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ABSTRACT: Physical−chemical reasoning is used to demonstrate that the sizes of both
prokaryotic and eukaryotic cells are such that they minimize the times needed for the
macromolecules to migrate throughout the cells and interact/react with one another. This
conclusion does not depend on a particular form of the crowded-medium diffusion model,
as thus points toward a potential optimization principle of cellular organisms. In
eukaryotes, size optimality renders the diffusive transport as efficient as active transport −
in this way, the cells can conserve energetic resources that would otherwise be expended in
active transport.

SECTION: Kinetics and Dynamics

A striking property of cells − one that still awaits an
explanation from “first principles” − is that although cells

of different types have different compositions1,2 and perform
markedly different functions, their sizes in the vast majority of
cases fall within a relatively narrow range, ∼1 μm for
prokaryotes and in tens of micrometers for eukaryotes.3,4

Numerous models, ranging from the maximization of resource/
nutrient uptake5 to the rates of protein synthesis6 to the
synchronization of calcium oscillations,7 have been proposed to
explain this regularity, but their predictions are largely
qualitative and limited in scope. Similarly, “heuristic” arguments
invoking the maximization of surface-to-volume ratio correctly
conclude that cells should be small but provide no quantitative
insights as to how small exactly (in fact, in the absence of any
other considerations, the surface-to-volume ratio would be the
largest if cells were infinitesimally small). Here we approach the
question of cell size from the perspective of optimally timed
intracellular transport. Using scaling analysis and accounting for
the effects of molecular crowding, we show that the actual sizes
of both prokaryotes and eukaryotes are such as to ensure the
fastest possible intracellular diffusive transport or signaling.
Although scaling arguments are an obvious simplification
overlooking the structural and functional details of the cell
interior, our results hold irrespective of which particular model
is used to describe diffusion through a crowded medium; this
regularity suggests that optimization of cell size with respect to
transport times is not a model-specific numerical coincidence
but rather an architectural principle (likely, one of many)
nature has used in designing the cellular units of animate
matter. Our analyses also help rationalize when it is preferable
for eukaryotic cells to use diffusive versus active transport and
save energetic resources, and how the sizes of such cells are

tuned with the properties of cytoskeletal fibers underlying cell
motility.
The starting point for our analysis is the observation that

certain types and numbers, n, of (macro)molecules (proteins,
nucleic acids, etc.) are necessary for cells’ proper functioning. It
has been estimated experimentally8 that prokaryotes contain on
the order of n ≈ 3 × 106 macromolecules, whereas in the more
complex eukaryotes this number is n ≈ 8 × 109. If the cells were
very large, then the average distances between these
components would also be large and any interactions/reactions
between them would occur on very long time scales, τ.
Conversely, if the components were all “crammed” into a very
small cell, then the crowding would hinder molecular
transport,9,10 leading, again, to long times required for the
molecules to find appropriate targets with which to interact/
react. We argue that the actual cell sizes are not only
somewhere in between these two regimes (which is obvious)
but also are such that they minimize/“optimize” the character-
istic transport times (Figure 1).
In our analysis, we focus on the diffusive/passive intracellular

transport operative in all prokaryotes and in eukaryotes, where
it regulates such important processes as the signaling cascades,
organization of mitotic spindle, frequency entrainment via
chemical waves, or the assembly of cytoskeletal components
involved in cell motility (for review, see ref 1). Unlike active/
motor transport in eukaryotic cells whose rate depends
predominantly on the molecular details of the motor/cargo
interactions,11,12 diffusion times are known to scale strongly
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with the dimensions to be traveled and the crowding of the
medium in which diffusion takes place. It is, therefore, the
diffusive transport that could be “optimized” most readily by
varying cell size. Such an optimization could also translate into
energetic savings for the cell because diffusion is powered by
thermal noise and does not require expenditure of chemical
energy (see later in the text).
Scaling Approach. Given that a model of intracellular

transport accounting for all structural details is unrealistic, we
approach the problem using scaling analysis, in which one uses
characteristic (“order of magnitude”) parameters describing the
system under study. Despite its apparent simplicity, scaling
arguments have been used widely in engineering and physics
and can yield valuable predictions regarding fluid flows,
extrapolate specifications of real-size ships or planes from the
corresponding small-scale models,13 generalize characteristics of
phase transitions,14 rationalize metabolic and circulatory trends
across various organisms,15 and so on. In this spirit, we consider
a characteristic time for a diffusive process to transport a
macromolecule over a given distance; in three dimensions, this
time is τ = L2/6D. Here the characteristic length scale of the
problem can be taken as the cell radius, L = R, and D is the
diffusion coefficient, which depends on the size of the migrating
macromolecules (of typical radii denoted as r) and −
importantly − on the “crowding” within the cell. Mathemati-
cally, the question we pose is this: Given the number of
“necessary components”, n, what is the size of the cell that
minimizes τ?
Dif fusion in a Crowded Cell Interior. To answer this question,

