I. DIFFUSION AS A MIXING PROCESS

Diffusion equation:

$$
\begin{equation*}
J=-D_{12} \frac{\partial \rho}{\partial y} \tag{1}
\end{equation*}
$$

Divergence theorem (continuity equation)

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla J=0 \tag{2}
\end{equation*}
$$

Combine the two to get the partial differential equation for diffusion:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+D_{12} \frac{\partial^{2} \rho}{\partial y^{2}}=0 \tag{3}
\end{equation*}
$$

Starting with particles in $y=0$ at time $t=0: \rho(t=0, y)=\delta(y)$, where δ is the Kroeneker delta function the diffusion equation has solution (you may easily verify this):

$$
\begin{equation*}
\rho(t, y)=\frac{1}{\sqrt{4 \pi D_{12} t}} \exp \left(-\frac{y^{2}}{4 D_{12} t}\right) \tag{4}
\end{equation*}
$$

1D Random walk

- Random motion of a walker along a line

- Discrete time steps $N=0,1,2 \cdots$ in units of $\Delta t=1$
- Discrete space: lattice index $j=0, \pm 1, \pm 2 \cdots$ with increments $\Delta x=1$
- At each timestep, the walker has probability $p=\frac{1}{2}$ to the right $j \rightarrow j+1$ and probability $q=\frac{1}{2}$ to the left $j \rightarrow j-1$
- What is the probability distribution for R steps to the rightN steps, $P(N, R)$?
- What is the mean displacement $\langle S\rangle$ after N steps?

1D Random Walk 1 walker

1D Random Walk many walkers

1D Random walk

- Particle moves on a grid
- Equal probability for left and right step
- After N steps: R steps right, L steps left
- $R+L=N$,
- $S=R-L$ (net displacement)
- Number of configurations (multiplicity) which have R right steps out of N steps

$$
\Omega(N, R)=\frac{N!}{R!(N-R)!}
$$

- Probability for R steps to the right out of N steps

$$
P(N, R)=2^{-N} \frac{N!}{R!(N-R)!}
$$

Average displacement from the origin

$$
P(N, R)=2^{-N} \frac{N!}{R!(N-R)!}
$$

Distribution is symmetrical $=>$ most probable $=$ mean value:

$$
\langle R\rangle=\frac{N}{2}
$$

Mean displacement $\langle S\rangle=\langle R\rangle-(N-\langle R\rangle)=2\langle R\rangle-N$

$$
\langle S\rangle=0
$$

$$
\sigma^{2}=\left\langle S^{2}-\langle S\rangle^{2}\right\rangle=\frac{N}{4}
$$

(p 89 in compendium)

Binomial distribution in continuum limit => diffusion

$$
P(N, n)=2^{-N} \frac{N!}{n!(N-n)!}
$$

($\mathrm{n}=$ steps to right)
$N!\approx N^{N} e^{-N} \sqrt{2 \pi N}$ or $\ln N!\approx N \ln N-N$
Lots of algebra $=>P(N, n) \approx \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(\frac{N}{2}-n\right)^{2}}{\frac{N}{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\left(\frac{n-\langle n>}{\sigma}\right)^{2}}{2}}$
Gaussian distribution
Compare with solution to diffusion equation: $\sigma^{2}=2 D t, \quad N=8 D t$
Measure

- Width of distribution: σ
- Second moment of distribution: $\sum y^{2} \rho(y)$
- Mean square displacement: $\frac{d \sigma^{2}}{d t}=2 D$

