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PRACTICAL INFORMATION

This set of problems is the obligatory part of the course FYS4620 Introduction to plasma physics
lectured at the University of Oslo in H2017 semester. It contributes 15% to the final grade.
It is strongly encouraged that you work on the problems with your fellow students or even as
the whole group. However, each student has to write and submit his/her own report.

• You have 3 weeks for solving this set of problems.

• You have to submit your report is by sending it to the following email: w.j.miloch@fys.uio.no
(it can also be a scan).

• If you prefer, you can also write by hand and draw plots and figures by hand.

• You are encouraged to use literature (sometimes you will neet to find typical parameters
for plasmas of interests), but remember to provide references to the sources.

• The deadline for submission is 6 November at 23:59 hours.

PROBLEM 1

Consider a cylindrical coordinate system, (r, y), where the y-axis is the symmetry axis. At
the positions y =−a and y = a we have two parallel metal plates. The system is embedded
in an inhomogeneous magnetic field, where we can assume, as an approximation, that all
magnetic field lines emerge from a point (r, y) = (0,−A), where A À a, see also Fig. 1. Note
that by this assumption, we are not implying that there is spherical symmetry: the intensity
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Figure 1: Illustration of the direction of the model magnetic field, and positions of conduct-
ing plates. The directions of the magnetic field lines are shown by dashed lines
and arrows. The y-axis for the cylindrical symmetry is here vertical, and the r -axis
horizontal.

of the magnetic field lines vary with direction, as explained in the following. In the plane
perpendicular to the y-axis at the position y = 0 we assume to have the y-component of the
magnetic field B0 independent of the radial position r .

(a) Make a sketch of the magnetic field vectors along the line y = 0. Why is the proposed
magnetic field only possible as an approximation? Hint: we have generally ∇·B = 0.

(b) Note that we do not assume the system to be in a vacuum: there is a spatially distributed
current system which maintains the magnetic field. Determine the spatially distributed
current system, which gives rise to the postulated magnetic field.

(c) Demonstrate that with the given assumptions, see in particular also Fig. 1, we have the
magnetic field component By independent of r everywhere.

(d) Determine By , ∂By /∂y , and the radial magnetic field component Br as a function of r as
well as y between the plates. Give the exact expression, and present also a series expansion,
accurate to first order in y/A.

A charged particle with mass M , charge q and velocity U0 ⊥ ŷ is gyrating around the mag-
netic field lines at the origin, (r, y) = (0,0), with its gyro-center moving along the y-axis.

(e) Determine the particle gyro radius rL and its magnetic moment.
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(f) Because of the magnetic field inhomogeneity, the particle is subject to a force. Determine
this force in magnitude as well as direction, assuming rL to be small. Express the force in
terms of ∂By /∂y .

This force is now neutralized at y = 0 by charging the metal plates with positive and negative
surface charges, ±σ, respectively.

(g) How strong do you need the electric field to be, and what is the surface charge σ needed
to achieve this field?

In a short time interval, the particle is now given a small velocity component U|| ¿U0 along
the magnetic field.

(h) How is the motion of the particle’s gyrocenter, if we can assume that ∂By /∂y = const?

(i) Describe the motion of the gyrocenter, when you for ∂By /∂y use the series expansion from
question (d). It is assumed that U|| is so small that the particle does not reach any of the
conducting plates within time scales of interest.

PROBLEM 2

Write the expression for the critical pitch angle separating confined and free particles for a
magnetic mirror in terms of the minimum and maximum magnetic fields between the two
mirrors.
Approximate the Earth’s magnetic field by a simple dipole field. To quantify the confinement
of charged particles by the radiation belts of the Earth, plot the variation of the critical pitch
angle for varying altitude at the Earth’s magnetic equator starting at 3 Earth radii, assuming
that in all cases the relevant maximum magnetic field is the one obtained over the magnetic
pole at one Earth radius. Make a plot of the result.

PROBLEM 3

Consider the following partial differential equations and give for each of them the correspond-
ing dispersion relation ω=ω(k).

