29.10.2019, Maclunios in memberanes

Electric fiedd $\varepsilon=\frac{-\Delta V}{l}$
$\Delta V O\left[e^{\hat{\beta}}\right.$ ह
Force $\quad F=-\frac{\partial U}{\partial x}=-q \varepsilon$ causes drift velacity $v=\frac{F}{\xi}=-\frac{D}{k T} q \varepsilon$ that causes concuutration gradient Total chemical pofential
$\mu=\mu_{\text {in }}+\mu_{0}=\mu_{0}+\operatorname{kith}_{c_{0}}-q q x$
Fhex $\quad \delta=-D^{\prime} \nabla \mu$
\qquad Total clemical polential
$\mu=\mu_{\text {it }}+\mu /=\mu_{0}+k i \ln \frac{c}{c_{0}}-q q x$
Fhex $\quad I=-D^{\prime} \nabla_{\mu}$

Potential erergy of charge: $U(x)=-q \varepsilon x, \Delta V=\frac{\Delta U}{q}$ Force $t=\frac{\partial x}{\partial}$ causes drift Equilifrimn $\quad j=0 \quad \Rightarrow \frac{\partial \mu}{\partial x}=0$ $\Rightarrow k \frac{3}{3 x}=98$ loue $=92 l=-q 4 \mathrm{~V}$

Neunasf Porential

memban
2: equilibriem: $\frac{\partial \mu}{\partial x}=0$

Multicomponeat mixfures

- negatively charad macromolecules. Charaedus $\rho_{7 \mu}$
$-K^{+} C_{K^{+}}: C_{1 K^{1}}=10 \mathrm{~m} \mathrm{\mu} \quad Q_{k^{2} / e}=125 \mathrm{md}$
- Nat $\quad C_{\mathrm{Na}^{+}} \quad C_{1 \mathrm{Na}^{+}}=140 \mathrm{mll}$
$-C^{-} \quad C_{\text {Cl }}^{-} \quad C_{\text {1CL }}=150 \mathrm{mall}^{-1}$
Charge mutralify: $c_{\text {(mar }}+c_{1 K}-c_{\text {el }}=0$ a bidide

Forall permecable species

\Rightarrow Donnan equilifincen $\frac{C_{2} \mathrm{Na}^{+}}{C_{1 \mathrm{Na}^{+}}}=\frac{C_{2} k^{+}}{C_{1 k^{+}}}=\frac{C_{1 c l}}{C_{2 \mathrm{Cl}}}$
Solve for $c_{2 i}$:
few maccomonecentes

$c_{2 k^{+}}=15 \mathrm{mll} \quad c_{1 k+}=10 \mathrm{mH}$
$C_{2 \mathrm{Cl}^{-}}=100 \mathrm{mM} \quad C_{10 \mathrm{Cl}}=150 \mathrm{~m} \mid$
each miphelychanged
$c_{\text {qume }}$ e1...dh
$c_{\text {tof }}=325 \mathrm{mll} \quad c_{\text {bfor, }}=300 \mathrm{m4}$
$\Delta \mu_{\text {com }}=v_{\text {m }} k T \Delta c_{\text {cot }} \quad \Delta c_{\text {cof }}=25 \mathrm{~mol}$
$\Delta V_{\text {dentan }}=-10 \mathrm{mV}$
$\Delta p=k T \Delta c_{100^{2}}=6 \cdot 10 \mathrm{ma}$
$=0,6 \mathrm{bar}$
Plants, algove, fungi, balfecia : outer reqiedwall fo wiftestand poiseeve

$$
\begin{array}{rr}
\Delta \mu_{i}=k T \Delta \ln c_{i}+v_{m_{i}} \Delta p+q\left(\Delta V-v_{i}^{N_{\Delta} g}\right. \\
J_{i}=L_{i \mu} \Delta \mu_{i} \quad \text { Book } & L_{i \mu}=g_{i} \\
\text { condictance }
\end{array}
$$

Steadystate $\left.j_{i \text { iparne }}=-\right]_{i} \quad$ pownt \quad powes series?

Curitlout pamp $\quad \Delta \mu=0 \Rightarrow \Delta p$ leap
Dissipative stadyefate:
Entropy production rate $\sigma=\sum J_{i} \Delta \mu_{i}$
\Rightarrow energy dissiation $\frac{d Q}{\text { rate }} \frac{d t}{d t}=T \sigma$
\Rightarrow Energy must bo taken from somewher

9

$[A D P]=0,001$
ATP hydioluses $\quad A T P+H^{+} \rightleftharpoons$ ADP $[$ ATP $]=0,01$

