
Week 4

Entropy and entropic forces



Focus question

• Biological question: if energy is always conserved, 
how can some devices be more efficient than 
others?
• Physical idea: Order controls when energy can do 

useful work. Order is not conserved.



Reversible
or 
irreversible

3
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• Particle dynamics:
• Newtons law of motion
• Reversible
• Possible evolution

• Why does it never happen?



• One body: reversible motion (My son can be shot 
from the water up to Pantern)
• Multibody systems: 

• reversible laws of motion (beads CAN move all to one side)
• irreversible collective dynamics (it will never happen)

• Macro defenition of equilibrium:
• Homogeneous particle distribution

• Micro definition of equilibrium?
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• What is the most likely outcome of tossing 3 coins?
• Microstates: state of all coins

• heads: si=1, tails: si=0
• all microstates are equally likely

• Macrostate: sum of states
• n=Si si (= 0,1,2,3)

• Which is the most likely macrostate
• 8 = 23 possible microstates
• Probabilities: 

6

New concept:
Microstates and macrostates

i: 1  2  3    n
0  0  0    0
1  0  0    1
0  1  0    1
0  0  1    1
1  1  0    2
1  0  1    2
0  1  1    2
1  1  1    3

n=0: P=1/8
n=1: P=4/8
n=2: P=4/8
n=3: P=1/8



Microstates and macrostates
• Box with left and right side
• Example: 𝑁 = 5
• Particles can be distinguished

(i=1, 2,.. 5)
• Particle state si:

• left:   si=1
• right: si=0

• Macrostates n=Si si (= 0,1,2, ..5)
• List the possible microstates of 

n=1
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• 00001
• 00010
• 00100
• 01000
• 10000

5 microstates => multiplicity 𝛀(n,N) of macrostate n=1 is 𝛀(1,5) = 5



Multiplicity of macrostates
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n=2
00011
00101
01001
10001
00110
01010
01100
10010
10100
11000

𝛀(0,5)=10

n=1
00001
00010
00100
01000
10000

𝛀(0,5)=5

n=3
11100
11010
10110
01110
11001
10101
10011
01101
01011
00111

𝛀(0,5)=10

n=4
11110
11101
11011
10111
01111

𝛀(4,5)=5

n=5
11111

𝛀(5,5)=1

n=0
00000

𝛀(0,5)=1

Number of possible microstates: Ω! = ∑"#$% Ω 𝑛 = 32(= 2%)

General formula for multiplicity: Ω 𝑛,𝑁 = !!
!#$ !$!

Ω 2,5 = %!
&!'!

= 10

Probability of macrostates: P n, N = Ω 𝑛, 𝑁 /2& = '!"&!
&)" !"!

n           N-n



Fundament of statistical 
mechanics
Fundamental assumption of statistical mechanics:
In an isolated system in thermal equilibrium, all 
accessible microstates are equally probable.

An isolated system will evolve towards the most 
probable state = macrostate with the highest 
multiplicity. We call this the equilibrium state.



Sharpness of distribution
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What happens when 𝑞 → 10!"?
Ω 𝑁, 𝑛 = &!

"! &)" !
We need an approximation for N! when N>>1



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼* + 𝛼+ = const.

• Multiplicity Ω()( = Ω*Ω+ is maximum
• = most likely state
• = equilibrium state

maximum when ,-#$#
,.%

= 0

𝜕(Ω*Ω+)
𝜕𝛼*

= Ω*
𝜕Ω+
𝜕𝛼*

+ Ω+
𝜕Ω*
𝜕𝛼*

= 0

−1
Ω+

𝜕Ω+
𝜕𝛼+

+
1
Ω*

𝜕Ω*
𝜕𝛼*

= 0

𝜕 lnΩ+
𝜕𝛼+

=
𝜕 lnΩ*
𝜕𝛼*

𝑈/2 𝑈𝐴

dUe-1

1

Ω!"!#$
Ω%#&

"𝑑Ω!"!
𝑑𝑈 = 0

A
NA

VA

UA

B
NB

VB

UB

System: can contain “anything”

