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Reaction-Diffusion vs Positional Information
Turing (RD) vs Wolpert (PI)
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Positional information and reaction-diffusion: two big ideas in
developmental biology combine

Jeremy B. A. Green™* and James Sharpe®3*

Development (2015) 142, 1203-1211 doi:10.1242/dev.114991
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Lateral inhibition
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Shape change in place or by motion

Drosophilia dorsal closure

Gastrulation
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Differential adhesion

* Spreading of one embryonic tissue over another
e sorting of cells
e formation of intertissue boundaries
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e Atoms sit on a lattice
e Atoms have magnetic spins ¢ = +1 (up/down)

* Spins interact with nearest neighbour

J

HIsing — _5 Z 0-(530-(;)

(Z,;) neighbors

* Spins interact with imposed magnetic field

H=— Z Joo; — Z ho;,
(i7) J



Ising model, phase transitions
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Monte Carlo

1. Choose a lattice site at random. We call this the target site, which we wil
denote fz;arget and its spin, the target spin, which we will denote oiarget-

2. Pick any value of spin at random. We call this spin the trial spin and denote
1t Otrial -

3. Calculate the current configuration energy, Hinitial, and the energy of the

configuration if the target spin were changed to the trial spin value, Hgpai.
4. Calculate the change this substitution would cause in the total energy, 1.e.

A'H = Hgnal — Hinitial, (8)

5. Accept this change (i.e. really change the spin value at the lattice site) with
probability:

- - 1 ifAH <0,
p(a(ztarget) = Otarget — U(Ztarget) - Utrial) — { e AR/T it AH > 0. (9)

Steps 1 through 5 together are called a spin-copy attempt.
6. Go to 1.



Temperature, 1.5. MC moves,; 733800.




Ising
2.1.3. Summary. The Ising model contains two key ideas that carry forward to
the GGH model:

1. The energy of mismatched links between neighboring spins on a lattice rep-
resents the energy per unit length of the boundaries between domains.

2. A temperature or fluctuation amplitude determines the probability of a con-
figuration.

3. Dynamics and roughness increase with T.



Potts model

Hprotts = J Z (1 T 6(0(;)7 O-(.;)))v (4)

(2,3) neighbors
where 6(x,y) = 0ifx # yand1lifz = y. We denote the number of possible spin
values by ¢g. The Potts model has ferromagnetic and other phase transitions [6, 71].

2.2.1. Summary. The Potts model contains two key idea for biological simulations:

1. Individual domains can have individual spins (which in CPM and GGH sim-
ulations we refer to as cell indices.)
2. Domains have a boundary energy that can be used to model adhesivity.

Direct application to grain boundaries

Foams: not direct



Cellular Potts model
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