Week 4

Entropy and entropic forces



Focus question

* Biological question: if energy is always conserved,
how can some devices be more efficient than
others?

* Physical idea: Order controls when energy can do
useful work. Order is not conserved.



Reversible
or
irreversible




’
(4

o ClideQecofn

Particle dynamics:
 Newtons law of motion
Reversible
* Possible evolution
Why does it never happen?




* One body: reversible motion (My son can be shot
from the water up to Pantern)

* Multibody systems:
* reversible laws of motion (beads CAN move all to one side)
* irreversible collective dynamics (it will never happen)

* Macro defenition of equilibrium: 4
* Homogeneous particle distribution

* Micro definition of equilibrium?

clideo.cdr



New concept: |
Microstates and macrostates | €&

* What is the most likely outcome of tossing 3 coins?

 Microstates: state of all coins
e heads: si=1, tails: si=0

i:123 n

 all microstates are equally likely 000 O
100 1

 Macrostate: sum of states 010 1
° n:zi Si(= 0’1’2’3) 001 1
110 2

* Which is the most likely macrostate 101 2
3 . . 011 2

8 = 2° possible microstates 111 3

* Probabilities: n=0:P=1/8
n=1: P=4/8
n=2: P=4/8
n=3: P=1/8



Microstates and macrostates

* Box with left and right side

|
 Example: N =5 o :
|
* Particles can be distinguished !
(i=1, 2,.. 5) :
* Particle state s;: 00000
o |eft: Si=1 e 00001
* right: 5;=0 . 00010
* Macrostates n=%;5;(=0,1,2, ..5) .« 00100
* List the possible microstates of * 01000
n=1 * 10000

5 microstates => multiplicity (n,N) of macrostate n=1is (1,5) =5



Multiplicity of macrostates

n=0 n=1

00000 00001
00010
00100
01000
10000

Q(0,5)=1 Q(0,5)=5

General formula for multiplicity: Q(n,N) =
Number of possible microstates: O, = Y2 _, Q(n) = 32(= 2°)

Probability of macrostates: P(n,N) = Q(n, N)/2N =

n=2

00011
00101
01001
10001
00110
01010
01100
10010
10100
11000

Q(0,5)=10 €Q(0,5)=10 Q(4,5)=5 €Q(5,5)=1

n=3

11100
11010
10110
01110
11001
10101
10011
01101
01011
00111

n=4

11110
11101
11011
10111
01111

(N—-n)!n!

n=5
11111

Q(2,5) =

2 NN
(N—-n)!n!
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“undament of statistical
mechanics

Fundamental assumption of statistical mechanics:
In an isolated system in thermal equilibrium, all
accessible microstates are equally probable.

An isolated system will evolve towards the most
probable state = macrostate with the highest
multiplicity. We call this the equilibrium state.



Sharpness of distribution

n=[5 10 30 100 300 1000];

1=1;
x107 i1
10 300 15 for i=1:2
for j=1:3
250 nk=1;
8 for k=1:n(1)
= _. 200 — 10 g nk(k)=nchoosek(n(1),k);
r 6 X X
£ £ 150 = subplot(2,3,1)
= = = plot(nk,'k', 'LineWidth"',2)
= 4 —= = xlabel('k', 'FontSize',20)
100 5 1 1 1 : 1
ylabel('n!/(n!(n-k)!",'FontSize"',20)
> axl = gca; % current axes
50 axl.FontSize = 20;
1=1+1;
0 0 0 end
0 2 4 0 5 10 0 10 20 30 | opg
k k k
28 88 299
12 x10 10 x10 3><10
10 8 ﬂ 2.5
= 8 =L = 2
X X 6 X
= 1= £
6 = =1.5
< S 4 s
c 4 = = 1
2 2 05 J k
0 0 0
0 50 100 0 100 200 300 0 500 1000
k k k
What happens when g —» 104°?
N! . . /
Q(N,n) = ——— We need an approximation for N/ when N>>1
n!(N—-n)!
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Equilibrium between two systems

