

The main elements that compose the human body are shown from most abundant (by mass, not by fraction of atoms) to least abundant.

Polar - hydrophilic - water soluble

HYDROPHILIC MOLECULES

Substances that dissolve readily in water are termed hydrophilic. They include ions and polar molecules that attract water molecules through electrical charge effects. Water molecules surround each ion or polar molecule and carry it into solution.

Ionic substances such as sodium chloride dissolve because water molecules are attracted to the positive $\left(\mathrm{Na}^{+}\right)$or negative (Cl-) charge of each ion.

Polar substances such as urea dissolve because their molecules form hydrogen bonds with the surrounding water molecules.

Hydrophobe \& amphiphile

(B)

Some tydrophobic molecules

berzene

(b)

Important molecules

- Important nitrogenous bases: Adenine, Thymine, Guanine, Cytesine, Uracil
- Nucleic acids
- DNA (DeoxyriboNucleic Acid): base pairs T-A, C-G
- RNA (RiboNucleic Acid): single strands of G,U,A,C
- Nucleotide = (nitrogenous) base + sugar + phosphate

- Adenine (base) + ribose (sugar) = Adenosine
- ATP (Adenosine TriPhosphate)
- ADP (Adenosine DiPhosphate)

Important molecules

- fatty acids -> phospholipid -> membranes

Unsaturated Fatty Acid

Water

- amino acids -> polypeptides - proteins

Amino: NH2, Acid: OOH

Peptides: 2-50 amino acids Proteins: >50 amino acids

Molecule databases

- https://www.rcsb.org protein data bank
- 1aoi
- 1tau
- 1mbn
- Proteins are folded
- info on different scales
- https://www.ucalgary.ca/tieleman/
- atomify

Cells - fundamental functional units of life

- enclosed by plasma membrane
- interior «soup» called cytoplasm
- organized in organelles = specialized compartments surrounded by membrane

- nucleus: contains the genetic information necessary for cell growth and reproduction
- mitochondria: responsible for the energy transactions necessary for cell survival
- lysosomes: digest unwanted materials within the cell
- endoplasmic reticulum \& Golgi apparatus: organization of the cell by synthesizing selected molecules and then processing, sorting, and directing them to their proper locations

Plasma membrane

Cytosceleton

- actin filaments (7 nm \varnothing)
- microtubules (25 nm \varnothing)
- intermediate filaments (10 Ø)
(E)

- ATP-actin \bullet ADP-actin \bullet Clutch molecule \rightarrow F-actin migration
\rightarrow Lateral translocation of F-actin \rightarrow Pushing force against the membrane

C

G-actin monomer

 F-actin polymer

Crash course in greek and latin:

Angio-	Vessel	
-atomy, -otomy	cutting	Angiogenesis
Auto-	self	=production
Brachy	short	of vessels
Cata- (katalysis)	dissolving	
Carcino-	tumor (crab-like)	
Centro-, -centric	centre	Carcinogenesis
-ceptor, ceptive	capere, to take	
Chromo-	color	Production
Chrono--cyte, cyto-	hollow	(development)o
Diplo	double	
e-, ec-	out of	
Endo-	within, inside	
Exo-	outside	
Extra-	beyond	
Erythro-	red	
-gen, genous	descent	
-genic, -genous	birth, descent, origin	
-genic, -genous	to produce	

Crash course in greek and latin:

Glia-	glue
Haem-	blood
Histo-	tissue
Homeo-	alike
Homo-	the same
Hyper-	above
Hypo-	under
Infero-	beneath
Infra-	below
Inter-	between
Intra-	within
Iso-	equal
-kinesis, -kinetic	kinesis=movement
Leuko-	white
Lipo-	fat
-lysis, -lysin	dissolving
Macro-	large
Medi-	middle

Crash course in greek and latin:

-mere, mero-	a part	
Meta-	after	
Metabolism	change	Centromere=
Micro-	small	middle part
Mito- (mitosis)	a tread	
Mono-	single	
Muta-	mutare=to change	telomere
Necro-	dead	
Neuro-	nerve	
-nomics	law	
Oligo-	few	
Onco-	bulk, mass	
Ortho-	straight	
Para-	beside	
Per-	through	
Peri-	around	
-phage, -phagous	phagein=to eat	
-phil	to love	

Crash course in greek and latin:

-phobe	to fear	
Photo-	light	
Plasma-, -plasm	form	
-plicate	to fold	
Post-	after	
Pre-	before	
Pro-	before	
Proto-	first	
Re-	back	
Retro-	backwards	
Serum	whey (myse)	
-some, soma-	body	
Stereo-, -steric	under	
Sub-	over	
Super-	above	
Supra-	with	
Sym-, syn-		

Crash course in greek and latin:

-synthesis	composition
Tauto-	the same
Tele-	far
Teleo-	complete
Telo-, telio-	end
Trans-	across
Ultra-	beyond

Statistical mechanics

- Model: MD (Atomify)
- micro $\left.x_{i}, m_{i}, v_{i}, f_{i j}, 10^{23}-\right\rangle$ macro $\rho,\langle v\rangle,\left\langle v^{2}\right\rangle, E_{k}$,
- thermodynamics: $\mathrm{P}, \mathrm{T}, \mathrm{c}_{\mathrm{P}}, \mathrm{H}_{\mathrm{v}}, \ldots$ (stat + conservation laws)
- distributions: uniform, Gaussian, Poisson

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}}
$$

- $x->v x, x 0->0, s$
- <v>, < $\left.v^{2}\right\rangle$
- Model: ideal gas

