

Historical background

What is an acoustic wave?

 $\lambda = c/f$

→ propagation of energy by compression/decompression of a medium

oscillation direction

on Source: Novotest.biz

The physicist problem

- Wavelength

- Acoustic impedance

What can happen to cells under US?

What can happen to cells under US?

- wave absorption

Non-thermal mechanisms

- radiation forces
- bubbles nucleation
- bubbles oscillation

Thermal mechanisms:

Energy deposition

Radiation force: 1D example

$$p_{ac} = p_0 \cos(kx) \sin(\omega t)$$

steady acoustic field

$$F^{rad} = V_0 k E_{ac} \sin(2kx) \Phi$$

$$E_{ac} = \frac{p_0^2}{4} \rho_f c_f^2$$
 acoustic energy density

$$\Phi = \frac{5\rho_p - 2\rho_f}{2\rho_p + \rho_f} - \frac{\rho_f c_f^2}{\rho_p c_p^2}$$
 acoustophoretic contrast factor

(More info: Bruus, Henrik (2012) 10.1039/c2lc21068a)

Incoming acoustic waves

By Rsla1 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33333920

Radiation force

By Rsla1 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php? curid=333333991

Radiation force: acoustic tweezers

(video courtesy of Marmottant, P. and Thibault, P.)

Cavitation

<u>Cavitation:</u> gaz bubbles that can nucleate in a liquid under low pressure.

Happens during decompression illness, in US cleaners...

Examples of potential cavitation effects on a membrane

E

Ultrasonic Contrast Agents (UCA)

Ultrasonic Contrast Agents (UCA)

Case courtesy of Dr Teresa Fontanilla, Radiopaedia.org, rID: 30925

Are UCAs increasing the effects of US on cells?

Setup for today

Long run monitoring (@HTH lab)

Long run monitoring (@HTH lab)