 N=N,+Ng V=V,+Vy U=U,+Ug, all (N,V,U) constant

* Canvary one of the threea € (N, V,U),

* keeping the other 2 constant

* keep total constant: a = a4 + ap = const.
* Multiplicity Q;, = Q4Q5 is maximum

* =most likely state

e =equilibrium state

. a0
maximum when —=2t = ()

A B
Na Ng
Vs Ve
Ua Ug

System: can contain “anything”

aCZA
(0 00y 00,
= QA— B — = 0
aaA aaA aaA
~100; 100,

day = —dap Qp 0ag * O, 0ay

Equilibrium condition:

dInQp 0dInQy

dag day




Boltzmann’s Entropy

S=kln()

Relates the number of microstates
(multiplicity) with the _
thermodynamic (macroscopic) state

IS
of the system C )
B

Probability

k =1.381x10723 ] K1
[S] =]K_1 Entropy

Relates the thermodynamic state of the
system with the probability to be in a
given macrostate

Fys2160, 2020 12



Boltzmann’s Entropy and equilibrium

At equilibrium, the multiplicity is maximized. This means that the
equilibrium state has maximum entropy

Example:

Thermal equilibrium of two interacting ideal gases through energy exchange

aQtotal . aStoi:al .
=0 —-=

—_— 0
U, aU,
0S» 0Sp 0 - 0S4 0Sp dUp __ N 0S4 _ 0Sp
0Uy 0Uy o dUy 0UpdUy - AU 4 - aUg Most likely macrostate

System A and system B have the same temperature: Ty = Tp
Maximum total Entropy

[S] _] K1 Thermodynamic equilibrium
Q-total ' [U] ]

Interacting systems have the
aSA — aSB — 1 same temperature at
du, dUg T equilibrium

5
-~ \au
> 13




Equilibrium between two systems

* N=N,+Ng V=V,+Vy U=U,+Ug, all (N,V,U) constant

* Canvary one of the threea € (N, V,U),
* keeping the other 2 constant
* keep total constant: @« = a4 + ag = const.

* Stor = Sy + Sp is maximum in equilibrium

Equilibrium criterium:

Sy 95, A

dag Jday Vs

Entropy: S = kInQ(N,V,U)

ceL e . 0S4 . 0Sp ;l — E [S] ]K_l
Thermal equilibrium: 30, 9U,’ - = (aU)N'V' m=
: ... 0Ss _ 0Sp _ 508 Pl _ _J
Mechanical equilibrium: v, v, P = T(av)N'U' T = R
. CeL _aSA_BSB — E [_]_l
Chemical equilibrium: oN, —on,’ MF T(GN)U'V T =K




Thermodynamic identity v .

Change in entropy due to energy, volume, particle number

has a total differential:

i5=(2) we(®) we(Z) an
oU )y n oV/)yn ON

Use definitions: ;1, = ( )N v, P= T( )N ur U= —T(%f,)u,v
ds =~ dv +=av —Ean
T T T

=> Thermodynamic identity for U(S,V,N)

dU = TdS — PdV + udN

The thermodynamic identity holds true for any infinitesimal
change in a system



|deal gas: entropy S and temperature T

Sackur-Tetrode Entropy:

3
S(U.V.N —kNll (V (4nmu)_2>+5]
(U V,N) = "W\ Gz N 2

Temperature:

T (65)_1 (kN d ] U%)_l <3kN 1)_1 U 3NKkT
= |— = —_— =|—— - e
aU av " 2 U 2

Equipartition of energy: B—IZCT for the kinetic energy per particle in 3D

Heat capacity Cy:



Pressure P in the ideal gas:

4Tmm U 5

3
* Entropy: S(U,V,N) = kN[ln (1_[\// (WTV)Z) _I__J

3
S(UV,N)=kN [lnf(N) + an+—2 In U]

e Equation of state:

P T(as) NiT-% 1y =N oy~ Nkt
—_ —_— - —_— =— —
v/ yn av'" v

This is now derived from counting the number of microstates of the gas particles!



Entropy of mixing

?

AS

?

