- **2.2** Consider two transparent media of indices of refraction m_1 and m_2 , separated by an interface of arbitrary shape. Prove Theorem III by using *Snell's Law* to show that for a bundle of beams passing through the interface, the intensity I_1 within the bundle in medium 1 is related to the intensity I_2 in medium 2 within the refracted beam through $I_1/m_1^2 = I_2/m_2^2$.
- **2.3** A Lambertian disk of radius a emits a quasi-isotropic intensity \mathcal{I} . Show that the outward flux at a point lying on the axis of the disk a distance z from the center of the disk is given by

$$F(z) = \pi \mathcal{I} \frac{a^2}{(a^2 + z^2)}.$$