𝑑𝛼* = −𝑑𝛼+

Equilibrium condition:



Boltzmann’s Entropy
𝑆 = 𝑘 lnΩ

Relates	the	number	of	microstates
(multiplicity)	with	the	
thermodynamic	(macroscopic)	state	
of	the	system	
𝑘 = 1.381×10!"# 𝐽 𝐾!$
𝑆 = 𝐽𝐾!$

Relates the thermodynamic state of the 
system with the probability to be in a 
given macrostate 
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Probability

Entropy



Boltzmann’s Entropy and equilibrium
At	equilibrium,	the multiplicity is	maximized.	This	means that the
equilibrium state has	maximum entropy

Example:	
Thermal equilibrium of two interacting ideal	gases through energy exchange

𝜕Ω!"!#$
𝜕𝑈%

= 0 →
𝜕S!"!#$
𝜕𝑈%

= 0

&'"
&("

+ &'#
&("

= 0 → &'"
&("

+ &'#
&(#

)(#
)("

= 0 → &'"
&("

= &'#
&(#

System A and system B have the same temperature: 𝑇% = 𝑇*

[𝑆]
[𝑈] =

𝐽 𝐾+,

𝐽

𝜕S%
𝜕𝑈%

=
𝜕S*
𝜕𝑈*

≡
1
𝑇

𝑻 =
𝝏𝑺
𝝏𝑼

+𝟏
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Most likely macrostate

Maximum total Entropy
Thermodynamic equilibrium

Interacting systems have the
same temperature at 

equilibrium

𝑈/2 𝑈𝐴

dUe-1

1

Ω!"!#$
Ω%#& "𝑑Ω!"!

𝑑𝑈 = 0



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼* + 𝛼+ = const.

• 𝑆()( = 𝑆* + 𝑆+ is maximum in equilibrium

Equilibrium criterium:
𝜕𝑆!
𝜕𝛼!

=
𝜕𝑆"
𝜕𝛼"

Entropy: 𝑆 = 𝑘 lnΩ(𝑁, 𝑉, 𝑈)

Thermal equilibrium: ,I%
,J%

= ,I&
,J&

, K
L
≡ (,I

,J
)&,N, [I]

[J]
= Q R!'

Q

Mechanical equilibrium: ,I%
,N%

= ,I&
,N&

, 𝑃 ≡ 𝑇(,I
,N
)&,J,     [S]

[L]
= Q

T(R

Chemical equilibrium: ,I%
,&%

= ,I&
,&&

, 𝜇 ≡ −𝑇(,I
,&
)J,N

[U]
[L]
= Q

R

A
NA

VA

UA

B
NB

VB

UB



Thermodynamic identity
• Change in entropy due to energy, volume, particle number 

has a total differential: 

𝑑𝑆 =
𝜕𝑆
𝜕𝑈 !,#

𝑑𝑈 +
𝜕𝑆
𝜕𝑉 $,#

𝑑𝑉 +
𝜕𝑆
𝜕𝑁 $,!

𝑑𝑁

• Use definitions: %
&
≡ ('(

'$
)#,!, 𝑃 ≡ 𝑇('(

'!
)#,$, 𝜇 ≡ −𝑇('(

'#
)$,!

𝑑𝑆 =
1
𝑇
𝑑𝑈 +

𝑃
𝑇
𝑑𝑉 −

𝜇
𝑇
𝑑𝑁

• => Thermodynamic identity for 𝑈(𝑆, 𝑉, 𝑁)

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
• The thermodynamic identity holds true for any infinitesimal 

change in a system
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N
V
U



Ideal gas: entropy S and temperature T 

• Sackur-Tetrode Entropy: 

𝑺(𝑼, 𝑽,𝑵) = 𝒌𝑵 𝒍𝒏
𝑽
𝑵

𝟒𝝅𝒎
𝟑𝒉𝟐

𝑼
𝑵

𝟑
𝟐
+
𝟓
𝟐

• Temperature: 