AS
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Entropy of mixing: AS

If the gas is the same on both sides of the wall

Sinitiar = Sa +Sg = 25(U,V,N)
AS,.. = S(2U,2V,2N) — 2S(U,V, U)

Using Sackur-Tetrode formula

V /4mm U\2 5 3 U
S(U,V,N) =kN [ In <N ( —) ) ] kN lln — In— + constl

3h%? N 2 N "2 N
® o www e
o o ® o0 o "0
o o o°
AS; = k2N [ln—+ 1n—+c0nst] 2kN [ln +- ln +const] ® ® @

AS, =0

Nothing changes, when we remove the wall!
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Entropy of mixing: AS

* Ifthe gasis different (distinguishable) on both sides of the wall

ASt - ASA + ASB

Using Sackur-Tetrode formula

S(U,V,N) =kN |I V+31 U+ N
) ) - nN 2 nN f( )
Vi £i Vg ¢
AS, = kN In—2L19L | o [p—2Lmal
A,initial B,initial
AS, = 2kN In 2

U Entropy increases when we mix different gases

O Effectively, the available volume increases upon mixing hence the

number of configurations increases

® @ANA2V,UA
o o ® o o
e ® o0

B: NB,2Vy, UB@®

20




A el B

N, N,

V, Vg

° UA UB
|[deal mixtures
V=V,+Vg
Thermal and mechanical equilibrium: Ty = Ty, Py = Pg U=Uy+ Ug

Composition: X; =£Ni, i=AB, x,+xzg=1p =%‘1 =%5’ =€
A B

Ideal gas and ideal mixture = U and P are independent of composition: U = U, + Ug = const.

A

T o as
Remove wall between A & B: Equilibrium criterium: (—) = (—B) U, Vy-> U,V
INA . v ONg/ v
AV A BYB
. 4 Niy N
Entropy change on mixing AS; = kN; ln; = kN (—N lnF_) = —kNx; In x;
l l
Entropy of mixture Si(x;) = Sio(x; = 1) + AS;(x;)
N
. . . as d 9" A
Chemical potential of mixture: s =-T (—A) a9 Yy _1
ON4 UV Ng ON 4 ONy4 N
__T (ﬂ)
N axA U,V,NB
_ _I (6SA,0) __T (6ASA)
N \ 0x4 UV Ng N\ 0xy UV,Ng
T (0kNxplnxgy O0xplnxy
o D (AN g (i)
N 0xa UV.Ng 0xa /yyv.Ng

= Ha0 + kT(ln Xq + 1)

= HZ’O + kT lnxA

A e . S S . .
Equilibrium crlterlum:a—NA =a_1vB => Uy =pug ideal mixtures => Inx, = Inxp => X4 = Xp
A B



vvyyvy Vy

State variables and functions: N, V,P, T,u, U,S,(H, F, G)

3. law: S —constant when T — 0

Equilibria
» Thermal: % — g—zz &
» Mechanical: g—\s/ll = g—% &
» Chemical: g—,‘?lll = g—,‘\gé &
Defined

» Temperature:
» Pressure:

» Chemical potential:

> Heat Capacity: Cy = (9%

Q

Jn.v

TI,=1T,
Pi=P;
M1 = H2




Open systems

O

/

= TG A a S =R
SRR =]
"o e ®e S oo | S
>% ° L] ° f.-c
) ad ° 5
Jddq o L] =Y
35& o [ ] o ® 3Q¢U
BIoo % © o«
=9 ° ° . 92
D4 ® ® .
Gcle ® o* NS
IO O H

Firstlaw AU = Q + W =TAS — PAV

Adiabatic compression: Q=0
AV <0, AN =0, AU =7
Heat: Q=TAS =0

SW,V,N) =k [NV +Zmu + f(N)]

Entropy: AS =k [Nln % +%ln% =0
1 1
Sl 12
2 Uy Vi
U, T /3 .
— === (—) > 1=> heating
Uy, T V;

/////Z Thermal reservoir

With thermal reservoir:
(NVT) constant instead of (NVU) constant

T, =T; => Q=TAS <O

how can AS < 07

2 |aw: ASipe = AS +ASp =0
ASp =?

