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Exercise 10 in FYS381 Biological Physics
—————————————————————————–

Problem 1: Transport of ions through cell membranes

The cell membrane is relatively impermeable to ions. The reason is that the interior of the
cell membrane, which mainly consists of the hydrocarbon tails of lipid molecules, is non-polar.
Thus it has a low dielectric constant, εm ≈ 2 ε0. The surrounding water is, however, highly
polarizable and has a large dielectric constant, εw ≈ 80 ε0.

For an ion to cross the water-membrane interface it must be wrenched away from the water
dipoles. To determine the work needed to jump the interface we can compare the electric self
energy for an ion in water with the self energy of an ion inside the membrane.

a) Calculate the difference in electric self-energies for a potassium ion (K+) with a radius r =
0.133 nm. [Hint: You can use the self-energy formula, Eself = q2/(8πεr), for a spherical
charge which we derived in the lectures.]

b) What is the relative concentration of potassium ions inside the membrane compared to in the
surrounding water?

Problem 2: The Poisson-Boltzmann equation in one spatial dimension

In the lectures we derived the Poisson-Boltzmann equation in one spatial dimension. This
equation describes the distribution of monovalent positive counterions (c(x)) and the potential
(V (x)) around a two-dimensional negatively charged macroion. The equation we derived was:

d2V

dx2
= −ec0

εw
e−eV/kBT (1)

Here c0 is the (so far unknown) concentration of counterions at the macroion surface defined to
be at x = 0, and εw is the dielectric constant of water ( 80ε0).

In this problem we will go through the mathematical solution of this equation in more detail.

a) Show that by introducing the dimensionless potential V̄ (x) ≡ eV (x)/kBT , the Poisson-
Boltzmann equation in Eq. (1) can be rewritten as

d2V̄

dx2
= −4πlBc0 e

−V̄ , (2)
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where the Bjerrum length lB is defined via

lB ≡
e2

4πεwkBT
. (3)

b) This equation is non-linear (because the exponential function is non-linear), and for such
equations a nice analytical solution is typically hard to find. But here luck is on our side.

Show that the function
V̄ (x) = B ln(1 + (x/x0)) (4)

is a solution to Eq. (2) provided

B = 2 and x0 =
1√

2πlBc0

. (5)

c) We have not yet found a unique solution since the parameter c0 is still undetermined. To
specify the unique solution we must use boundary conditions. These boundary conditions are

1. The surface form of the Gauss law taken from electromagnetism reads

ε|surface = − dV

dx

∣∣∣∣
surface

= −σq
εw

(6)

where ε is the electric field in the x-direction, and -σq is the (negative) uniform charge
density at the surface (charge per area).

2. The analogous condition at infinity (x→∞) is

− dV

dx

∣∣∣∣
∞

= 0 (7)

because no charge is located there.

In addition we choose the convention that

V (0) = 0 . (8)

Note that the trial function in Eq. (4) already fulfills the chosen convention in Eq. (8).

I. Show that the boundary condition in Eq. (6) in term of the dimensionless potential V̄ can be
written as

dV̄

dx

∣∣∣∣
surface

= 4πlB
σq
e

. (9)

II. Show that this boundary condition imposes the requirement

c0 = 2πlB

(σq
e

)2

(10)
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and that x0 is thus determined to be

x0 =
e

2πlBσq
. (11)

III. Show that the boundary condition in Eq. (7) is fulfilled.

d) Find the concentration profile c(x). Calculate the the total density of counterions (total
number of counterions per surface area),∫ ∞

0

c(x) dx , (12)

and verify that the whole system is electrically neutral.

e) What would the electrical force on a test particle with charge Q put into this counterion layer
be?

Problem 3: Effect of hydrogen bonds on water (problem 7.6 in Nelson)

In the lectures we learned that the average number of H-bonds between a molecule of liquid
water and its neighbors is about 3.5. Assume that these bonds are the major interaction holding
liquid water together and that each H-bond lowers the energy by about 9kBTr. Using these
ideas, find a numerical estimate for the heat of vaporization of water, Qvap. Note that Qvap is
the energy per unit volume we must add to liquid water (just below the boiling point) to convert
it completely to steam (just above its boiling point). That is, the heat of vaporization is the
energy needed to separate every molecule from every other one.
Compare your estimate with the experimental value Qvap = 2.3 · 106 J/kg.