𝑻 =
𝝏𝑺
𝝏𝑼

+𝟏

= 𝒌𝑵
𝒅
𝒅𝑼 𝒍𝒏 𝑼

𝟑
𝟐

+𝟏

=
𝟑𝒌𝑵
𝟐

𝟏
𝑼

+𝟏

→ 𝑼 =
𝟑𝑵𝒌𝑻
𝟐

• Equipartition of energy: 𝟑𝒌𝑻
𝟐

for the kinetic energy per particle in 3D 

• Heat capacity 𝐶2: 

𝑪𝑽 =
𝒅𝑼
𝒅𝑻 → 𝑪𝑽 =

𝟑𝑵𝒌
𝟐
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Pressure P in the ideal gas:

• Entropy: 𝑺(𝑼, 𝑽,𝑵) = 𝒌𝑵 𝒍𝒏 𝑽
𝑵

𝟒𝝅𝒎
𝟑𝒉𝟐

𝑼
𝑵

𝟑
𝟐 + 𝟓

𝟐

𝑺 𝑼, 𝑽,𝑵 = 𝒌 𝑵 𝒍𝒏 𝒇 𝑵 + 𝒍𝒏 𝑽 +
𝟑
𝟐
𝒍𝒏 𝑼

• Equation of state: 

𝑷 = 𝑻
𝝏𝑺
𝝏𝑽 𝑼,𝑵

= 𝑵𝒌𝑻
𝒅
𝒅𝑽 𝒍𝒏 𝑽 =

𝑵𝒌𝑻
𝑽 → 𝑷𝑽 = 𝑵𝒌𝑻

This is now derived from counting the number of microstates of the gas particles!
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Entropy of mixing
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DS=?

𝐴:𝑁, 𝑉, 𝑈 𝐵: 𝑁, 𝑉, 𝑈

𝐴:𝑁, 2𝑉, 𝑈 𝐵: 𝑁, 2𝑉, 𝑈

DS=?



Entropy of mixing: 𝚫𝑺
If the gas is the same on both sides of the wall

𝑆<=<!<#$ = 𝑆% + 𝑆* = 2𝑆(𝑈, 𝑉, 𝑁)

Δ𝑆!"! = 𝑆(2𝑈, 2𝑉, 2𝑁) − 2𝑆(𝑈, 𝑉, 𝑈)

Using Sackur-Tetrode formula

𝑆 𝑈, 𝑉,𝑁 = 𝑘𝑁 𝑙𝑛
𝑉
𝑁

4𝜋𝑚
3ℎ)

𝑈
𝑁

*
)
+
5
2 = 𝑘𝑁 ln

𝑉
𝑁 +

3
2 ln

𝑈
𝑁 + 𝑐𝑜𝑛𝑠𝑡

Δ𝑆+ = 𝑘2𝑁 ln ),
)-
+ *
)
ln ).

)-
+ 𝑐𝑜𝑛𝑠𝑡 - 2𝑘𝑁 ln ,

-
+ *
)
ln .

-
+ 𝑐𝑜𝑛𝑠𝑡

Δ𝑆! = 0

Nothing changes, when we remove the wall! 
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𝐴:𝑁, 𝑉, 𝑈 𝐵: 𝑁, 𝑉, 𝑈

2𝑁, 2𝑉, 2𝑈



Entropy of mixing: 𝚫𝑺
• If the gas is  different (distinguishable) on both sides of the wall

Δ𝑆+ = Δ𝑆/ + ΔS0

Using Sackur-Tetrode formula 

𝑆 𝑈, 𝑉,𝑁 = 𝑘𝑁 ln
𝑉
𝑁 +

3
2 ln

𝑈
𝑁 + 𝑓(𝑁)