TDI dU =TdS — PdV + udN

=> dSg == dUg =—dU

dSyor =7 (TdS — dU) = 0
F=U-TS, dF = dU — TdS — S&T

=> 2" Jaw using only system variables: dF < 0



Thermodynamic potentials

Internal energy: U = U(S, V,N)
Enthalpy: H= U+ PV = H(S, P, N)
Helmholtz: F=U—- TS = F(T,V,N)
Gibbs: G=U—- TS+ PV =G(T,P,N)
Grand: =U—-TS — uN =o(V, T, 1)

vvyyvyyvyy

Thermodynamic -T S

potentials are >
useful for the
description of l l F
non-cyclic =U-TS
processes. Internal Helmholtz
energy free energy
U = energy needed to F = energy needed to
create a system create a system
minus the energy
+ you can get from
the environment.
Y I I = U+PV G = UsPV-TS
They are used Enthalpy Gibbs
along with the free energy
First Law of H = energy needed to G = total energy needed
Thermodynamics. create a system to create a system
plus the work and make room for
System work and ”“defgr'ﬁ make ';;u"'x g‘:t :‘ofnmy
entropy play a the environment.
major role.




Interpretation and use of the potentials, “free energy”

The potentials represent the energy necessary to create the system
from nothing, keeping the natural variables (of that potential)
constant.

Or, conversely: The energy that is “free” to be used when the
system is annihilated.

» V constant: U — energy to create a system
» P constant: H — energy to create a system and the work to
make space for it
» Normal conditions in a lab
» Enthalpy of reaction, formation, melting, vaporization,
mixing...
» Measured and tabulated for most substances!
» [ constant: F — energy to create a system minus the heat

from the surroundings.
» P. T constant: G — energy to create a system and the work to
make space for it minus the heat from the surroundings.
» Measured and tabulated for many substances!
» A process is spontaneous when the Gibbs free energy of the
reactants is larger than that of the products.



2. law for other natural variables than (N,V,U)

When a system is not isolated the entropy of the surroundings
(reservoir) must be accounted for:

» dSr = dUR/Tr + PrdVR/ Tr — urdNgr/ Tk (TDI)
» (NVT) constant:
» dSp =dUr/Tr=—dU/T Tr=T, dUgp = —dU

> dSir = dS —dU/T = (TdS — dU)/T
> dStot — —dF/T
>

» (NPT) constant:

> dSg = dUg/Tr — PrdVg/Tr = —dU/T — PdV/ /T

> Tr=T, Pr = P dUg = —dU
> dS.c = (TdS — dU — PdV)/T

> dG = dU — TdS — SdT + PdV + VdP, dT = 0,dP = 0
> dS.e = —dG/T

>

>

Spontaneous prosesses go from high to low Gibbs energy



Boltzman probabilities: The probability for a system S described
by N, V. T, to be in a state ¢ with energy ¢; is given as

1
P(e;) = Ee_ei/kT : (7.17)

where the system is in equilibrium.

Partition function: The sum Z = Z(N,V,T) is called the parti-
tion function. The sum is over all the states i of the system:

Z(N,V,T) Ze—ez/kT (7.18)

The average of a quantity ();, which depends on the state 7 of a
canonical system with given N, V', T, is:

Qi=>_PW)Qi=(1/2))_Q e~ ci/M (7.20)




Temperature

Consider the following graph of entropy S vs. energy U for a particular system. How
does the temperature at point 1 compare to the temperature at point 2?

2

| A)T,=T, B)T,>T, C)T,<T,

U

According to the following graph of entropy vs. energy, the
temperature of the system, in the limit U — 0, is approaching...

A) zero  B) a non-zero, finite constant
C) infinity D) a negative value(!)




Entropy and heat

Two systems, A and B, initially at different temperatures with
T, > Ty, are brought into thermal contact. It 1s observed that
some amount of heat flows from a system A to system B.

A Q B

:> LowT

High T

What happened to S, = S, + Sg as a result of the heat transfer?
A) S, increased B) S,.: decreased C) Si,: remained constant

As a result of this heat flow, which is larger, |AS,| or |ASg| ?
A) |AS,]| B) | ASg| C) Neither, |AS,|=|ASg|



Entropy and internal energy

The entropies vs. energy for two systems in thermal contact are

shown in the graph. U,+Ug = U, =fixed

Sa

0 —U,

tot U

Where on the graph is the equilibrium of U,?
A) somewhere in region 1

B) at point 2, where the curves cross

C) somewhere in region 2

Utot
0

In region 1, which system is hotter?
A) System A is hotter.
B) System B is hotter.
C) Impossible to tell.