Ion pumping \rightarrow sodium anopraly in all animal cells

fluxes oun \rightarrow in positice
forces in-out positice $\quad \ln c ; \Delta V, \Delta p$
linar fromsport $\sum_{i}=j_{2, i}-g_{i} \Delta \mu_{i} \quad$ (passive memetranci)
flux ofion : © $\left.j_{i}=j_{p i i}-g_{i} k T \ln \frac{c_{i}}{c_{i i}}-g_{i} v_{m i} \Delta p-g_{i} i_{1}\right\rangle \mid$ g_{i} - conductance fhrough mecubrare v_{mi} - molecular volume of ion i
q_{i} - chargs of ion:

Sicadystate: $j_{2}=0$
assecure $\Delta p=0$
chavges necurralitg ia sside: $c_{N_{a, i}}+c_{k, i}-c_{c, i, i}-\left|\frac{\rho_{4 y}}{e}\right|=0$
(1) $\Rightarrow j_{\mathrm{Na}^{+}+}^{+} j_{k+}+j_{c^{-}}=0$
(2) $\frac{3 j_{i}}{g_{N G}}=k T \ln \frac{c}{C \text { che }}+e \Delta V$
(3) $-\frac{2 j}{g k^{+}}=k T \ln \frac{c_{k 0}}{c_{k i}}+e \Delta V$
(4) $0=k T \ln \frac{c_{a 0}}{c_{a i}}-e \Delta V$

Hequations - $c_{i o}$ fired

- $j_{p}, g_{i}, \rho_{q, m}$ fixed

4unknown: $\quad c_{i i}, \Delta V$
Actual membrane potential $\Delta V=\Delta V^{\text {Hesest }}=\frac{\underline{L T e u m}}{q} \frac{c_{i o}}{c_{i i}}$ only for ions that sermeate, but are not pumped (here: Cl^{-})
Steady shate $\Delta V=V^{0}$ is called resting poteutial
\qquad
Bearare: my $g_{i} \cdot q_{i}=g_{i}$ inbook

Equivalent circuit

The electrophysiology of the axon:
The action potential

- Whenstimulated beyond a threshold the axon changes polarization for ashont while and this potential pulse Gavels along the axon. The peale e shape is independents of the exact brigesing perse
- Trave's along the axon at constant speed (0, $1-120 \mathrm{~m} / \mathrm{s}$)
- Peak polcutial indeserident of distance
- Shape preserving pula
- affertuyperpolarization of the end
- harder fo simulate new pulse decina refractory period

Numerical example: Squid giant axon

equations (2) \& (3) $\stackrel{\text { elimininat }}{\Rightarrow}$ is

$$
\begin{aligned}
& =-\frac{3 g_{k}+v_{k+}^{v}+2 g_{k+} \cdot V_{N a^{a}}^{v}}{2 g_{k+}+3 g_{k+}}=-72 \mathrm{mV}
\end{aligned}
$$

according fo of (4) $V_{C_{C}}^{N}=\Delta V$
but $-59 \neq-72$
effect of charge balance: $j_{\mathrm{wa}_{a}}+j_{\mathrm{KL}}-j_{\mathrm{Cc}}=0$

according bo book "actual resting potential"

$$
1 V^{\text {stall }}-60 \mathrm{mV}
$$

Equation (1) is not really correct.
charge imbalance $\Rightarrow \Delta V$ is clanged.

+ other ions a re present i, (and permanale?)

NB $g_{i}=g_{i} q_{i}$
Equation $0, \Delta p=0$

$$
j_{i}=j_{p, i}-g_{i}\left(V_{i}^{N_{\operatorname{enf}}} \Delta V\right)
$$

steady state $\quad j_{i}=j_{p i}-g_{i}\left(V_{i}^{N}-V^{0}\right)$
shoot time: $\frac{\text { neglect } j_{2 i}}{j_{j i} \ll g_{i}\left(V^{\circ}=-v^{0}\right)}$
charge balance (4) $\Rightarrow \sum j_{i}=0=\sum g_{i}\left(V^{0}-\right.$ IV $)$

$$
g_{\text {tot }}=\sum_{i} g_{i} \Rightarrow{ }^{(5)} V^{0}=\sum_{i} \frac{g_{i}}{g_{\text {tot }}} V_{i}^{\text {verst }} \quad \begin{aligned}
& \text { chord } \\
& \text { condertaca } \\
& \text { formica }
\end{aligned}
$$

$$
\Rightarrow V^{0}=-66 \mathrm{mV}
$$

V^{0} dominated by Nernst potential of ion with largest g_{i}
\Rightarrow Different assumption adjusted steady state resect from $\Delta V=V_{c c}^{N}=-59 \mathrm{mV}$

$$
\text { and (2) \&(3) } \Rightarrow A V=-72 \mathrm{mV}
$$

to an infermediede value

$n_{\text {ions need id fo move to change } \triangle V \propto \text { volume of loathe } \text { layers }}$
Main mechanism of action potential:

$$
\begin{aligned}
\Rightarrow V^{0} & =\frac{1}{g_{\text {tot }}}\left(g_{N a}+V_{N a}^{N}+g_{k}+V_{k^{+}}^{N}+Q_{\mathrm{ce}^{2}} V_{C^{\prime}}^{N}\right) \\
& =\frac{1}{1+8+\frac{1}{2}}(8.54-75-5 / 2)=34 \mathrm{mV}
\end{aligned}
$$

capacitance Q parallel plate: $C=\frac{\varepsilon A}{d}$

$$
\begin{aligned}
& V=\frac{Q}{C}=\frac{q d}{\varepsilon A}=\frac{d}{\varepsilon} \sigma \\
& 6 \cdot 10^{-2} \mathrm{~V}=\frac{10^{-9}}{10^{-11}}-\sigma \\
& \Rightarrow \sigma \simeq 6 \mathrm{c} / \mathrm{m}^{2} \approx 10^{-19} \mathrm{e} / \mathrm{m}^{2} \simeq 10 \mathrm{e} / \mathrm{nm}^{2}
\end{aligned}
$$

- constant (small) Low of charge
- charging of capacitor depends on which channel delivers fastest
-rest safe: $g_{k}+$ largest $\Rightarrow \frac{Q}{C} \simeq V_{k^{+}}^{N}$
- activated state $g_{M_{a}^{+}}$largoif $\Rightarrow \frac{Q}{C} \sim V_{\mathrm{Na}^{+}}^{N}$
- Time constant of $R C$ circuif $\tau=R \cdot C$

$$
=C / g_{\text {tot }}
$$

charge balance
chance in axialcusrect $=$ radial current + charge buildup buildup

$$
\begin{aligned}
& -\frac{d I_{x}}{d x} \cdot d x=2 \pi a\left(j_{j, r}(x)+C \frac{d V}{d t}\right) d x \\
& \pi a^{2} H \frac{d^{2} V}{d x^{2}}=2 \pi a\left(j_{\neq(r)}+C \frac{d V}{d t}\right) \\
& \int_{a r}=\left(V-V^{0}\right) g_{\text {tofu }}=v g_{\text {tot }} \quad\left(=v g_{\text {tot }}(v)\right) \\
& \tau=R C=C / g \text { tor }^{2} \\
& \lambda_{a x}=\sqrt{a k / 2 g_{\text {tot }}} \\
& \Rightarrow \quad \lambda_{a x}^{2} \frac{d^{2} v}{d x^{2}}-\tau \frac{d v}{d t}=v \quad \begin{array}{l}
\text { linear } \\
\text { scalar } \\
\text { equation }
\end{array} \\
& H \text {-conductivity } \\
& \text { linear } \\
& \text { equation }
\end{aligned}
$$

Voltage gating

$$
\begin{aligned}
j_{q_{1 r}}=\sum_{i}\left(v-V_{i}^{N}\right) g_{i}(v) v^{2}+g_{N N} \\
8 \Delta g_{i} g_{i}, ~
\end{aligned}
$$

$$
0^{2} 1, ~ 200 \text { linens } \text { increase }
$$

$$
g_{N_{a}+}(v)=g_{N_{a}+}^{0}+B v^{2}
$$

$$
\Rightarrow \quad j_{N_{1}+}(v)=\sum_{0}\left(V-V_{i}^{N}\right) g_{i}^{0}+\left(V-V_{N a}^{N}+\left.\beta_{v}^{N}\right|_{-}\right.
$$

$$
\begin{aligned}
& \text { Solution } w(x, t)=e^{t / \tau} v(x, t) \\
& \lambda_{0 x}^{2} e^{-t / \tau} \frac{\partial^{2} \omega}{\partial x^{2}}-\tau \frac{\partial}{\partial t}\left[e^{-t / \tau} \omega\right]=e^{-t / \tau} \omega \\
& 2-\frac{1}{\tau} e^{-t / \tau} \omega+e^{-t / \tau} \frac{\partial \omega}{\partial t}-
\end{aligned}
$$

$$
\begin{aligned}
& e^{-t / 2} \Rightarrow \text { not areaprescriving }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow j_{q r}=v g_{t_{0} t}^{0}+(v-H) B v^{2} \\
& H=V_{N_{0}+}^{N}
\end{aligned}
$$

$$
v_{1} v_{2}=\frac{g_{\text {tot }}^{0}}{B}
$$

nonlinear $\begin{aligned} & \text { nonlinear } \\ & \text { cable } \\ & \text { equation }\end{aligned} \lambda_{a x}^{2} \frac{\partial^{2} v}{\partial x^{2}}-\tau \frac{\partial v}{\partial t}=\frac{v\left(v-v_{1}\right)\left(v-v_{2}\right.}{\left(v_{1} v_{2}\right)}$

