Biologisk Fysikk UiO Hodgkin-Huxley-model

Geir Halnes Norwegian University of Life Sciences,

#0: Introduction

Action potentials

Dendrites Terminal Bulb Cell Body Axon

> Neurons fire socalled action potentials.

The generation of these will be the main topic of this lecture.

ACTION-POTENTIAL-CURRENT-CLAMP

Reversal (Nernst) - Potential

Equilibrium between diffusion and electric drift:

One species: E

Several species:

$$T_{eq,K^+} = rac{RT}{zF} \ln rac{[K^+]_o}{[K^+]_i},$$

Typical values:

 $E_{\rm K} \simeq -80 \, {\rm mV}$ $E_{Na} \sim 50 \text{ mV}$ $E_{CI} \simeq -60 \text{ mV}$ E_{Ca} ~ 120 mV

Resting neuron:

 $V_m \sim -65 \text{ mV}$ I_{κ} will be hyperpolarizing. I_{Na} and I_{Ca} depolarizing.

$$E_m = rac{RT}{F} \ln \left(rac{P_{Na^+}[Na^+]_o + P_{K^+}[K^+]_o + P_{Cl^-}[Cl^-]_i}{P_{Na^+}[Na^+]_i + P_{K^+}[K^+]_i + P_{Cl^-}[Cl^-]_o}
ight)$$

Constant ion concentrations?

Reason for concentration gradients:

- Ion pumps & co-transporters.
 - Use energy to pump ions against gradients.
- Example: Na⁺/K⁺ exchanger (ATPase)-pump

Constant concentrations:

- A normal assumption in neuroscience is that the ion concentrations are constant!
- Reason:
 - Number of e.g., Na⁺ that cross the membrane during an action potential so small that it doesn't change the concentration much
 - Pump resets original balance between action potentials
 - Exceptions sometimes made for Ca²⁺.

Reversal (Nernst) - Potential

One species:

$$E_{eq,K^+} = rac{RT}{zF} \ln rac{[K^+]_o}{[K^+]_i},$$

Several species:

$$E_m = rac{RT}{F} \ln igg(rac{P_{Na^+}[Na^+]_o + P_{K^+}[K^+]_o + P_{Cl^-}[Cl^-]_i}{P_{Na^+}[Na^+]_i + P_{K^+}[K^+]_i + P_{Cl^-}[Cl^-]_o} igg)$$

Reason for concentration gradients:

- Ion pumps & co-transporters.
 - Use energy to pump ions against gradients.

Constant concentrations:

Typical values:

 $E_{K} \approx -80 \text{ mV}$ $E_{Na} \approx 50 \text{ mV}$ $E_{Cl} \approx -60 \text{ mV}$ $E_{Ca} \approx 120 \text{ mV}$

Resting neuron: $V_m \approx -65 \text{ mV}$ I_K will be hyperpolarizing. I_{Na} and I_{Ca} depolarizing.

Reason for concentration gradients: Ion pumps & co-transporters

Passive (RC) neuron model

Group all pumps and passive leakage currents into one current:

$$I_L = g_L (V_m - E_L)$$

Quasi-Ohmic:

Linear with deviance from E_L . Ok approximation.

When *I*_L is the only ionic current, *E*_L will be identical to the resting potential

$$c_m \frac{dV_m}{dt} = -g_L (V_m - E_L) - i_{stim}$$

Cable equation

Connect many RC's together, to get «cable»:

- Used for multicompartment models of neurons, To model signal propagation in
- dendrites and axons.
- I will stay «single-compartment» in this lecture.

Action potentials:

Passive model ok for small current injections, but **exciting** things happen when the membrane potential is depolarized up to a certain threshold

ACTION-POTENTIAL-CURRENT-CLAMP

Action potential (AP)

- The main communication «unit» in the brain
- Key features of the AP
 - Rapid depolarization followed by rapid repolarization (often also hyperpolarization) of the membrane potential
 - Propagate down the axon with little loss in shape

Hodgkin & Huxley (HH)

- Hodgkin & Huxley (1952) made model of AP generation and propagation in squid giant axons
 - Among the first qualitatively successful theories in neuroscience
 - Predicted AP shape and propagation speed
 - Circuit model
 - Got the Noble prize for this work.
 - Formalism still in use

Space-clamp configuration

Experiments on squid giant axons because these were the thickest axons one knew of

Could short-circuit the axon by sticking a copper wire into it

Thus – the whole thing was isopotential, so one had full control of the voltage everywhere.