Δ𝑆+ = 𝑘𝑁 𝑙𝑛
𝑉/,23456
𝑉/,343+356

+ 𝑘𝑁 𝑙𝑛
𝑉7,23456
𝑉7,343+356

Δ𝑆+ = 2𝑘𝑁 𝑙𝑛 2

q Entropy increases when we mix different gases

q Effectively, the available volume increases upon mixing hence the
number of configurations increases
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𝐴:𝑁𝐴, 𝑉𝐴, 𝑈𝐴 𝐵: 𝑁𝐵, 𝑉𝐵, 𝑈𝐵

𝐵: 𝑁𝐵, 2𝑉𝐵, 𝑈𝐵

𝐴:𝑁𝐴, 2𝑉𝐴, 𝑈𝐴



Ideal mixtures
Thermal and mechanical equilibrium: 𝑇/ = 𝑇7, 𝑃/ = 𝑃7

Composition: 𝑥3 =
-'
-
, 𝑖 = 𝐴, 𝐵, 𝑥/ + 𝑥7 = 1,     𝜌 = -(

,(
= -)

,)
= -

,

Ideal gas and ideal mixture = 𝑼 and 𝑷 are independent of composition: 𝑈 = 𝑈/ + 𝑈7 = const.      

Remove wall between A & B: Equilibrium criterium: 89(
8-( .(,,(

= 89)
8-) .),,)

, 𝑈/, 𝑉/ -> 𝑈, 𝑉

Entropy change on mixing ∆𝑆3 = 𝑘𝑁3 ln
,
,'
= 𝑘𝑁 -'

-
ln -

-'
= −𝑘𝑁𝑥3 ln 𝑥3

Entropy of mixture 𝑆3(𝑥3) = 𝑆3,:(𝑥3 = 1) + ∆𝑆3(𝑥3)

Chemical potential of mixture: 𝜇/ ≡ −𝑇 89(
8-( .,,,-)

8;(
8-(

= 8 <*(
*

8-(
= =

-

= − >
-

89(
8;( .,,,-)

= − >
-

89(,,
8;( .,,,-)

− >
-

8∆9(
8;( .,,,-)

= 𝜇/,: +
>
-

8@-;( AB ;(
8;( .,,,-)

= 𝜇/,: + 𝑘𝑇
8;( AB ;(
8;( .,,,-)

= 𝜇/,: + 𝑘𝑇 ln 𝑥/ + 1

= 𝜇/,:∗ + 𝑘𝑇 ln 𝑥/

Equilibrium criterium: 89(
8-(

= 89)
8-)

=> 𝜇/ = 𝜇7 ideal mixtures  => ln 𝑥/ = ln 𝑥7 =>   𝑥/ = 𝑥7

A
NA

VA

UA

B
NB

VB

UB

𝑁 = 𝑁/ +𝑁7
𝑉 = 𝑉/ + 𝑉7
𝑈 = 𝑈/ + 𝑈7





Open systems

a

B Thermal reservoir

First law   Δ𝑈 = 𝑄 +𝑊 = 𝑇∆𝑆 − 𝑃∆𝑉
Adiabatic compression: 𝑄 = 0
Δ𝑉 < 0,	 Δ𝑁 = 0,	 Δ𝑈 =?
Heat: 𝑄 = 𝑇Δ𝑆 = 0

𝑆(𝑈, 𝑉, 𝑁) = 𝑘 𝑁𝑙𝑛 𝑉 + >?
@
𝑙𝑛 𝑈 + 𝑓 𝑁

Entropy: Δ𝑆 = 𝑘 𝑁𝑙𝑛 2'
2(
+ >?

