11.1-2 Ion pumping -> sodium anomaly in all animal cells

Fluxes,	$j_i, j_{p,i}$ of ion species i ,	out -> in	positive			
Forces,	$\Delta \mu_i = kT \Delta \ln c_i + q_i \Delta V + v_i \Delta P,$	in-out	positive			
Linear transport:	$j_i = j_{p,i} - g_i \Delta \mu_i$					
	$= j_{p,i} - g_i \Delta \ln c_i + g_i q_i \Delta V + g_i v_i \Delta V$	р				
steady state	= 0					
$j_{p,i} = \alpha_i j_p$	ion pump flux, $\alpha_{Na+} = 3$, $\alpha_{K+} = -2$,	$j_p > 0$				
<i>j</i> _i	flux through membrane					
g_i	conductance through membrane					
q_i	charge of ion <i>i</i>					
ΔV	(electrical) membrane potential					
$v_i = c_i^{-1}$	(partial) volume of ion i (ideal mixture))				
$\Delta P = 0$	assume no pressure difference					

11.1-2 Ion pumping -> sodium anomaly in all animal cells

Fluxes,	$j_{i}, j_{p,i}$	of ion species <i>i</i> ,	out -> in	positive		
Forces,	$\Delta \mu_i = kT \Delta \ln c_i$	$+ q_i \Delta V + v_i \Delta P$,	in-out	positive		
Linear transport: $j_i = j_{p,i} - g_i \Delta \mu_i$						
	$= j_{p,i} - g_i \Delta \ln d$	$\int c_i + g_i q_i \Delta V + g_i$	$_{i}v_{i}\Delta P$			
steady state	= 0					
$j_{p,i} = \alpha_i j_p$	ion pump flux, $\alpha_{Na+} = 3$, $\alpha_{K+} = -2$, $j_p > 0$					
j _i	flux through membrane					
g_i	conductance through membrane					
q_i	charge of ion <i>i</i>					
ΔV	(electrical) membrane potential					
$v_i = c_i^{-1}$	(partial) volume of ion i (ideal mixture)					
$\Delta P = 0$	assume no pressure difference					

charge neutrality inside:

flux charge neutrality:

$$c_{Na+,in} + c_{K+,in} - c_{Cl-,in} - \frac{\rho_m}{e} = 0$$

$$j_{Na+} + j_{K+} + j_{Cl-} = 0 \tag{1}$$

$$\frac{3J_p}{g_{Na+}} = kT \ln \frac{c_{Na+,o}}{c_{Na+,i}} + e\Delta V \tag{2}$$

$$-\frac{2j_p}{g_{K+}} = kT \ln \frac{c_{K+,o}}{c_{K+,i}} + e\Delta V$$
(3)

$$0 = kT \ln \frac{c_{Cl-,o}}{c_{Vl-,i}} - e\Delta V \tag{4}$$

4 equations, 4 unknowns:

 $c_{Na+,i}, c_{K+,i}, c_{Cl-,i}, \Delta V$

11.1-2 lon pumping -> sodium anomaly in all animal cells

charge neutrality inside:

flux charge neutrality:

steady state:

$$c_{Na+,in} + c_{K+,in} - c_{Cl-,in} - \frac{\rho_m}{e} = 0$$

$$j_{Na+} + j_{K+} + j_{Cl-} = 0$$
(1)

$$\frac{3j_p}{g_{Na+}} = kT \ln \frac{c_{Na+,o}}{c_{Na+,in}} + e\Delta V$$
(2)

$$-\frac{2j_p}{g_{K+}} = kT \ln \frac{c_{K+,o}}{c_{K+,in}} + e\Delta V$$
(3)

$$0 = kT \ln \frac{c_{Cl-,o}}{c_{Vl-,in}} - e\Delta V \tag{4}$$

4 equations, 4 unknowns:

 $c_{Na+,in}, c_{K+,in}, c_{Cl-,in}, \Delta V$

Only permeating ions not pumped $\Delta V \approx V_i^N = -\frac{kT}{q_i} \ln \frac{c_{i,o}}{c_{i,i}}$ Steady state = resting potential $\Delta V = V^0$ Book notation $\mathcal{G}_i = g_i q_i$

11.1-2 Ion pumping -> sodium anomaly in all animal cells

$$V_i^N = -\frac{kT}{q_i} \ln \frac{c_{i,o}}{c_{i,i}}, \quad \mathcal{G}_i = g_i e$$

flux charge neutrality:

$$j_{Na+} + j_{K+} + j_{Cl-} = 0 \tag{1}$$

steady state:

$$\frac{3j_p}{\mathcal{P}_{Na+}} = -V_{Na+}^N + \Delta V \tag{2}$$

$$-\frac{2j_p}{g_{Na+}} = -V_{K+}^N + \Delta V \tag{3}$$

$$0 = V_{Cl-}^N - \Delta V \tag{4}$$

52

 g_i/g_{K+}

(* 8)

1

 $\frac{1}{25}$

 $^{1}/_{2}$

-59

(2)+(3)
$$2g_{Na+}(\Delta V - V_{Na+}^{N}) = 3g_{K+}(\Delta V - V_{K+}^{N})$$

 $\Delta V = \frac{2g_{Na+}V_{Na+}^{N} + 3g_{K+}V_{K+}^{N}}{2g_{Na+} + 3g_{K+}}$
Pumping => $\frac{C_{i,o} [\text{mM}]}{V_{i}^{N} [\text{mV}]} = \frac{V_{i}^{N} [\text{mV}]}{V_{i}^{N} [\text{mV}]}$
ion imbalance $\frac{K^{+}}{Na^{+}} = 20$ 400 -75
Na⁺ 440 50 54

=> $\Delta V = -72$ mV, but eq. (4): $\Delta V = -59$ mV

Cl-

(1) can be used to correct (4), but (1) is not complete because other ions present ++

560

- How can a leaky cable carry a sharp signal over long distances?
- Nonlinearity in cell membrane's conductance => excitable medium => regenerates signal

Nerve impulses???

- We are looking for propagating waves of $\Delta V V^0$
- We only have a dissipative equation:

$$j_i = j_{p,i} - g_i \Delta \mu_i$$

- When stimulated beyond a threshold the axon changes polarization for a short while
- This pulse travels along the axon at constant speed (0.1-120 m/s)
- Peak potential and pulse shape are independent of distance
- afterhyperpolarization
- harder to stimulate during a refractory period
- The peak and the shape is independent of the exact triggering pulse

Squid giant axon

Numerical example:

	<i>c_{i,o}</i> [mM]	c _{i,in} [mM]	V_i^N [mV]	g_i/g_{K+}
K+	20	400	-75	1
Na+	440	50	54	$\frac{1}{25}$ (* 8)
Cl-	560	52	-59	¹ / ₂