No axial currents.

Essentially then – a real singlecompartment neuron.

#1. HH circuit model for single compartment.

Action potential as:

- Na⁺ current entering the neuron (upstroke),

PASSIVE

- Followed by a K⁺ current leaving it (downstroke).

extracellular i_{e} c_{m} \overline{g}_{L} \overline{g}_{L} E_{m} \overline{f}_{L} intracellular

ΗH

#1. HH circuit model for single compartment

$$c_m \frac{dV_m}{dt} = -\bar{g}_L \cdot (V_m - E_L) - g_{Na} \cdot (V_m - E_{Na}) - g_K \cdot (V_m - E_K)$$

Passive components The bar over *g* indicates that it's a constant

Active components Sodium & Potassium channels making APs

Interpretation of active components:

Time and voltage dependent conductances:

$$g_{Na}(V_m,t)$$
 $g_K(V_m,t)$

- Conductances can be written as

 $g_x(V_m,t) = \bar{g}_x \cdot p_x(V_m,t)$

- For a single ion channel
 - p_x is the probability that it is open
- For many ion channels of same type (x)
 - p_x is the fraction of the total channels that are open.

How to determine $g_{\kappa}(V_m, t)$?

- 1. Manipulate conditions so that one knows that I_K is the only current passing through the membrane.
- 2. Control V_m : Set it to a «holding-potential» V_h
- 3. Measure I_{κ} for this holding potential.
- 4. Derive conductance from: $g_K = \frac{I_K}{(V_h E_K)}$
- 5. Repeat for many V_h .

Observation:

For a given V_h , g_K increases w/ time and reaches a steady state (SS) value $g_{K\infty}(V_h)$.

SS depends on V_h .

Time to reach SS also depends on V_h .

We must fit some conceptual model to these observations!

- Conceptual model (by HH)
 - Each K⁺-channel is controlled by four so-called *gating particles*.
 - Four, simply because that gave best fit to data.
 - Each gating particle is in either an **open** or **closed** state.
 - *n* is the probability that a particular gate is open
 - For large numbers of ion channels *n* is the fraction of gates that are open.
 - For the channel to be open, all four gates must be open.
 - n^4 should then be the fraction of K⁺ channels that are open.
 - That should give us: $I_K = \bar{g}_K n^4 (V E_K)$.

- Dynamics of the gating particles
 - First order kinetics equation:
 - Alternative form:

$$\frac{dn}{dt} = \alpha_n (1-n) - \beta_n n$$
$$\frac{dn}{dt} = \frac{\left(\frac{\alpha_n}{\alpha_n + \beta_n} - n\right) (\alpha_n + \beta_n)}{\frac{n_\infty}{n_\infty}} \frac{1}{\tau_n}$$
$$\frac{dn}{dt} = \frac{n_\infty - n}{\tau_n}$$

dn

- So that:
- Interpretation:
 - *n* approaches n_{∞} with time constant τ_n .
 - n_{∞} is the open probability for given V_h when t $\rightarrow \infty$.

SUMMARY

 $- I_{\mathcal{K}} = \bar{g_{\mathcal{K}}} n^4 (V - E_{\mathcal{K}})$

$$-\frac{dn}{dt} = \alpha_n(1-n) - \beta_n n$$

• Fits:

- $\alpha_n = 0.01 \frac{V + 55}{1 e^{-(V + 55)/10}}$
- $-\beta_n = 0.125e^{-(V+65)/80}$
- -V must be inserted with units mV

The rate variables α_n and β_n are basically just curves fitted to experimental data.

It was during this curve fitting that HH realized that a number of 4 gates gave best agreement.

Much later it was seen that the K⁺ channel contains 4 sub-units, giving a structural explanation to the data.

