Lecture 2

FYS4715 2021

Whats inside cells, contd, statistical mechanics, diffusion, random walks

fatty acids -> phospholipid -> membranes

energy and entropy

Important molecules

- Important nitrogenous bases: Adenine, Thymine, Guanine, Cytesine, Uracil
- Nucleic acids
 - DNA (DeoxyriboNucleic Acid): base pairs T-A, C-G
 - RNA (RiboNucleic Acid): single strands of G,U,A,C
- Nucleotide = (nitrogenous) base + sugar + phosphate
 - Adenine (base) + ribose (sugar) = Adenosine
 - ATP (Adenosine TriPhosphate)
 - ADP (Adenosine DiPhosphate)

Important molecules

• fatty acids -> phospholipid -> membranes

• amino acids -> polypeptides - proteins

Amino: NH2, Acid: OOH

Peptides: 2-50 amino acids Proteins: >50 amino acids

Proteins

- Proteins perform a vast array of functions
 - catalysing metabolic reactions
 - DNA replication
 - responding to stimuli
 - providing structure to cells, and organisms
 - transporting molecules from one location to another
- <u>https://www.rcsb.org</u> protein data bank
 - 1aoi
 - 1tau
 - 1mbn
- Proteins are folded: <u>https://youtu.be/SMNIfNJKdRc</u>
- peptide in water: atomify

Cells – fundamental functional units of life

- enclosed by plasma membrane
- interior «soup» called cytoplasm
- organized in organelles = specialized compartments surrounded by membrane
 - nucleus: contains the genetic information necessary for cell growth and reproduction
 - mitochondria: responsible for the energy transactions necessary for cell survival
 - lysosomes: digest unwanted materials within the cell
 - endoplasmic reticulum & Golgi apparatus: • organization of the cell by synthesizing selected molecules and then processing, sorting, and directing them to their proper locations
- https://www.allencell.org/

cyto- = cell

© 2012 Encyclopædia Britannica, Inc.

Plasma membrane

Ion channels

Cytosceleton

- actin filaments (7 nm Ø)
- microtubules (25 nm Ø)
- intermediate filaments (10 Ø)

The eukaryotic cytoskeleton. Actin filaments are shown in red, and microtubules composed of beta tubulin are in green. physical statements are shown in the statement of the sta

- G-actin monomer
- F-actin polymer

Microtubules & kinesin motors

Angio-	
-atomy, -otomy	
Auto-	
Brachy	
Cata- (katalysis)	
Carcino-	
Centro-, -centric	
-ceptor, ceptive	
Chromo-	
Chrono-	
-cyte, cyto-	hollow
Diplo	
e-, ec-	
Endo-	
Exo-	
Extra-	
Erythro-	
-gen, genous	descent
-genic, -genous	
-genic, -genous	

Vessel cutting Angiogenesis self =production short of vessels dissolving tumor (crab-like) capere, to take $\underline{\underline{}}$ centre color Production time (development)o f cancer double out of within, inside outside beyond red birth, descent, origin to produce

Glia-		glue
Haem-		blood
Histo-		tissue
Homeo-		alike
Homo-		the same
Hyper-		above
Нуро-		under
Infero-		beneath
Infra-		below
Inter-		between
Intra-		within
Iso-		equal
-kinesis, -kinetic		kinesis=movement
Leuko-		white
Lipo-		fat
-lysis, -lysin	dissolving	
Macro-		large
Medi-		middle

-mere, mero-	a part		
Meta-		after	
Metabolism	change		Centromere=
Micro-		small	middle part
Mito- (mitosis)		a tread	inidale part
Mono-		single	
Muta-		mutare=to cha	nge
Necro-		dead	and part
Neuro-		nerve	end part
-nomics		law	
Oligo-		few	
Onco-		bulk, mass	
Ortho-		straight	
Para-		beside	
Per-		through	
Peri-		around	
-phage, -phagous		phagein=to eat	
-phil		to love	

-phobe	to fear
Photo-	light
Plasma-, -plasm	form
-plicate	to fold
Post-	after
Pre-	before
Pro-	before
Proto-	first
Re-	back
Retro-	backwards
Serum	whey (myse)
-some, soma-	body
Stereo-, -steric	solid
Sub-	under
Super-	over
Supra-	above
Sym-, syn-	with

-synthesis	composition	
Tauto-		the same
Tele-		far
Teleo-		complete
Telo-, telio-	end	
Trans-		across
Ultra-		beyond

Thermodynamics

- Macroscopic
- Continuum matter
- Differentiable
- Necessary relations based on some axioms
 - Always true for all matter
 - Necessary tool for theory
 - Always present in applications (engineering, chemistry, geoscience...)
- All properties of matter $(\Delta H_m, \Delta S_v, c_v, \lambda, D)$ must be measured

Statistical physics

- Microscopic
- Discrete particles $_{\vec{r}}$
- Mechanics
- Statistical behaviour of simplified models
- Bottom up explanation of thermodynamics
- Properties of model matter (ΔH_m , ΔS_v , c_v , λ , D) can be calculated and measured in simulation

How do cows move and interact in a meadow?

