6. Streaming velocity data fd#* = 4.0 together with curves obtained ve|ocity data deviate from classical behavior, we do not ob-

from fitting Eq. (18) to the velocity data. Only the data lying inside the tain linear strain rate profiles Based on the function used to
no-slip planes is shown: system M/CA system, filled circles system B ’

(LJ system, open circlgsand system Gfluid—fluid and solid—solid wca, ~ fit our str.eaming 'velocity data, E¢18), we can calculate a
fluid—solid LJ, open trianglés nonclassical strain rate curve from

u *(z)
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0.3 ' ‘ - v v ' , superimposed oscillations. However, unlike the wider pore
width example, the oscillations in these profiles are out of
phase. This fact is a consequence of the number of terms
used to fit the streaming velocity profiles for the three sys-
tems. The most important feature of Fig. 8 is the number of
zeros present in the three profiles. In the case of the system A
and B profiles, there are nine points at which the strain rate
becomes zero, while for the system C profile, there are just
seven such points. This difference however, is unlikely to be
real; the system C profile has the wrong behavior in the
O T T s e s s, vicinity of the no slip plandit does not extrapolate to zero
' z* which is an artifact stemming from the poor fit of EG8) to
FIG. 7. Strain rate profiles foH* =5.1: system A(WCA system, filled the system C velocity profile close to the no-slip plane. The
circles and system B(LJ system, open circlgsThese profiles were ob- presence of zeros in the strain rate profiles implies that use of
tgiped from Eq._(20) usjng the least squares fit coefficients obtained from E(. (2) would give rise to an unphysical shear viscosity con-
fitting the velocity profiles. taining singularities.

0.2 |

0.1

0.0 B

¥¥(z)

-0.1

02+

r max [2@w(n—1)z
Y(2)=2a,y— "EE n§=:2 ap(n—1)sin e |- (200 D. stress profiles

: . : . o The local stresslI,,(z) may be calculated via two dif-
This method is to be preferred over numerical differentiation erent methods; the so-called method of pldrasby direct

of the streaming velocity data, since the latter method yieldé . . . )
profiles which contain too much statistical noise. integration of the hydrodynamic equation of motion. The

The strain rate profiles obtained from E@0) for the former of these two methods yields an exact statistical me-

H* = 5.1 simulations are shown in Fig. 7. We have trunca,{eq(:hamcal expression for the pressure tensor evaluated at a

the strain rate fits at the location of the no-slip interfaceplane' The second method is a mesoscopic method since it

. . . 7
(z* = +2.0). From the figure we see that both the system Adoes not require any molecular information. Todtlal.

and system B strain rate profiles display significant osciIIa-C.Ompared both of these methods in their simulations of a

tions about an underlying linear trend. While the underlyingS'mple fluid undergoing planar Poiseuille flow and found that

slopes of the two strain rate profiles are slightly different,tT]eoOrsn(_)etsr?esr(;(;('gr(:a gi‘gg?hi:'gggg mseliﬁgg(;(r)ri:gatl:t?ﬁ \3/](;
they have the same qualitative features. The period an ' 9

- . stress in our simulations.
wavelength of the oscillations are approximately the same: . .
9 PP y The mesoscopic expression for the stresdl(,) fol-

The fact that the two profiles differ in slope is a direct con- f int i
sequence of the temperature difference between the WCJQWS rom integrating
and LJ fluids; the higher temperature of the former gives rise  dII,,

to a steeper velocity profile and hence greater strain rate. For gz — nFe, (21
this particular pore width there is remarkably little difference ) ) ) ]
in the two strain rate profiles. whereF, is the external force which drives the flow ands

The strain rate profiles obtained from EQO) for the the fluid number density. This equation is equivalent to Eq.
H*=4.0 simulations are shown in Fig. 8. As for th* (1) if an external force drives the flow rather than a pressure

=5.1 case, all profiles have an underlying linear trend withdradient, giving

I,(2)=Fe J:n<z'>dz'+c, 22)

0.20 T T T T

where C is a constant of integration whose value is deter-
mined by the fact that the stress is zero at the center of the
channel.