#3: Sodium current

Unlike for K⁺, the Na⁺ current is transient.

For a given V_h , it peaks and then decays to zero

Something opens (activates) it

Then something else closes (inactivates it).

Hodgkin & Huxley introduced

- Activation variable *m* (like n for K⁺).
- Inactivation variable *h* (brand new)

#3: Sodium current

• Model

3 activation gates: Are closed at rest, but open when the voltage is increased 1 inactivation gate: Is open at rest, but

 $I_{Na} = \bar{g}_{Na}m^3h(V - E_{Na}).$

closes when the voltage is increased.

Again, the numbers 3 and 1 come from curve-fitting to data

#3: Sodium current

Model for Na⁺-channel

$$- g_{Na} = g_{Na} m^3 h$$

$$-\frac{dm}{dt}=lpha_m(1-m)-eta_m m$$

$$- \frac{dh}{dt} = \alpha_h (1-h) - \beta_h h$$

• FITS:

 $- \alpha_m = 0.1 \frac{V + 40}{1 - e^{-(V + 40)/10}}$

$$-\beta_m = 4e^{-(V+65)/18}$$

$$- \alpha_h = 0.07 e^{-(V+65)/20}$$

$$-\beta_h = \frac{1}{1+e^{-(V+35)/10}}$$

- V must be inserted with units mV

#4: Full HH model

$$c_m \frac{dV_m}{dt} = -\bar{g}_L (V_m - E_L) - \bar{g}_{Na} m^3 h (V_m - E_{Na}) - \bar{g}_K n^4 (V_m - E_K)$$

Passive components The bar over *g* indicates that it's a constant Active components Sodium & Potassium channels making APs

$$\frac{dx(V_m,t)}{dt} = \frac{x_{\infty}(V_m) - x}{\tau_x(V_m)}, \text{ for } x = \{m, h, n\}$$

$$\begin{aligned} x_{\infty}(V_m) &= \frac{\alpha_x(V_m)}{\alpha_x(V_m) + \beta_x(V_m)}, \text{ for } x = m, n, h & \tau_x = 1/(\alpha_x + \beta_x) \\ \alpha_n &= \frac{0.01 \text{ms}^{-1} V_m + 55 \text{mV}}{1 - e^{-(V_m + 55 \text{mV})/10 \text{mV}}} & c_m = 1.0 \mu \text{F/cm}^2 \\ \beta_n &= 0.125 \text{ms}^{-1} e^{-(V_m + 65 \text{mV})/80 \text{mV}} & \bar{g}Na = 120 \text{mS/cm}^2 \\ \alpha_m &= \frac{0.1 \text{ms}^{-1} V_m + 40 \text{mV}}{1 - e^{-(V_m + 40 \text{mV})/10 \text{mV}}} & \bar{g}_L = 0.3 \text{mS/cm}^2 \\ \beta_m &= 4 \text{ms}^{-1} e^{-(V_m + 65 \text{mV})/18 \text{mV}} & E_{Na} = 50 \text{mV} \\ \alpha_h &= 0.07 \text{ms}^{-1} e^{-(V_m + 65 \text{mV})/20 \text{mV}} & E_K = -77 \text{mV} \\ \beta_h &= \frac{1 \text{ms}^{-1}}{1 + e^{-(V_m + 35 \text{mV})/10 \text{mV}} & E_L = -54.4 \text{mV} \end{aligned}$$

#4: Full HH model

- Simulated vs.
 experimentally recorded responses to induced depolarizations of the membrane
- Blue numbers = depolarized to this many millivolts above the resting potential

#5. HH-type models

Tripolar cells

- Many neuron types exist.
 - Different morphologies. •
 - Different firing properties. •
- Not all of them are well described by the HH model
 - Many ion channels exist besides I_{κ} and I_{na} in HH. •
- Good news: Most of them can be modelled with a HH-type • formalism

Stellate neuron

#5. HH-type models

HH-type formalism means that ion channels are modelled as:

 $i_{x} = \bar{g}_{x} m_{x}^{\alpha} h_{x}^{\beta} (V_{m} - E_{x}).$ Reversal potentual for ion species running through the channel *x*.
Conductance for fully open channel
A number β of inactivation gates.