Model: Representation of a real phenomenon that is simple enough that you may do calculations.

Phenomenon: Diffusion

- Observations
 - Dissolved matter moves from high concentration to low concentration. (sugar in tea, smell of fart, ink in water).
 - After a long time: concentration is the same everywhere
 - What is diffused? "matter", sugar, smelly molecules, ink
 - Hot metal in contact with cold metal: Temperature evens out.
 - After a long time: temperature is the same everywhere
 - What is diffused? Heat
 - What is heat?
- "After a long time" = notion of equilibrium
- Only one direction of development -> equilibrium
- Irreversibility, arrow of time

A small detour...

Heat, first physics definition

- Heat is energy in transfer to or from a system, by mechanisms other than work.
- Amount of heat transferred: J (Joule)
- Rate of heat transfer: W=J/s (Watt)
- Heat flux, Q, [Q]=W/m²

Pixabay

Fys2160 2019

Theory: Relaxation to equilibrium by **diffusion**

Macroscopic explanation of diffusion:

Net transport of *energy* or *particles* until thermodynamic equilibrium is reached

- $\vec{J} = -D\nabla c$ Matter flux is proportional to gradient of concentration
- $\vec{Q} = -\lambda \nabla T$ Heat flux is proprtional to gradient of temperature
- What are «matter» and »heat»?

I. DIFFUSION AS A MIXING PROCESS

Diffusion equation:

$$J = -D_{12}\frac{\partial\rho}{\partial y} \tag{1}$$

Divergence theorem (continuity equation)

$$\frac{\partial \rho}{\partial t} + \nabla J = 0 \tag{2}$$

Combine the two to get the partial differential equation for diffusion:

$$\frac{\partial \rho}{\partial t} + D_{12} \frac{\partial^2 \rho}{\partial y^2} = 0 \tag{3}$$

Starting with particles in y = 0 at time t = 0: $\rho(t = 0, y) = \delta(y)$, where δ is the Kroeneker delta function the diffusion equation has solution (you may easily verify this):

$$\rho(t,y) = \frac{1}{\sqrt{4\pi D_{12}t}} \exp(-\frac{y^2}{4D_{12}t})$$
(4)

Theory: Relaxation to equilibrium by diffusion

Microscopic explanation of diffusion:

Net transport of *energy* or *particles* through random thermal motion and particle collisions until thermodynamic equilibrium is reached

- At any T > 0K, particles are in thermal motion
- Collisions between particles -> particle trajectory is a zigzag -- random (diffusive particle)

Models of diffusion

- Molecular dynamics: gas_2_sections_lampps.in
- Random walk: rw1d_vector.m, rw1d.m
- Algorithmic: gasboxalgo.m
- Ideal gas
- Reversible laws of motion
- Irreversible development: arrow of time
- Measure average property: distribution in box

Gas particles moving randomly starting at one side.

Random walk (RW)

Random walk and diffusion

Exercises for next week

- 2D RW in Matlab or Python
 - (live script or Jupyter notebook)
- Your turn 1A
- Problems 1.3, 2.2, 2.5

Ideal gas model

- Pressure = Force / Area
 - $[P] = [F]/[A] = N/m^2$
- Newtonian mechanics

•
$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$$

• Used this to calculate pressure of ideal gas:

$$P_x = \frac{1}{A} \sum_i \frac{\Delta p_{x,i}}{\Delta t} = \frac{1}{A} N \frac{m \bar{v}_x^2}{2L} = \frac{N k_B T}{V} = \rho k_B T$$

• When forces at distance:

•
$$P = \rho k_B T + \frac{1}{3V} \sum_{i < j} \vec{f}(\vec{r}_{ij}) \cdot \vec{r}_{ij}$$

• second term: virial

Statistical mechanics

- Model: MD (Atomify)
- micro x_i, m_i, v_i, f_{ij}, 10²³-> macro ρ , <v>, <v²>, E_k,
- thermodynamics: P, T, c_P, H_v,... (stat + conservation laws)
- distributions: uniform, Gaussian, Poisson

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

- x->vx, x0->0, s
- <v>, <v²>
- Model: ideal gas