Reactions

For this reaction at STP (standard temperature and pressure)
H, +(1/2)0, - H,0 , AH =-286 kJ/mol.

Assume the H,O is liquid. Is PAV

(A) positive, (B) negative, or (C) zero?

Is the magnitude of the internal energy change |AU |
(A) greater than 286 kJ/mol,

(B) less than 286 kJ/mol, or

(C) equal to 286 kJ/mol ?

Consider the reaction H + H — H, taking place in at STP, an isothermal
(273K), constant pressure(1 atm), environment.

TAS for this system is A) positive, B) negative or, C) zero.

PAV for this system is A) positive, B) negative or, C) zero.

AU for this system is A) positive, B) negative or, C) zero.

AG for this system is A) positive, B) negative or, C) zero.



Chemical equilibrium

The two halves of a sealed container are separated by a fixed semi-permeable
membrane. There are two species of molecules in the container, C (cubes) and
D(disks). The membrane is permeable to the disks only. Each half of this system has
two different chemical potentials, one for disks and one for cubes: uy and p.

Given the constraints imposed, does this system appear to be in equilibrium?
(Hint: How do the u’s on the right and left compare? What about the py’s?)

A) Yes, it looks close to equilibrium

B) No, it is obviously way out of equilibrium, so the system will look different a
short time later.



Pressure and diffusion

The thermodynamic identity is dU =T dS — p dV, which implies that U = U(S,V) (N
is assumed fixed.) What is the relationship between pressure p and energy U?
A) P=-(dU/dV)s B) P=-(dU/dS),  C) Neither of these is correct.

The diameter of a room is doubled (at constant temperature, constant pressure).
What happens to the (average) time required for a molecule to diffuse across the
room?

A: time doubles B: time increases by factor of 4 C: some other answer

The diameter of a room is doubled (at constant temperature, constant NUMBER OF
PARTICLES). What happens to the (average) time required for a molecule to diffuse
across the room?

A: time doubles B: time increases by factor of 4 C: some other answer



The “cool-down time” of a building is how long it takes for the temperature
difference between inside and outside to fall to (1/e) of its initial value once the
heat goes off. (Assume it’s winter.) Mean heat flow |= (energy change AU)/(time
At) so At = AU/Iq. Consider a cubical building. If the edge length L is decreased by
a factor of 2. What happens to the cool-down time?

A) increases by 2 (takes longer to cool) B) decreases by 2 (cools faster) C)
decreases by 4 D) increases by 4 E) some other answer

~r

The thickness of the insulation in the walls/roof of a building is doubled. What
happens to the cool-down time?

A) increases by 2 B) increases by 4 C) increases by 8 D) increases by 16 E) some
other answer






A ball is rolling back and forth in a valley, which is part of the (infinitely massive)

earth. Everything starts at temperature T. Eventually, the ball rolls to a stop and
reaches equilibrium with the Earth.

b\ f
- - 7 [ S N\

Moral: The reason that balls always roll to a stop (instead of speeding up from rest) is that

this minimizes the free energy

(F=U-TS) which is the same as maximizing the entropy of the universe.

The temperature of the ball

A) increased B) decreased C) stayed the same

Answer: stayed the same

The entropy of the earth

A) increased B) decreased C) stayed the same

answer: increased [AS = Q/T, and the earth received a non-zero Q. The heat Q came from the
(KE+PE) of the ball.]

The entropy of the ball

A) increased B) decreased C) stayed the same

answer: stayed the same. Same ball, same temperature.

The free energy (F = U-TS) of the ball

A) increased B) decreased C) stayed the same

answer: decreased. U decreased since the ball lost its mechanical energy, but T and S remained
constant.




