Morphogenisis for physicists

Reaction-Diffusion vs Positional Information Turing (RD) vs Wolpert (PI)

 $\partial_t u = D \partial_x^2 u + R(u),$

$$egin{pmatrix} \partial_t u \ \partial_t v \end{pmatrix} = egin{pmatrix} D_u & 0 \ 0 & D_v \end{pmatrix} egin{pmatrix} \partial_{xx} u \ \partial_{xx} v \end{pmatrix} + egin{pmatrix} F(u,v) \ G(u,v) \end{pmatrix}$$

HYPOTHESIS

Positional information and reaction-diffusion: two big ideas in developmental biology combine

Jeremy B. A. Green^{1,*} and James Sharpe^{2,3,*}

Development (2015) 142, 1203-1211 doi:10.1242/dev.114991

Lateral inhibition

Shape change in place or by motion

Drosophilia dorsal closure

Differential adhesion

- Spreading of one embryonic tissue over another
- sorting of cells
- formation of intertissue boundaries

Vincles Plosna weakaes liquid elasti 601 liquid & liquid Caut: surf en bending energy arly susface energy suf every secof. ecc + solid elast. bend + stretely Young - Laplace equation $\Delta p = -\gamma H = -\gamma \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ Surface $\gamma = \frac{W}{\Delta A} \left(= \frac{E}{2L} = surface \frac{1}{2} \frac{1}{2} \right)$ 1 0 3 Youngs law : $\cos \theta = \frac{\gamma_{23} - \gamma_{12}}{\gamma_{13}}$ balance Eleveric defonsation counteracts adhesion energy gain K: contact values a: $a^3 = \frac{9\pi (1-\gamma^2)}{2E} R^3 K$ JKR theory Benduing energy Ub = 2R SH dA R - banking Biological bilipid membranes : R= 20kT

Ising model

- Atoms sit on a lattice
- Atoms have magnetic spins $\sigma = \pm 1$ (up/down)
- Spins interact with nearest neighbour

$$\mathcal{H}_{\text{Ising}} = -\frac{J}{2} \sum_{(\vec{i},\vec{j}) \text{ neighbors}} \sigma(\vec{i}) \sigma(\vec{j}).$$

Spins interact with imposed magnetic field

$$H = -\sum_{\langle ij\rangle} J\sigma_i\sigma_j - \sum_j h\sigma_j,$$

Ising model, phase transitions

Monte Carlo

- 1. Choose a lattice site at random. We call this the *target site*, which we will denote \vec{i}_{target} and its spin, the *target spin*, which we will denote σ_{target} .
- 2. Pick any value of spin at random. We call this spin the *trial spin* and denote it σ_{trial} .
- 3. Calculate the current configuration energy, $\mathcal{H}_{\text{initial}}$, and the energy of the configuration if the target spin were changed to the trial spin value, $\mathcal{H}_{\text{final}}$.
- 4. Calculate the change this substitution would cause in the total energy, *i.e.*

$$\Delta \mathcal{H} = \mathcal{H}_{\text{final}} - \mathcal{H}_{\text{initial}},\tag{8}$$

5. Accept this change (*i.e.* really change the spin value at the lattice site) with probability:

$$p(\sigma(\vec{i}_{\text{target}}) = \sigma_{\text{target}} \to \sigma(\vec{i}_{\text{target}}) = \sigma_{\text{trial}}) = \begin{cases} 1 & \text{if } \Delta \mathcal{H} < 0, \\ e^{-\Delta \mathcal{H}/T} & \text{if } \Delta \mathcal{H} > 0. \end{cases}$$
(9)

Steps 1 through 5 together are called a *spin-copy attempt*.

6. Go to 1.

Ising

2.1.3. Summary. The Ising model contains two key ideas that carry forward to the GGH model:

- 1. The energy of mismatched links between neighboring spins on a lattice represents the energy per unit length of the boundaries between domains.
- 2. A temperature or *fluctuation amplitude* determines the probability of a configuration.
- 3. Dynamics and roughness increase with T.

Potts model

$$\mathcal{H}_{\text{Potts}} = J \sum_{(\vec{i},\vec{j}) \text{ neighbors}} (1 - \delta(\sigma(\vec{i}), \sigma(\vec{j}))), \qquad (4)$$

where $\delta(x, y) = 0$ if $x \neq y$ and 1 if x = y. We denote the number of possible spin values by q. The Potts model has ferromagnetic and other phase transitions [6, 71].

2.2.1. Summary. The Potts model contains two key idea for biological simulations:

- 1. Individual domains can have individual spins (which in CPM and GGH simulations we refer to as *cell indices*.)
- 2. Domains have a boundary energy that can be used to model adhesivity.

Direct application to grain boundaries

Foams: not direct

Cellular Potts model

$$\mathcal{H}_{\rm CPM} = \sum_{\substack{(\vec{i},\vec{j}) \text{ neighbors}}} J(\tau(\sigma(\vec{i})), \tau(\sigma(\vec{j})))(1 - \delta(\sigma(\vec{i}), \sigma(\vec{j}))) + \sum_{\sigma} \lambda_{\rm Vol}(\tau)(v(\sigma) - V_{\rm t}(\tau(\sigma)))^2,$$

cell index σ cell type $\tau(\sigma)$ lattice sites \vec{i}, \vec{j} volume of cell $v(\sigma)$ target volumeVstrength of volume constraint λ_{Vol}

1	1	1	2	2	2	2	2	3	3	3	3
1	1	1	1	2	2	2	2	3	3	3	3
1	1	1	2	2	2	2	3	3	3	3	3
1	1	4	4	4	2	2	3	3	3	3	3
1	4	4	4	4	4	2	2	3	3	3	3
1	4	4	4	4	4	4	6	6	6	3	3
4	4	4	4	5	4	5	5	6	6	6	6
7	4	7	7	5	5	5	5	6	6	6	6
7	7	7	7	7	5	5	5	5	6	6	6
7	7	7	7	8	5	5	5	9	9	6	6
7	7	7	7	8	8	8	8	9	9	9	9
7	7	7	8	8	8	8	8	8	9	9	9