One can also calculate the stress exerted by the fluid on
the walls. From the definition of the pressure ten&yr,

Y¥(z)

dF=-P-dA (23
we can write
walls
_qywalls__Z2
=1L, (24

FIG. 8. Strain rate profiles foH* =4.0: system A(WCA system, filed  whereFY'@" is the total intermolecular force exerted on the

circles, system B(LJ system, open circlgsand system Gfluid—fluid and : : : :
solid—solid WCA, fluid—solid LJ, open trianglesThese profiles were ob- layer of wall atoms in direct contact with the fiuid by the

tained from Eq.(20) using the least squares fit coefficients obtained from flUid atom_s. E_quatior(22_) ShOWS_ that the ?tress profile for
fitting the velocity profiles. planar Poiseuille flow will be a linear function of tlzecoor-
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FIG. 9. Stress profiles fdi* =5.1: system AWCA system, filled circles FIG. 11. Heat flux profiles foH* =5.1: system A(WCA system, filled

and system BLJ system, open circlésThese profiles were obtained from circles, system B(LJ system, open circlgsThese profiles were obtained

numerically integrating the density profiles using the trapezoidal rule. from numerically integrating the product of the stress and strain rates using
the trapezoidal rule.

dinate if the density is constant across the channel. In ouno-slip plane. The value of the stress at this point is equal to
simulations the density is nonuniform, yielding a nonlinearthe stress at the walls calculated independently via(Z4).
stress profile.

In Figs. 9 and 10 we show the stress prof_iles for the WOz Heat flux and temperature profiles
pore widthsH* =5.1 andH* =4.0. These profiles were ob-
tained through numerical integratiofusing the trapezium The heat flux across the channel may be calculated via a
rule) of the density data. The profiles are displayed for on|ymesoscopic route similar to the method used for calculating
the left side of the channel. From Fig. 9 we see that both th&he nonequilibrium stress, or via a method of plafdsP)
system A and system B profiles deviate only a little from the€xpression. The MoP route to the heat ffiatilizes an exact
classical linear form. The stress levels out at roughly theStatistical mechanical expression fiy. However, as Travis
location of the no-slip planezt = —2). There is good agree- and co-workers point ottthe MoP expression faly, relies
ment between the two stress profiles across the entire ran@® ana priori knowledge of the instantaneous streaming
except for one or two points very close to the walls. velocity, which is not known accurately in the simulation. A

In Fig. 10 we see that the deviations in the three stresBOOr guess for the streaming velocity can lead to an incorrect
profiles from linearity are more significant than was the casdeat flux profile being measured. In this work we therefore
for H* =5.1. The oscillations are typically of longer wave- choose a mesoscopic route to the heat flux. Integration of Eq.
length. The stress profiles for system A and B are very simi{7) yields
lar, while the system C profile differs markedly across the
entire range of from these two. The different nature of the
wall-fluid and fluid—fluid interactions in the system C case
has a significant effect on the fluid stress. By contrast, a lackvhere C is an arbitrary constant determined from the fact
of attractive interactions in the system A fluid give rise to athat the heat flux is zero &* =0. Inspection of Eq(25)
weak effect on the fluid stress. As for thE =5.1 case, the reveals that the classical heat flux profile should be a cubic
stress profiles level out at approximately the location of thepolynomial inz

The heat flux profiles obtained from th&* =5.1 simu-
lations for system A and B are shown in Fig. 11. We see that
both profiles clearly deviate from the classical solution. Sys-
tem A and B profiles have the same qualitative features but
the latter heat flux extrapolates to a greater magnitude at the
no-slip interface ¢* = —2.0).

The heat flux profiles obtained from th&* =4.0 simu-
lations for systems A, B, and C are shown in Fig. 12. All
three profiles display significant deviations from the classical
result. Qualitatively, all profiles show similar features but
they differ in the amplitude and wavelength of the oscillation
centered around* = —1.0. The magnitude of the system A
heat flux is greater at the no-slip interfacg & —1.5) than
either the system B or system C heat fluxes.

G 10, St fles f6* — 4.0: system AWCA system, filed circles The temperature across the channel in each of our simu-
syst.em.B(LrJessSygtrgrrI\,ezpen circi¢,§§xz esr;/]stem Qfljiyds—?lrlz]i’d Ia(r?ld Cslgclig— lations is CaICUIaFed from_Ec[l?). In Fig. 13 is _ShOWfl the
solid WCA, fluid—solid LJ, open trianglesThese profiles were obtained t€Mperature profiles obtained from th =5.1 simulations
from numerically integrating the density profiles using the trapezoidal ruletogether with the curves representing the least squares fit of

Jodz)=— f:nxz<z'>y<z')dz'+c, (25

sz*(z)
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FIG. 12. Heat flux profiles foH* =4.0: system A(WCA system, filled
circles, system B(LJ system, open circlgsand system Gfluid—fluid and
solid—solid WCA, fluid—solid LJ, open trianglesThese profiles were ob-
tained from numerically integrating the product of the stress and strain rate
using the trapezoidal rule.