it is necessary to relate D to n, r, and R. Diffusivity of particles
through a viscous and crowded medium is, in general, governed
by three major effects: (i) friction of the solvent, quantified by

the viscosity coefficient, (ii) solvent-mediated (known as
hydrodynamic) interactions, and (iii) direct contacts between
the particles, also referred to as crowding or obstruction effects.
Because the relative contributions of these effects vary
depending on the particle concentration, it is difficult to
develop a “universal” model that would describe diffusivity over
the entire possible range of (volumetric) packing fractions, φ.
At very low values of φ (i.e., in a very dilute solution), the
particles do not “feel” one another, and their diffusivity is well-
approximated by the familiar Einstein−Stokes equation: D0 =
kBT/6πμr. As crowding, φ, increases, and interactions between
particles become important. Cukier has shown16,17 that these
interactions suppress diffusivity approximately exponentially, D
= D0exp(−κr), where κ is the screening constant whose
dependence on φ can be expressed as κ = kCφ

γ, where kC is a
system-dependent constant, and γ can be 1/2, 3/4, or 1,
depending on the case considered. Specifically, in the so-called
semidilute regime (a.k.a. homogeneous regime), γ = 3/4 and D
= D0 exp(−kCrφ3/4). This scaling, however, is not applicable to
more crowded media, such as a cell, when physical obstructions
can become dominant. In this so-called heterogeneous regime,
γ = 1/2 (see refs 16 and 17) such that D = D0 exp(−k0φ1/2);
this expression agrees with the experimental data reported by
Boyer and Hsu.18

Remarkably, identical scaling has been derived by a
fundamentally different reasoning by Ogston19 and is known
as the obstruction theory. In this formulation, the infinite-
dilution Einstein−Stokes diffusivity, D0 = (kBT/6πμr), is
corrected by an exponential factor accounting for the presence
of the “obstacles”, D = (kBT/6πμr) exp(−k0φ1/2), where k0 = (rf
+ r)/rf, r is a typical radius of a diffusing macromolecule, rf is
the typical size of obstacles (e.g., other macromolecules), and
both r and rf are assumed to be of similar sizes (e.g., ∼3 to 4
nm, a typical radius of a protein). Furthermore, φ ≈ n(r/R)3 is
the volume fraction of macromolecules in the cell, kB is
Boltzmann’s constant, T is the temperature, and μ = 3.0 mPa·s
is the experimentally determined “effective” viscosity of the
cytoplasm (about three times that of water20).
With these preliminaries, the characteristic times can be

rewritten as a function of cell radius as τ(R) = (R2/6D) = (πμr/
kBT)(R

2/(exp(−k0n1/2r3/2/R3/2))) or, alternatively, as a func-
tion of the volume fraction τ(φ) = (R2/6D) = (πμr3/kBT)
n2/3(φ−2/3/(exp(−k0φ1/2))). The minima of these functions
correspond to the values of Rmin_τ = (3/2)2/3n1/3r (nm) and
φmin_τ ≈ 0.4. If our original hypotheses were correct, then these
predicted cell sizes and packing fractions should match those
observed in nature. They do. Specifically, the size of a
prokaryotic cell (having n ≈ 3 × 106 macromolecular
components) corresponding to the optimal/minimal τ is
calculated (Figure 1, bottom) at 2Rmin_τ = 1.1 μm, whereas
the size of an eukaryotic cell (n ≈ 8 × 109) minimizing
transport times is predicted to be 2Rmin_τ = 15.7 μm; these
values are indeed very close to the typical sizes of prokaryotes
and eukaryotes. Also, the predicted packing fraction φmin_τ ≈
0.4 is close to the experimental estimates,21,22 as is the typical
diffusion coefficient (calculated D ≈ 0.65 × 10−7 cm2/s vs
O(10−7 cm2/s) from experiments).20,23

An important point to make is that the above results are not
an artifact of a specific diffusion model chosen. For instance,
when a conceptually different model of hard-sphere (HS)
diffusivity (perhaps, the simplest treatment of diffusion in
crowded media) is used, the reasoning analogous to that
described above still predicts cell sizes to be O(10 μm) for