Is internal energy U and entropy S intensive or extensive?
A) both are intensive B) both are extensive
C) one is intensive, the other extensive

If the number of particles N in a system is doubled at constant pressure p and
constant temperature T, then

the volume V of the system
A) doubles B) remains constant C) increases, but does not double

the chemical potential m of the system
A) doubles B) remains constant C) increases, but does not double

What happens to the Gibbs Free Energy?
A) doubles B) remains constant C) increases, but does not double

A macroscopic sample is in equilibrium at temperature T and pressure p. The
temperature T and the pressure p both increase. The Gibb’s free energy of
the sample

A) increased B) decreased C)impossible to say, without more info



Probability of jumping people

To states: 1) On the floor, 2) on red box
P(v)
MB veIocity‘/\
I

distr.

>V
Mean kinetic energy

m<v2>/2 = kT
Mean potential energy
. mg<h> = m<v?>/2

Relativ probability

P(2)/P(1) = exp(-Ah/<h>)

= exp(-mgAh/kT)
= exp(-AE/KT)
Jah P(2)/P(1) = exp(-E2/KT)/exp(-E1/KT)

= exp(-(E2-E1)/KT)




Boltzmann-statistics

e Reservoir + small system => NVT for the small
* Probability for a state i, &; Eg=E-€..

* P(i) = C Qp(Ey-€;), multiplisity of the reservoir

* & << Eg, expand

* P(i) = exp(-¢,/kT)/Z  Boltzmannfactor
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Reaction rates




Two-state system

Two-state systems Here’s an immediate example. Suppose the small system has only two
allowed states, and that their energies differ by an amount AE = E5 — E;. The probabilities to be

in these states must obey both P + P, = 1 and

Pl e—El/k‘BT
B = (BT AE)ReT eAE/ kBT simple 2-state system. (6.24)
5 e
Solving, we find
1 1
! P, (6.25)

T 1+ o AE/kET ° T 1+ oAE/kT
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SHARE REPORT

P rOte 1N fO | d 1N g @ Reversible Unfolding of Single RNA Molecules by
o Mechanical Force

Jan Liphardt'*, Bibiana Onoa', Steven B. SmithZ, Ignacio Tinoco Jr.!, Carlos Bustamante'2*

trap bead

ceemmm—]

trap bead

laser trap handle

RNA

/ molecule

actuator
bead

e

actuator bead

actuator

Figure 6.9: (Schematic.) Optical tweezer apparatus. A piezo-electric actuator controls the position of the bottom
bead. The top bead is captured in an optical trap formed by two opposing lasers, and the force exterted on the
polymer connecting the two beads is measured from the change in momentum of light that exits the optical trap.
Molecules are stretched by moving the bottom bead vertically. The end-to-end length of the molecule is obtained as
the difference of the position of the bottom bead and the top bead. Inset: The RNA molecule of interest is coupled to
the two beads via molecular “handles.” The handles end in chemical groups that stick to complementary groups on
the bead. Compared to the diameter of the beads (= 3000 nm), the RNA is tiny (= 20nm). [Figure kindly supplied
by J. Liphardt.]



a b
90 1 1 ) "
Pf) =
0.8 B =
. % 1 4 o (AR fAkET
%- L 0.6
=
g 10 1 0
3) =04
& 2
51 T 0.2
extension, z, nm 0 , , ,
13.5 14.0 14.5
100 150 200 250 force, pN
C ; - et o 15.2 pN
folded I—-::_)..o% — “‘WWW 14.6 pN
.‘.‘-. W 14.2 pN
”
L O O W PR Y
~— Az=22 nm — et o Lo 14.0 pN
I
unfolded S P S i,
coce et e At oo 13.6 pN
20nm | 1s_
q 7 14.4 pN 50 13.7 pN
50
. 30
= 30 dwell times for open state dwell times for open state
"; 10 10
70 = -
E; 30 N
= 50 200 N\
S 30 closed state closed state
10 ~_|
10 e
0 1.0 2.0 3.0 4.0 0 1.0 20 30 40

