Week 4

Entropy and entropic forces

Focus question

- Biological question: if energy is always conserved, how can some devices be more efficient than others?
- Physical idea: Order controls when energy can do useful work. Order is not conserved.

Reversible or irreversible

- Particle dynamics:
- Newtons law of motion
- Reversible
- Possible evolution
- Why does it never happen?
- One body: reversible motion (My son can be shot from the water up to Pantern)
- Multibody systems:
- reversible laws of motion (beads CAN move all to one side)
- irreversible collective dynamics (it will never happen)
- Macro defenition of equilibrium:
- Homogeneous particle distribution
- Micro definition of equilibrium?

New concept: Microstates and macrostates

- What is the most likely outcome of tossing 3 coins?
- Microstates: state of all coins
- heads: $s i=1$, tails: $s i=0$
- all microstates are equally likely

i: | 1 | 2 | 3 | n |
| ---: | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 2 |
| 1 | 0 | 1 | 2 |
| 0 | 1 | 1 | 2 |
| 1 | 1 | 1 | 3 |

- Probabilities: $n=0: P=1 / 8$

$$
n=1: P=4 / 8
$$

$n=2: P=4 / 8$
$n=3: P=1 / 8$

Microstates and macrostates

- Box with left and right side
- Example: $N=5$
- Particles can be distinguished (i=1, 2,.. 5)

- Particle state s_{i} :
- left: $s_{i}=1$
- right: $\mathrm{s}_{\mathrm{i}}=0$
- Macrostates $\mathrm{n}=\mathrm{\Sigma}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}(=0,1,2$, ..5)
- List the possible microstates of $\mathrm{n}=1$
- 00001
- 00010
- 00100
- 01000
- 10000

5 microstates => multiplicity $\Omega(n, N)$ of macrostate $n=1$ is $\Omega(1,5)=5$
Multiplicity of macrostates

$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$
00000	00001	00011	11100	11110	11111
	00010	00101	11010	11101	
	00100	01001	10110	11011	
	01000	10001	01110	10111	
	10000	00110	11001	01111	
		01010	10101		
		01100	10011		
		10010	01101		
		10100	01011		
		11000	00111		

$$
\boldsymbol{\Omega}(0,5)=1 \quad \boldsymbol{\Omega}(0,5)=5 \quad \boldsymbol{\Omega}(0,5)=10 \quad \boldsymbol{\Omega}(0,5)=10 \quad \boldsymbol{\Omega}(4,5)=5 \quad \boldsymbol{\Omega}(5,5)=1
$$

General formula for multiplicity: $\Omega(n, N)=\frac{N!}{(N-n)!n!} \quad \Omega(2,5)=\frac{5!}{3!2!}=10$
Number of possible microstates: $\Omega_{t}=\sum_{n=0}^{5} \Omega(n)=32\left(=2^{5}\right)$
Probability of macrostates: $\mathrm{P}(\mathrm{n}, \mathrm{N})=\Omega(n, N) / 2^{N}=\frac{2^{-N} N!}{(N-n)!n!}$

Fundament of statistical mechanics

Fundamental assumption of statistical mechanics: In an isolated system in thermal equilibrium, all accessible microstates are equally probable.

An isolated system will evolve towards the most probable state = macrostate with the highest multiplicity. We call this the equilibrium state.

Sharpness of distribution

$\mathrm{n}=\left[\begin{array}{llllll}5 & 10 & 30 & 100 & 300 & 1000\end{array}\right] ;$

l=1;

for i=1:2
for $j=1: 3$
nk=1;
for $k=1: n(l)$
$n k(k)=n \operatorname{choosek}(n(l), k)$;
end
subplot (2,3,l)
plot(nk,'k','LineWidth',2)
xlabel('k','FontSize', 20)
ylabel('n!/(n!(n-k)!','FontSize',20)
ax1 = gca; \% current axes
ax1. FontSize $=20$;
$l=l+1$;
end
end

What happens when $q \rightarrow 10^{23}$?

$$
\Omega(N, n)=\frac{N!}{n!(N-n)!} \quad \text { We need an approximation for } N!\text { when } N \gg 1
$$

Equilibrium between two systems

- $N=N_{A}+N_{B}, V=V_{A}+V_{B}, U=U_{A}+U_{B}$, all (N, V, U) constant
- Can vary one of the three $\alpha \in(N, V, U)$,
- keeping the other 2 constant

System: can contain "anything"