Figure 1. Characteristic times of diffusive transport in differently sized
cells. (top) If cells were very small (left), then the crowding of their
(macro)molecular contents would slow down diffusion markedly. This
slowness is indicated schematically by the long, “wiggly” trajectories of
molecules “finding one another” (two red dots) or migrating toward
the nucleus (brown dot), as in signaling cascades.1 Conversely, if cells
were very large (right), then diffusion over large distances would,
again, make the characteristic diffusion times, τ, very long. The middle
picture illustrates the hypothesized “optimal” cell size for which τ is
expected to be minimal. If our hypothesis is correct and cells are really
optimized for the fastest possible diffusive transport, then the τ versus
cell-size dependence should exhibit a minimum. This is, indeed,
confirmed by the τ(2R) dependencies calculated as in the main text
and plotted in the (bottom) graph. The minimal τ corresponds to the
15.7 μm size of eukaryotes (violet line) and 1.1 μm size of prokaryotes
(red line).
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eukaryotes, O(1 μm) for prokaryotes, and optimal packing
fractions between 0.2 and 0.3. Specifically, in the HS model,24

the diffusivity in collections of incompressible spheres is given
by DHS = D̃0(1 − ρ*/1.09)(1 + ρ*2(0.4 − 0.83ρ*2)), where D̃0
= (3r(kBT/πm)

1/2/8ρ*) is the HS diffusivity at low density
(from Enskog’s theory, see25), with m being the HS mass and
ρ* the reduced number density of hard spheres (which is
related to the volume packing fraction by φ = πρ*/6). Also, ρ*
= 1.09 corresponds to the glass transition (D = 0), and ρ* =
1.216 is Bernal’s random close-packed density. (See ref 24 and
note that the system freezes before it reaches the close packed
density.) Rewriting in terms of the packing fraction (note that
we correct for the absence of solvent in the HS model by
replacing the Enskog’s infinite dilution diffusivity with that of
the diffusivity in the Einstein−Stokes equation), we have D =
D0(1 −(6/π)φ/1.09)(1 + (62/π2)φ2(0.4 − 0.83(62/π2)φ2)).
Substituting into the expression for characteristic diffusive time
yields:
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Following the same reasoning as for the Cukier−Ogston model
above, the optimal packing fraction is calculated at φmin_τ ≈
0.23, and the corresponding cell sizes are 2Rmin_τ = 1.4 μm for
prokaryotes and 19.6 μm for eukaryotes.
We make two further comments regarding the parameters of

our model and the very use of diffusion formalism to describe
passive intracellular transport. First, we note that the general
predictions of the model remain valid when a finite spread in
the sizes r of the diffusing macromolecules is taken into
account. For instance, Figure 2a shows the actual distribution of
the radii of proteins found in E. coli prokaryotes; for 95% of
these proteins (1.3 < r < 5.3 nm), the optimal cell size, 2Rmin_τ,
is predicted to be between 0.5 and 2 μm. Similarly, for 86% of
proteins found in Saccharomyces cerevisiae yeasts/eukaryotes
(0.95 < r < 3.8 nm, Figure 2b), the predicted optimal size is
within 5−20 μm. The second remark is that although some
authors have argued that at least some passive intracellular
transport is not diffusive but rather anomalous/subdiffusive, the
degree of this anomaly has been found to be small, with
characteristic exponents between 0.7 and 0.9 (vs 1 in classical
diffusion).26 In addition, subdiffusion only occurs over the time
scales of milliseconds, beyond which the trajectory of a
macromolecule becomes diffusive.27,28

Further Biological Consequences. The optimization of cell size
for the fastest diffusive transport appears to have further
consequences for cell functioning and properties. A case in
point here is the relationship between the size and “energy
management” in eukaryotic cells. Unlike prokaryotes, which
move their internal components predominantly by diffusion,
eukaryotes can also employ active transport along cytoskeletal
fibers (microtubules (MTs) or microfilaments8). Whereas this
mode of transportation costs chemical energy (in the form of
high-energy molecules like ATP, GTP, or NADH), it proceeds
with constant speed (e.g., ∼3 μm/s for vesicles8), and the times
of transport scale linearly with the distance to be traveled,
τactive(L) ∝ L. Thus, if the distances are large enough, then one
would expect active transport to be faster than diffusion for
which τdiff(L) ∝ L2. Yet, for the optimally sized eukaryotes, the

opposite is true. To show this, consider Figure 3, which plots
and compares the characteristic times required for active
transport and for the passive/diffusive transport of “cargos” of
different radii r over a given distance L through a medium
characterized by the “optimal” packing fraction φmin_τ (as
determined in equations above). As seen, for relatively small
molecular cargos r < ∼ 4 nm, τdiff < τactive provided that L < ∼8
μm; remarkably, this value of L corresponds to the optimal
radius of eukaryotic cells Rmin_τ (see Figure 1). In other words,
the sizes of the eukaryotes are such that to move small
molecules or typically sized proteins (refs 31−33 and also
Figure 2), these cells do not need to pay the “chemical price” of
active transport because simple diffusion is more rapid. Of
course, if the loads to carry are larger, then diffusion would be

Figure 2. Distributions of the radii of proteins found in (a) E. coli and
(b) Saccharomyces cerevisiae. The distributions were derived from the
Protein Data Bank (www.rcsb.org/pdb/) by converting molecular
weights to protein radii, r. In this conversion, proteins were
approximated as spherical such that r = (3MW/4π × 1000ρNA)

1/3,
where MW is the molecular weight in g/mol, ρ is density in kg/m3,
and NA is the Avogadro constant. Density of proteins is found to be
related to their molecular weights by29 ρ (kg/m3) = 0.00141 +
0.000145 exp(−MW (Da)/13 000). The distributions thus obtained fit
well to log-normal distributions (red lines), as previously suggested in
ref 30.