@
𝑙𝑛 ('

((
= 0

>
@
𝑙𝑛 ('

((
= −𝑙𝑛 2'

2(

('
((
= A'

A(
= 2(

2'

⁄' )
> 1=>   heating

With thermal reservoir:
(NVT) constant instead of (NVU) constant
𝑇' = 𝑇K =>   𝑄 = 𝑇Δ𝑆 < 0

how can Δ𝑆 < 0?
2nd law: ∆𝑆![! = ∆𝑆 + ∆𝑆\ ≥ 0

∆𝑆\ =?
TDI 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
=> 𝑑𝑆\ =

K
L
𝑑𝑈\ =

K
L
𝑑U

𝑑𝑆![! =
K
L
𝑇𝑑𝑆 − 𝑑𝑈 ≥ 0

𝐹 = 𝑈 − 𝑇𝑆, 𝑑𝐹 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇

=> 2nd law using only system variables: 𝐝𝑭 ≤ 𝟎











Temperature
Consider the following graph of entropy S vs. energy U for a particular system.  How 
does the temperature at point 1 compare to the temperature at point 2?

A) T1 = T2 B) T1 > T2 C) T1 < T2

According to the following graph of entropy vs. energy, the 
temperature of the system, in the limit U ® 0, is approaching…

A) zero B) a non-zero, finite constant
C) infinity D) a negative value(!)



Two systems, A and B, initially at different temperatures with 
TA > TB, are brought into thermal contact. It is observed that 
some amount of heat flows from a system A to system B. 

What happened to Stot = SA + SB as a result of the heat transfer?
A) Stot increased B) Stot decreased C) Stot remained constant

As a result of this heat flow, which is larger, |DSA| or |DSB| ?
A) |DSA| B)|DSB| C) Neither, |DSA|=|DSB|

Entropy and heat



The entropies vs. energy for two systems in thermal contact are 
shown in the graph. UA+UB = Utot =fixed

Where on the graph is the equilibrium of UA?
A) somewhere in region 1
B) at point 2, where the curves cross
C) somewhere in region 2

In region 1, which system is hotter?
A) System A is hotter.
B) System B is hotter.
C) Impossible to tell.

Entropy and internal energy



For this reaction at STP (standard temperature and pressure)
H2 + (1/2)O2 ® H2O  , DH = –286 kJ/mol.   

Assume the  H2O is liquid.  Is PDV  
(A) positive, (B) negative, or (C) zero?  

Is the magnitude of the internal energy change |DU |
(A) greater than 286 kJ/mol, 
(B) less than 286 kJ/mol,  or
(C) equal to 286 kJ/mol ?

Consider the reaction H + H ® H2 taking place in at STP, an isothermal 
(273K), constant pressure(1 atm), environment. 

TDS for this system  is A) positive,  B) negative or,   C) zero.

PDV  for this system is A) positive,  B) negative or,   C) zero.

DU for this system is A) positive,  B) negative or,   C) zero.

DG for this system is A) positive,  B) negative or,   C) zero.

Reactions



The two halves of a sealed container are separated by a fixed semi-permeable 
membrane.  There are two species of molecules in the container, C (cubes) and 
D(disks). The membrane is permeable to the disks only.  Each half of this system has 
two different chemical potentials, one for disks and one for cubes: µD and µC. 

Given the constraints imposed, does this system appear to be in equilibrium?   
(Hint: How do the µC’s on the right and left compare? What about the µD’s?) 

A) Yes, it looks close to equilibrium
B) No, it is obviously way out of equilibrium, so the system will look different a 
short time later.

Chemical equilibrium



The thermodynamic identity is dU = T dS – p dV, which implies that U = U(S,V) (N 
is assumed fixed.) What is the relationship between pressure p and energy U?
A) P=-(dU/dV)S B) P=-(dU/dS)V C) Neither of these is correct.

The diameter of a room is doubled (at constant temperature, constant pressure). 
What happens to the (average) time required for a molecule to diffuse across the 
room?
A: time doubles B: time increases by factor of 4 C: some other answer

The diameter of a room is doubled (at constant temperature, constant NUMBER OF 
PARTICLES). What happens to the (average) time required for a molecule to diffuse 
across the room?
A: time doubles B: time increases by factor of 4 C: some other answer

Pressure and diffusion

The thermodynamic identity is dU = T dS – p dV, which implies that U = U(S,V) (N 
is assumed fixed.) What is the relationship between pressure p and energy U?
A) P=-(dU/dV)S B) P=-(dU/dS)V C) Neither of these is correct.