- Multiplicity $\Omega_{t o t}=\Omega_{A} \Omega_{B}$ is maximum
- = most likely state
- = equilibrium state

$$
\text { maximum when } \frac{\partial \Omega_{t o t}}{\partial \alpha_{A}}=0
$$

$$
\frac{\partial\left(\Omega_{A} \Omega_{B}\right)}{\partial \alpha_{A}}=\Omega_{A} \frac{\partial \Omega_{B}}{\partial \alpha_{A}}+\Omega_{B} \frac{\partial \Omega_{A}}{\partial \alpha_{A}}=0
$$

$d \alpha_{A}=-d \alpha_{B} \quad \frac{-1}{\Omega_{B}} \frac{\partial \Omega_{B}}{\partial \alpha_{B}}+\frac{1}{\Omega_{A}} \frac{\partial \Omega_{A}}{\partial \alpha_{A}}=0$
Equilibrium condition: $\quad \frac{\partial \ln \Omega_{B}}{\partial \alpha_{B}}=\frac{\partial \ln \Omega_{A}}{\partial \alpha_{A}}$

Boltzmann's Entropy

$$
S=k \ln \Omega
$$

Relates the number of microstates (multiplicity) with the thermodynamic (macroscopic) state of the system
$k=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$[S]=J K^{-1}$

Relates the thermodynamic state of the system with the probability to be in a given macrostate

Boltzmann's Entropy and equilibrium

At equilibrium, the multiplicity is maximized. This means that the equilibrium state has maximum entropy

Example:

Thermal equilibrium of two interacting ideal gases through energy exchange

$$
\begin{gathered}
\frac{\partial \Omega_{\text {total }}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{\text {total }}}{\partial U_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \frac{d U_{B}}{d U_{A}}=0 \quad \rightarrow \quad \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}=\frac{\partial \mathrm{S}_{B}}{\partial U_{B}}
\end{gathered}
$$

System A and system B have the same temperature: $T_{A}=T_{B}$

$$
\begin{aligned}
& \underbrace{\frac{\Omega_{\text {total }}}{\Omega_{\text {max }}}}_{U / 2} \quad d \Omega_{\text {tot } / d U}=0 \\
& \frac{[S]}{[U]}=\frac{J K^{-1}}{J} \\
& \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}=\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \equiv \frac{1}{T} \\
& T=\left(\frac{\partial S}{\partial U}\right)^{-1}
\end{aligned}
$$

Equilibrium between two systems

- $N=N_{A}+N_{B}, V=V_{A}+V_{B}, U=U_{A}+U_{B}$, all (N, V, U) constant
- Can vary one of the three $\alpha \in(N, V, U)$,
- keeping the other 2 constant
- keep total constant: $\alpha=\alpha_{A}+\alpha_{B}=$ const.
- $S_{t o t}=S_{A}+S_{B}$ is maximum in equilibrium

Equilibrium criterium:

$$
\frac{\partial S_{B}}{\partial \alpha_{B}}=\frac{\partial S_{A}}{\partial \alpha_{A}}
$$

Entropy: $S=k \ln \Omega(N, V, U)$
Thermal equilibrium: $\frac{\partial S_{A}}{\partial U_{A}}=\frac{\partial S_{B}}{\partial U_{B}}, \quad \frac{1}{T} \equiv\left(\frac{\partial S}{\partial U}\right)_{N, V}, \quad \frac{[S]}{[U]}=\frac{J K^{-1}}{J}$
Mechanical equilibrium: $\frac{\partial S_{A}}{\partial V_{A}}=\frac{\partial S_{B}}{\partial V_{B}}, \quad P \equiv T\left(\frac{\partial S}{\partial V}\right)_{N, U}, \quad \frac{[P]}{[T]}=\frac{J}{m^{3} K}$
Chemical equilibrium: $\frac{\partial S_{A}}{\partial N_{A}}=\frac{\partial S_{B}}{\partial N_{B}}, \quad \mu \equiv-T\left(\frac{\partial S}{\partial N}\right)_{U, V} \quad \frac{[\mu]}{[T]}=\frac{J}{K}$

Thermodynamic identity

- Change in entropy due to energy, volume, particle number has a total differential:

$$
d S=\left(\frac{\partial S}{\partial U}\right)_{V, N} d U+\left(\frac{\partial S}{\partial V}\right)_{U, N} d V+\left(\frac{\partial S}{\partial N}\right)_{U, V} d N
$$

- Use definitions: $\frac{1}{T} \equiv\left(\frac{\partial S}{\partial U}\right)_{N, V}, \quad P \equiv T\left(\frac{\partial S}{\partial V}\right)_{N, U}, \quad \mu \equiv-T\left(\frac{\partial S}{\partial N}\right)_{U, V}$