FIG. 14. Temperature profiles fét* =4.0: system AWCA system, filled
circles, system B(LJ system, open circlgsand system Gfluid—fluid and
solid—solid WCA, fluid—solid LJ, open trianglesThe solid lines are the
Feast squares fit curves of EQLO) to the temperature data. Symbols are
displayed for every second data point to maintain clarity.

Eqg. (10) to the data. Both profiles are almost linear and fea-
tureless. In the case of the system B results, the temperatuFe
rises slightly in the pore compared to the wall temperature In Sec. IV C the point was made that the strain rate pro-
(T =0.749 whileT},=0.722. The system A case is rather files contained zeros. By symmetry, the strain rate must be
different. Here, T =0.951, which implies a very large dif- zero at the center of the channel and hence the Navier—
ference between the wall and fluid temperatures. Looking abtokes shear viscosity is undefined at this point. However,
Fig. 14, we see much the same situatiolat=4.0. There is the presence of zeros elsewhere in the strain rate profile im-
only a small difference between the system B and system @lies that Eq.(2) is incorrect in general.
temperature profiles but a very large difference between In Figs. 15 and 16 we show the local shear viscosity for
them and the system A profile. the two different pore widthsH* =5.1 andH* =4.0. The

Lack of attractive interactions between the wall and fluidshear viscosity in these plots was calculated using(Bq.
atoms gives rise to a very poor thermal coupling between the n

: - x2(Z)

wall and fluid momenta. The system A case is clearly un-  5(z)= ——= =, (26)
physical in that very large temperature gradients are present ¥(2)
in the region close to the walls. It is this higher temperature  |n all cases, the shear viscosity profile displays disconti-
that is responsible for the higher flow velocity exhibited by nuities resulting from zeros in the strain rate profiles. To
system A. It should be noted that this large temperature jumprocede any further with the analysis, one could take spatial
is not unique to these simulations, and is therefore not #&ourier transforms of the stress and strain rate profiles, then

function of the high degree of confinement; similar temperaevaluate the wave vector dependent viscosity via
ture jumps can be seen in pores of widths69

Within the accuracy of our temperature data we find no ﬁxz(kz)= —7(k,)y(Ky,) 27

evidence of a quadratic term, which might be expected o ich follows from taking the 1D spatial Fourier transform

the basis of either strain rate co.upllng_ .or.from a possmleof Eq. (5) (denoted by a tilde An effective Navier—Stokes

breakdown of local thermodynamic equilibrium. shear viscosity would then be obtained by taking the zero
wave vector limit of7(k,). We tried such an analysis on our

Viscosity and thermal conductivity

1.00 T T T T

20 T

T*(z)

n*z)

FIG. 13. Temperature profiles fét* =5.1: system AWCA system, filled 7%

circles and system BLJ system, open circlésThe solid lines are the least

squares fit curves of E@10) to the temperature data. Symbols are displayed FIG. 15. Shear viscosity foH* =5.1: system A(WCA system, filled
for every second data point to maintain clarity. circles and system BLJ system, open circlés
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FIG. 16. Shear viscosity foH* =4.0: system A(WCA system, filled
circles, system B(LJ system, open circlgsand system Gfluid—fluid and
solid—solid WCA, fluid—solid LJ, open triangles

FIG. 18. Thermal conductivity profiles fdd* =4.0: system AWCA sys-
tem, filled circle$, system B(LJ system, open circlgsand system Qfluid—
fluid and solid—solid WCA, fluid—solid LJ, open triangles

data but were unable to obtain meaningful and consisterfiatio of heat flux to temperature gradient near to the point
wave vector dependent viscosities. We do not have a higiwhere both quantities become close to zero.

enough spatial resolution in our profiles to enable accurate Within the statistical uncertainties of our data there is
discrete Fourier transforms to be calculated. little evidence to suggest that Fourier's Law, E8), must be

Our results suggest that the simple linear constitutivgeplaced by a nonlocal generalization, analogous to the case
relation Eq.(2) should be replaced by a more general rela-of viscosity and Newton’s Law.
tionship such as Ed5) in cases where the strain rate varies
on a microscopic scale, such as is the case for highly cony, SUMMARY
fined fluids under flow.