The diameter of a room is doubled (at constant temperature, constant pressure). 
What happens to the (average) time required for a molecule to diffuse across the 
room?
A: time doubles B: time increases by factor of 4 C: some other answer

The diameter of a room is doubled (at constant temperature, constant NUMBER OF 
PARTICLES). What happens to the (average) time required for a molecule to diffuse 
across the room?
A: time doubles B: time increases by factor of 4 C: some other answer

Pressure and diffusion



The “cool-down time” of a building is how long it takes for the temperature 
difference between inside and outside to fall to (1/e) of its initial value once the 
heat goes off. (Assume it’s winter.) Mean heat flow IQ= (energy change DU)/(time 
Dt) so Dt = DU/IQ. Consider a cubical building. If the edge length L is decreased by 
a factor of 2. What happens to the cool-down time?
A) increases by 2 (takes longer to cool) B) decreases by 2 (cools faster) C) 
decreases by 4 D) increases by 4 E) some other answer

The thickness of the insulation in the walls/roof of a building is doubled. What 
happens to the cool-down time?
A) increases by 2 B) increases by 4 C) increases by 8 D) increases by 16 E) some 
other answer





A ball is rolling back and forth in a valley, which is part of the (infinitely massive) 
earth.  Everything starts at temperature T.  Eventually, the ball rolls to a stop and 
reaches equilibrium with the Earth.

The temperature of the ball
A) increased B) decreased C) stayed the same
Answer: stayed the same
The entropy of the earth
A) increased B) decreased C) stayed the same
answer: increased  [DS = Q/T, and the earth received a non-zero Q.  The heat Q came from the 
(KE+PE) of the ball.]
The entropy of the ball 
A) increased B) decreased C) stayed the same
answer: stayed the same.  Same ball, same temperature.
The free energy (F = U-TS) of the ball
A) increased B) decreased C) stayed the same
answer: decreased.  U decreased since the ball lost its mechanical energy, but T and S remained 
constant.

Moral: The reason that balls always roll to a stop (instead of speeding up from rest) is that 
this minimizes the free energy 
(F=U–TS) which is the same as maximizing the entropy of the universe.



Is internal energy U and entropy S intensive or extensive?
A) both are intensive B) both are extensive
C) one is intensive, the other extensive

If the number of particles N in a system is doubled at constant pressure p and 
constant temperature T, then

the volume V of the system 
A) doubles B) remains constant C) increases, but does not double

the chemical potential m of the system 
A) doubles B) remains constant C) increases, but does not double

What happens to the Gibbs Free Energy?
A) doubles B) remains constant C) increases, but does not double

A macroscopic sample is in equilibrium at temperature T and pressure p.  The 
temperature T and the pressure p both increase.  The Gibb’s free energy of 
the sample
A) increased B) decreased C) impossible to say, without more info



Probability of jumping people
To states: 1) On the floor, 2) on red box

MB velocity 
distr.

Mean kinetic energy
m<v2>/2 = kT

v

P(v)

Mean potential energy
mg<h> = m<v2>/2

Relativ probability
P(2)/P(1) = exp(-Dh/<h>)

Dh

= exp(-mgDh/kT)
= exp(-DE/kT)

P(2)/P(1) = exp(-E2/kT)/exp(-E1/kT)
= exp(-(E2-E1)/kT)



Boltzmann-statistics

• Reservoir + small system => NVT for the small
• Probability for a state i, ei; ER=E0-ei.
• P(i) = C ΩR(E0-ei), multiplisity of the reservoir
• ei << E0, expand

• P(i) = exp(-ei/kT)/Z      Boltzmannfactor





Reaction rates



Two-state system



Protein folding



small system in thermal
equilibrium with large
Þ (NVT) => F



P(f)=1/(1+exp(DE-fDz)/kT)



Why do your eyes hurt in fresh water?



Depletion pressure



Problems





Depletion pressure: assembling effect



Ion distribution at a charged surface