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N
$$

- => Thermodynamic identity for $U(S, V, N)$

$$
d U=T d S-P d V+\mu d N
$$

- The thermodynamic identity holds true for any infinitesimal change in a system

Ideal gas: entropy S and temperature T

- Sackur-Tetrode Entropy:

$$
S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]
$$

- Temperature:

$$
T=\left(\frac{\partial S}{\partial U}\right)^{-1}=\left(k N \frac{d}{d U} \ln U^{\frac{3}{2}}\right)^{-1}=\left(\frac{3 k N}{2} \frac{1}{U}\right)^{-1} \rightarrow U=\frac{3 N k T}{2}
$$

- Equipartition of energy: $\frac{3 k T}{2}$ for the kinetic energy per particle in 3D
- Heat capacity C_{V} :

$$
C_{V}=\frac{d U}{d T} \rightarrow C_{V}=\frac{3 N k}{2}
$$

Pressure P in the ideal gas:

- Entropy:

$$
\begin{aligned}
& S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right] \\
& \quad S(U, V, N)=k N\left[\ln f(N)+\ln V+\frac{3}{2} \ln U\right]
\end{aligned}
$$

- Equation of state:

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}=N k T \frac{d}{d V} \ln V=\frac{N k T}{V} \rightarrow P V=N k T
$$

This is now derived from counting the number of microstates of the gas particles!

Entropy of mixing

$\Delta \mathrm{S}=$?

$\Delta \mathrm{S}=$?

Entropy of mixing: $\boldsymbol{\Delta S}$

If the gas is the same on both sides of the wall

$$
\begin{gathered}
S_{\text {initial }}=S_{A}+S_{B}=2 S(U, V, N) \\
\Delta S_{t o t}=S(2 U, 2 V, 2 N)-2 S(U, V, U)
\end{gathered}
$$

Using Sackur-Tetrode formula

$$
S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]=k N\left[\ln \frac{V}{N}+\frac{3}{2} \ln \frac{U}{N}+\text { const }\right]
$$

$$
\Delta S_{t}=k 2 N\left[\ln \frac{2 V}{2 N}+\frac{3}{2} \ln \frac{2 U}{2 N}+\text { const }\right]-2 k N\left[\ln \frac{V}{N}+\frac{3}{2} \ln \frac{U}{N}+\text { const }\right]
$$

$$
\Delta S_{t}=0
$$

Nothing changes, when we remove the wall!

Entropy of mixing: ΔS

- If the gas is different (distinguishable) on both sides of the wall

$$
\Delta S_{t}=\Delta S_{A}+\Delta \mathrm{S}_{\mathrm{B}}
$$

Using Sackur-Tetrode formula

$$
\begin{gathered}
S(U, V, N)=k N\left[\ln \frac{V}{N}+\frac{3}{2} \ln \frac{U}{N}+f(N)\right] \\
\Delta S_{t}=k N \ln \frac{V_{A, \text { final }}}{V_{A, \text { initial }}}+k N \ln \frac{V_{B, \text { final }}}{V_{B, \text { initial }}} \\
\Delta S_{t}=2 k N \ln 2
\end{gathered}
$$

\square Entropy increases when we mix different gases
\square Effectively, the available volume increases upon mixing hence the number of configurations increases

Ideal mixtures

Composition:

$$
x_{i}=\frac{N_{i}}{N}, i=A, B, \quad x_{A}+x_{B}=1, \quad \rho=\frac{N_{A}}{V_{A}}=\frac{N_{B}}{V_{B}}=\frac{N}{V}
$$

Ideal gas and ideal mixture $=\boldsymbol{U}$ and \boldsymbol{P} are independent of composition: $U=U_{A}+U_{B}=$ const.

Remove wall between $A \& B$:

Entropy change on mixing
Entropy of mixture
Chemical potential of mixture:

$$
\begin{aligned}
& \text { Equilibrium criterium: }\left(\frac{\partial S_{A}}{\partial N_{A}}\right)_{U_{A}, V_{A}}=\left(\frac{\partial S_{B}}{\partial N_{B}}\right)_{U_{B}, V_{B}}, U_{A}, V_{A} \rightarrow U, V \\
& \Delta S_{i}=k N_{i} \ln \frac{V}{V_{i}}=k N\left(\frac{N_{i}}{N} \ln \frac{N}{N_{i}}\right)=-k N x_{i} \ln x_{i} \\
& S_{i}\left(x_{i}\right)=S_{i, 0}\left(x_{i}=1\right)+\Delta S_{i}\left(x_{i}\right) \\
& \mu_{A} \equiv-T\left(\frac{\partial S_{A}}{\partial N_{A}}\right)_{U, V, N_{B}} \quad \frac{\partial x_{A}}{\partial N_{A}}=\frac{\partial^{N} A / N_{N}}{\partial N_{A}}=\frac{1}{N} \\
& =-\frac{T}{N}\left(\frac{\partial S_{A}}{\partial x_{A}}\right)_{U, V, N_{B}} \\
& =-\frac{T}{N}\left(\frac{\partial S_{A, 0}}{\partial x_{A}}\right)_{U, V, N_{B}}-\frac{T}{N}\left(\frac{\partial \Delta S_{A}}{\partial x_{A}}\right)_{U, V, N_{B}} \\
& =\mu_{A, 0}+\frac{T}{N}\left(\frac{\partial k N x_{A} \ln x_{A}}{\partial x_{A}}\right)_{U, V, N_{B}}=\mu_{A, 0}+k T\left(\frac{\partial x_{A} \ln x_{A}}{\partial x_{A}}\right)_{U, V, N_{B}} \\
& =\mu_{A, 0}+k T\left(\ln x_{A}+1\right) \\
& =\mu_{A, 0}^{*}+k T \ln x_{A}
\end{aligned}
$$

Equilibrium criterium: $\frac{\partial S_{A}}{\partial N_{A}}=\frac{\partial S_{B}}{\partial N_{B}}=>\mu_{A}=\mu_{B} \quad$ ideal mixtures $\Rightarrow>\ln x_{A}=\ln x_{B} \quad \Rightarrow \quad x_{A}=x_{B}$

- State variables and functions: $N, V, P, T, \mu, U, S,(H, F, G)$
- 1. law: $\Delta U=Q+W$
- 2. law: $\triangle S \geq 0$ for isolated system
- 3. law: $S \rightarrow$ constant when $T \rightarrow 0$
- Equilibria
- Thermal: $\frac{\partial S_{1}}{\partial U_{1}}=\frac{\partial S_{2}}{\partial U_{2}} \Leftrightarrow$
- Mechanical: $\frac{\partial S_{1}}{\partial V_{1}}=\frac{\partial S_{2}}{\partial V_{2}} \Leftrightarrow$

$$
T_{1}=T_{2}
$$

- Chemical: $\frac{\partial S_{1}}{\partial N_{1}}=\frac{\partial S_{2}}{\partial N_{2}} \Leftrightarrow$
$P_{1}=P_{2}$
- Defined
- Temperature:
- Pressure:
- Chemical potential:

- Heat Capacity: $C_{V} \equiv\left(\frac{\partial U}{\partial T}\right)_{N, V}$

Open systems

Thermal reservoir

First law $\Delta U=Q+W=T \Delta S-P \Delta V$
Adiabatic compression: $\quad Q=0$

$$
\begin{aligned}
& \Delta V<0, \quad \Delta N=0, \quad \Delta U=? \\
& \text { Heat: } \quad Q=T \Delta S=0
\end{aligned}
$$

$$
S(U, V, N)=k\left[N \ln V+\frac{3 N}{2} \ln U+f(N)\right]
$$

Entropy: $\quad \Delta S=k\left[N \ln \frac{V_{2}}{V_{1}}+\frac{3 N}{2} \ln \frac{U_{2}}{U_{1}}\right]=0$

$$
\begin{aligned}
& \frac{3}{2} \ln \frac{U_{2}}{U_{1}}=-\ln \frac{V_{2}}{V_{1}} \\
& \frac{U_{2}}{U_{1}}=\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{2 / 3}>1 \Rightarrow \text { heating }
\end{aligned}
$$

With thermal reservoir:
(NVT) constant instead of (NVU) constant $T_{2}=T_{1} \quad \Rightarrow \quad Q=T \Delta S<0$ how can $\Delta S<0$?
$2^{\text {nd }}$ law:

$$
\begin{aligned}
& \Delta S_{t o t}=\Delta S+\Delta S_{R} \geq 0 \\
& \Delta S_{R}=?
\end{aligned}
$$

TDI $d U=T d S-P d V+\mu d N$

$$
\begin{array}{ll}
\Rightarrow & d S_{R}=\frac{1}{T} d U_{R}=\frac{1}{T} d \mathrm{U} \\
& d S_{t o t}=\frac{1}{T}(T d S-d U) \geq 0
\end{array}
$$

$$
F=U-T S, d F=d U-T d S-\mathcal{S} d T
$$

$=>2^{\text {nd }}$ law using only system variables: $\mathbf{d F} \leq \mathbf{0}$