A number α of activation gates.

#5. HH-type models

Different ion channels explain different features of the firing patterns of neurons *I_h*: Intital «sags» *I_{Na}, I_K, I_A*: AP-shape

 $I_{N\alpha}/I_{\kappa}$: regular AP-firing

 I_{τ} , I_{L} , I_{AHP} , I_{M} , I_{CAN} : Spike frequency adaptation & initial bursts

 I_T, I_h : Rebound Bursts

DATA

MODEL WITH 7 ION CHANNELS

From: G Halnes, S Augustinaite, P Heggelund, GT Einevoll, M Migliore PLoS Computational Biology 7 (9), e1002160

- Inside neurons:
 - $[Na^+]_i \simeq 15 \text{ mM} \text{ and } [K^+]_i \simeq 140 \text{ mM}$
 - [Ca²⁺]_i ~ 100 nM
- I_{K} and I_{Na} do not affect ion concentrations much.
 - E.g., the number of Na⁺ ions needed to charge V_m by 80 mV (action pot.) changes [Na⁺]_i by (much) less than 1 %.
 - We therefore normally assume that $[Na^+]_i$ and $[K^+]_i$ are constant.
- But: I_{Ca} can change [Ca²⁺]_i dramatically.

- Ca²⁺
 - Used by neurons as a signalling molecule
 - Synaptic plasticity
 - Biochemical reactions
 - Ca²⁺ gated ion channels
 - Seen in Ca²⁺ imaging experiments
- High-voltage activated Ca²⁺ channels (here called I_{Ca})
 - Many neurons have these
 - These open during action potentials and let some Ca²⁺ into the neurons.
 - For neurons that have these, action potentials can be seen as fluctuations in intracellular Ca²⁺.

- Two-photon calcium imaging
- Let's say we want to model the soma in the experiment to the right
 - Need calcium channel for calcium influx
 - Need to model the dynamics calcium concentration

Stephanie Rudolph, Court Hull and Wade G. Regehr Journal of Neuroscience 25 November 2015, 35 (47) 15492-15504

Two activation gates No inactivation gates

• Simplest HH-type model of I_{Ca}:

Calcium reversal potential ~ 120 mV

$$\frac{d[Ca^{2+}]_i}{dt} = -\alpha I_{Ca} - \frac{[Ca^{2+}]_i - [Ca^{2+}]_{basal}}{\tau_{Ca}}$$

- α converts current to concentration change
 - Depends on volume, membrane area and buffering processes

 $I_{Ca} = \bar{g}_{Ca}s^2(V - E_{Ca}).$

- $\tau_{Ca} \sim 50$ ms is the Ca^{2+} decay time constant
 - Due to pumps & buffering

Tomorrow

- Exercise:
 - I will give you a python script with the original HH model
 - You will modify it
 - Speed up kinetics
 - Add calcium channel
 - Add calcium dynamics
 - Try to model a Ca-imaging experiment

Thank you

HH-equation

$$g_x = \bar{g}_x$$

$$c_m \frac{dV_m}{dt} = -\bar{g}_L (V_m - E_L) - \bar{g}_{Na} m^3 h (V_m - E_{Na}) - \bar{g}_K n^4 (V_m - E_K)$$

l_{Na}

Passive components The bar over *g* indicates that it's a constant Active components Sodium & Potassium channels making APs

Interpretation of active components:

Time and voltage dependent conductances:

 $g_{Na}(V_m,t) = \bar{g}_{Na}m^3h \qquad g_K(V_m,t) = \bar{g}_K n^4$

- *m*, *h* and *n* are called gating variables. Functions of $V_m \& t$.
- The Na-channel has 3 gates of type *m* and one of type *h*.

- m & n take values between 0 & 1.

- Indicate the **probability** that the particular gate is open.

I_K

- For channel to be open, all gates must be open. The product m^3h is the prob. that a given Na-channel is open.
- For many Na-channels (large numbers), m³h interprets as the fraction of channels that are open.