1. α2 d 2

d t 2Ψ+B 2Ψ=β2 d 2

d x2Ψ

2. α2 d 2

d t 2Ψ+B 2Ψ=β2 d 3

d x3Ψ

3. α2 d 2

d t 2Ψ+B 2Ψ=β2 d 4

d x4Ψ

4. α d
d tΨ−C d

d xΨ=β d 3

d x3Ψ

5. α d
d tΨ−C d

d xΨ
2 =β d 3

d x3Ψ
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Describe the procedure and assumption in obtaining the dispersion relation. Make a sketch of
the dispersion relations on ω−k diagrams. Be careful with the signs of α and β. What can you
say about the phase velocity and group velocity for each case?
The examples above are written for one spatial dimension. Try to write cases 1,2, 5 and 6 for a
fully three dimensional case using the ∇-operator.

PROBLEM 4

(a) Write the general MHD-expression for the space-time varying magnetic field for a given
plasma velocity field, assuming finite conductivity. Which term can be ignored in ideal
MHD?

(b) An observer finds that in a large volume of space the magnetic field has a constant direction
(the z-direction) and varies linearly with time as B = B0(1+t/τ) for t > 0, where τ is constant.
Assuming ideal MHD, give a velocity field that is consistent with this observation. Is the
velocity field uniquely determined?

(c) What is the requirement for a velocity field being incompressible? Is this criterion fulfilled
for the present problem?

PROBLEM 5

A spacecraft in plasma will be charged by electrons and ions and will be shielded by plasma
particles where the characteristic shielding length can be related to the Debye length λD .
Assume that the spacecraft size is much larger than the Debye length. Then we can use
the so-called thin-sheath approximation. In the limiting case we can neglect the edge
effects, and can consider a spacecraft as an infinite plate. The electrons are much more
mobile, and the spacecraft will initially acquire negative charge and a negative potential
with respect to plasma.

(a) Write general expressions for electron and ion currents to the surface.

(b) Find the electron current to the surface for electrons, assuming that they are Boltz-
mann distributed.

(c) Find the ion current to the surface for ions with the mean velocity determined by the

thermal velocity of ions vth =
√

kTi
mi

.

(d) When the spacecraft is negative, less electrons will reach the surface, and at some
potential, which is called floating potential, the ion and electron currents will be
balanced Determine floatnig potential of the spacecraft for stationary conditions, i.e.,
when the net current to the surface is zero. Discuss what this potential depends on.

Let us now take also into consideration charing due to photoemission. Use literature to
find the expression for the photoelectric current, and determine the photoelectric current
to the surface. How does this modify the potential of the spacecraft? (again by considering
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Figure 2: Schematics of ion trajectories in the model. bc is the impact parameter, and a is the
radius of the object and the poetnial of the object isΦd .

the vanishing net current to the surface). Take some typical parameters for the Low-Earth-
Orbit, and provide an estimate of the spacecraft potential in such an orbit. Discuss your
results. Discuss also how a charged spacecraft will affect the plasma in its vicinity.
Finally, let us take another limit and assume that the spacecraft is much smaller than
the Debye length. For simplicity we can now approximate it by a sphere. We can further
assume that every ion that enters the spherical sheath around the spacecraft will be
neutralised at the surface and contribute to the current, see Fig. 2. Ions with initial velocity
vi ,0 will have conserved energy and angular momentum, as shown in the figure.

(a) Calculate the impact parameter for the incoming ions bc and find the collection cross
section σc =πb2

c .

(b) Find the infinitesimal ion current to the surface d Ii .

(c) Assume Maxwellian distribution for ions f (vi ) = 4πv2
i

(
mi

2πkTi

)3/2
exp

(
−mi v2

i
2kTi

)
, with∫ ∞

0 f (vi )d vi = 1, and find the total ion current to the surface. Note that the integral

should be from 0 to ∞ and that
∫ ∞

0 xne−ax2
d x = k !

2ak+1 for odd n = 2k +1.

(d) Assume Boltzmann-distributed electrons and show that the expression for floating

potential in this case can be given with: 1− eΦ f

kTi
=

√
mi Te
me Ti

ne
ni

exp
(

eΦ f

kTe

)
. Show that in the

limiting case of isothermal hydrogen plasma, floating potential will reach the Spitzer
valueΦ f =−2.5kTe /e. This value is typical for small objects in astrophysical plasmas.
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