Figure 3. Calculated times, τ, needed to transport a “cargo” of a given
radius, r = 3−10 nm, either by diffusion or by active transport over a
distance L. Provided that L < ∼8 μm, diffusion transports small
molecules and typical macromolecules (of size up to 3 to 4 nm) faster
than active transport. Remarkably, this value of L corresponds to the
optimal radius Rmin_τ of an eukaryotic cell calculated in the main text.
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very slow and the cell should and does use active transport. For
example, to move a typical vesicle (loaded with proteins,
hormones, neurotransmitters, or digestive enzymes3 packaged
in the Golgi apparatus) of size34 r ≈ 50 nm from trans-Golgi
network to the cell periphery, active transport requires a time of
∼2.67 s. If the same vesicle were to diffuse over the same
distance, then the time would be a staggering ∼106 s.
Whereas the examples above indicate that cell sizes are

optimal for diffusive transport speeds, it would be somewhat
naive to expect that this criterion is the sole one that dictates
cell size. Even in everyday engineering practice, complex
systems are typically optimized for several properties/functions
simultaneously; for instance, a size of a jet plane is optimized
for a combination of speed, desired range, passenger capacity,
and fuel/operational costs. It should only be expected that an
engineer as skilled as nature itself would strive to perfect cell
sizes for multiple properties at once and it certainly does. To
illustrate this point further, we take another look at the network
of MT “rails” discussed above as well as other cytoskeletal fibers
(intermediate filaments (IFs) and actin filaments (AFs)) that
are together important for cell micromechanics35 and
motility.36,37 The rigidity of these fibers can be quantified by
the persistence length, lP; high lP means that a fiber is straight
and rigid, whereas a low persistence length represents a
structure that is wavy and flexible. Importantly, the ratios of the
experimentally determined persistence lengths38 and the
optimal cell size we calculated above are on the order of 0.1
for IFs, 1 for AFs, and 102 for MTs. This ordering makes
perfect biological sense. Specifically, on the scale of the cell size,
the IFs are flexible and can thus resist tensile stresses imposed
on the cell by straightening up;39,40 the AFs are “semi-flexible”
by themselves but upon polymerizing into actin networks can
increase their rigidity by orders of magnitude41 to form
lamellipodial protrusions that push the cell forward; the MTs
are rigid and thus can efficiently play their role of “struts”
sustaining compressive loads within the cell and maintaining
cell shape42 (and also providing straight tracks for active
transport). If cells were significantly smaller than they really are,
then all fibers would appear rigid on the scale of the cell size,
and the overall structure would be incapable of deformation
necessary for cell-shape changes during cell migration or
division, stretching of alveolar epithelial cells during breath-
ing,43 or proper functioning of vascular smooth muscle cells.44

Conversely, if the cells were larger, then all cytoskeletal fibers
would be too flexible, and the “soft” cells would not be
mechanically sturdy or capable of efficient locomotion via the
actin cytoskeleton.
To summarize, given a specific number n of macromolecular

components required for proper functioning, evolution appears
to have selected cell sizes such as to minimize the characteristic
times of the diffusive transport of these components across the
cell. This optimality of transport times is also beneficial to other
functions of the cell. Although our analysis and conclusions
apply to the majority of cell types, there are notable exceptions
− for example, oocytes and some motor and sensory neurons −
where requirements other than transport efficiency might affect
cell size. For instance, it has been suggested that oocytes are
large because they need to store material required for the
development of an entire new organism3 and also because they
optimize the likelihood for fertilization (larger targets for sperm
cells45). In the nervous system, signal transmission through one
long neuron/axon may be needed to ensure direct and rapid
propagation of electrical signals. (Instead, if the same signal was

transmitted by several shorter axons, then transmission would
be slowed down by signaling at synapses.46) Not surprisingly,
because diffusion across these large cells would be very slow,
both oocytes and neurons rely heavily on bidirectional active
transport along MTs.
From a chemistry point of view, our analysis is relevant to the

recent effort to synthesize cell mimics (“protocells”47−49). If
such artificial systems were ever to resemble real cells, then
their sizes should be scrutinized for transport speeds, packing
fractions, and other pertinent parameters using the scaling
rules/arguments similar to those we applied in the present
work.
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