We evaluate the thermal conductivities using E®)
with the gradient in temperature obtained from differentiat- _ . . .
ing Eq.(10). Figures 17 and 18 show the thermal conductiv-Ent pore W'dthsl_" =5.1 andH*=4.0. Three d|ﬁer§nt Sys-
ity profiles forH* =5.1 andH* = 4.0, respectively. Only the tems were studied. In one case, the WCA pptenUaI governs
data inside the no-slip planes is shown. In Fig. 17, the L Jnteractions between all pairs O.f atoms  irrespective of
thermal conductivity exhibits two oscillations; one centered/N€ther they are wall atoms or fluid atoms. In another case,

at z*=—15 and a larger amplitude oscillation centered atve used a Lennard-Jones potential, truncated and shifted at

7 =—0.4. The WCA thermal conductivity also displays os- 2.50, to model interactions between all pairs of atoms. Fi-

cillations, albeit weaker in amplitude, but in-phase with nal!y, we con5|_dered the case _where a WCA potential de-
those of the LJ profile. In addition, the WCA thermal con- scribed interactions between pairs of wall atoms and between

ductivity profile displays a peak arourat = —0.1 pairs of fluid atoms but with a Lennard-Jones potential to
In Fig. 18, we show the thermal conductiv.ity} profiles for govern interactions between the wall and fluid atoms. These

H* =4.0. All three profiles exhibit oscillations in their ther- t7e€ fluid systems were studied so that we could examine
the effects of attractive interactions on the hydrodynamic

mal conductivity profiles. Once more, the oscillations are ; - .
weakest in amplitude for the WCA case. Al three prOfiIeSpropertles. In addition, we wanted to see how the simulated

exhibit sharp increases at aroumti=—0.25. These sharp properties differed from continuum hydrodynamic predic-

increases stem from the large uncertainty in calculating thdons as the pore width became.mo.r.e narrow, such that ex-
cluded volume effects became significant.

At a pore width of five molecular diameters, the pres-
ence of attractive forces has a significant, but not large, effect
. on the density profile. The number of fluid layers formed is
the same for the WCA and Lennard-Jones systems though
the intensity of the midchannel density peak is greater in the
latter system. It may seem surprising that the presence of
attractive forces does not produce a more significant effect
on the density profile close to the walls. However, the fluid—
wall interactions are not very strong in our model. We stress
that this wall model was used for convenience, and not as an
attempt to closely model a particular real porous system.
‘ When the pore width is lowered to four molecular diam-
2 -1.5 -1 -0.5 0 eters, more significant differences are seen between these
z* two systems. The number of fluid layers formed is greater for
FIG. 17. Thermal conductivity profiles fai* =5.1: system AWCA sys-  the Lennard-Jones system than for the WCA system. This is
tem, filled circle$ and system BLJ system, open circles a direct consequence of the greater excluded volume present

We have carried out NEMD simulations of simple fluids
undergoing planar Poiseuille flow in a slit pore at two differ-

2.5

A(z)

0.0 L L
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in the WCA system resulting from the absence of attractivaeproduced in our results, although only in cases where there
forces. For system C, when the wall-fluid interactions are LJs no attractive component to the wall—fluid interction en-
but the fluid—fluid interactions are WCA, four fluid layers ergy. Lack of an attractive tail in this potential gives rise to
are present, but the two midchannel layers are quite diffusgpoor thermal coupling between the fluid and the wall. The
Again, this effect can be understood in terms of excludedhermal conductivity was calculated using Fourier’'s Law and
volume and molecular packing effects. was found to exhibit oscillations across the pore. These os-
We find that the streaming velocity profiles in all our cillations originate from oscillations in the heat flux profile.
simulations deviate from the continuum quadratic solutionWe find no evidence for singularities in the thermal conduc-
Our results provide conclusive evidence that the Navier-tivity, unlike the case for shear viscosity.
Stokes equations break down for pore widths lower than five  In summary then, our results confirm the breakdown of
molecular diameters. This breakdown, being gradoatil-  Navier—Stokes equations for fluids contained within con-
lations occur about an underlying continuum solutjsug-  fined spaces of the order of five or fewer molecular diam-
gests that it might be possible to extend hydrodynamics int@ters. The observed break down occurs in a gradual way and
the low wavelength regime. The origin of the departure frommay provide the basis for an attempt to extend hydrodynam-
the classical Navier—Stokes profiles stems from the use of &s to lower wave vector regimes.
local version of Newton’s Law of viscosity, which is invalid
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