dwell time, s

dwell time, s

A=A = - I
NTRS e By NS
e e BN S
= ° i
4B o ° °o o [a

a R S o ° o &>

q o o o ° .
- o o ,QC.‘
N o o © o ° 0

oor ° 5% ©° o <
o °s o o |~
d ° o o4
T © 0o ©0 © 7G
A@ © o © o o %

. o oy
X ° 0© © OOO o %

’ o o
bl S o . o \cﬂ
S o .
- & g TS
S <. l?%c\-m Oﬁ(@ Q@‘?%C\

small system in thermal

equilibrium with large
= (NVT) =>F



F

17
151 16
15

- 20
-
a
8 10{ 14
5]
[T

15

-2 nm > = 13 nm =3. 10
5 3 5 A=rich bulge (\/—_ )
P5a P5c
NS :
A=rich ::::ge m— junction 100 150 200 250
‘Junction &m 100 150 200 250
e \ 1 Extension (nm)
5
) - — c 15.2 pN
B 1 o
“"“T“""‘" ™™ 146 pN
08}
30.6-
204 P(f)=1/(1+exp(AE-fAz)/KT)
E W“JW.L, | - ,,..,....‘ 14.0 pN
= i 13.6 pN
MW
0 — . . )
13.5 14.0 145 15.0 20nm |(1s

Force (pN)



Why do your eyes hurt in fresh water?
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Problems

6.6 Polymer mesh

Recently D. Discher studied the mechanical character of the red blood cell cytoskeleton, a polymer
network attached to its inner membrane. Discher attached a bead of diameter 40 nm to this network
(Figure 6.12a)). The network acts as a spring, constraining the free motion of the bead. He then
asked, “What is the stiffness (spring constant) of this spring?”

In the macroworld we’d answer this question by applying a known force to the bead, measuring
the displacement Az in the z direction, and using f = kAz. But it’s not easy to apply a known
force to such a tiny object. Instead Discher just passively observed the thermal motion of the bead
(Figure 6.12b). He found the bead’s root-mean-square deviation from its equilibrium position, at

room temperature, to be y/((Az)?) = 35nm, and from this he computed the spring constant k.

What value did he find?

time, s

Figure 6.12: (Schematic; optical micrograph; experimental data.) (a) Attachment of a single fluorescent nanoparti-
cle to actin in the red blood cell cortex. (b) The red cell, with attached particle, is immobilized by partially sucking it
into a micropipette (right) of diameter 1 um. (c) Tracking of the thermal motion of the nanoparticle gives information
about the elastic properties of the cortex. [Digital image kindly supplied by D. Discher; see Discher, 2000.]



6.7 Inner ear

A. J. Hudspeth and coauthors found a surprising phenomenon while studying signal transduction

by the inner ear. Figure 6.13a shows a bundle of stiff fibers (“stereocilia”) projecting from a sensory
cell. The fibers sway when the surrounding inner-ear fluid moves. Other micrographs (not shown)
revealed thin, flexible filaments (“tip links”) joining each fiber in the bundle to its neighbor (wiggly
line in the sketch, panel (b)).

The experimenters measured the force-displacement relation for the bundle by using a tiny glass
fiber to poke it. A feedback circuit maintained a fixed displacement for the bundle’s tip, and
reported back the force needed to maintain this displacement. The surprise is that the experiments
gave the complex curve shown in panel (c¢). A simple spring has a stiffness k = % that is constant
(independent of z). The diagram shows that the bundle of stereocilia behaves as a simple spring
at large deflections, but in the middle it has a region of negative stiffness!
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ﬁ
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. I I I displacement, nm
o
I I I Figure 6.13: (Scanning electron micrograph; diagram; experimental data; diagram) (a) Bundle of stereocilia
projecting from an auditory hair cell. [Digital image kindly supplied by A. J. Hudspeth.] (b) Pushing the bundle to
_60 ] ] . . I | ] [ | the right causes a relative motion between two neighboring stereocilia in the bundle, stretching the tip link, a thin

-80 -60 -40 -20 O 20 40 60 &0

filament joining them. At large enough displacement the tension in the tip link can open a “trap door.” (c) Force
that must be applied to a hair bundle to get various displacements. Positive values of f correspond to forces directed

to the left in (b); positive values of = correspond to displacements to the right. [Data from Martin et al., 2000.]

displacement, nm

of these units in parallel.

(d) Mechanical model for stereocilia. The left spring represents the tip link. The spring on the right represents the
stiffness of the attachment point where the stereocilium joins the main body of the hair cell. The model envisions N
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