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This project will connect theory of diffusion and flow at low Reynolds numbers with simulations
of random walkers and experiments on Brownian motion and the motion of E coli.

I. REPORT ON PROJECT

The objective of this project is to get an insight on
transport and motion in fluids at the micron scale. This
project contains several experiments, simulations and
theory. I have given some tasks to give some guideline
to what to include from some of the subprojects. You
should try to put together a report that treats the differ-
ent topics and subprojects as a whole.

II. DIFFUSION

This is treated in the textbook and elsewhere. I will
only repeat the diffusion equations and the simplest so-
lution. The so-called Fick’s diffusion equation in one di-
mension is written:

J = −D∂ρ

∂x
, (1)

where J is the mass flux, ρ the mass density distribu-
tion, x the space coordinate and D the diffusion coeffi-
cient. The continuity equation (here in 1D) states that
the change of mass inside a volume equals the difference
between what flows in to and out of the volume:

∂ρ

∂t
+
∂J

∂x
= 0, (2)

where t is the time. When we combine the two equations
we get the partial differential equation for diffusion:

∂ρ

∂t
+D

∂2ρ

∂x2
= 0 (3)

Starting with particles in x = 0 at time t = 0: ρ(t =
0, x) = δ(x), where δ is the Kroeneker delta function
the diffusion equation has solution (you may easily verify
this):

ρ(t, x) =
1√

4πDt
exp(− x2

4Dt
) (4)

This is a Gaussian distribution with mean x = 0 and
standard deviation

√
4Dt. Thus the width of the distri-

bution is proportional to the square root of the diffusion
coefficient. When data is sparse and noisy one always ob-
tains a more precise estimate of the width by integrating
over all the data. The second moment of the distribution
is: ∫ ∞

−∞
x2ρ(t, x)dt = 2Dt (5)

where I have used that∫ ∞
−∞

y2e−x
2/adt =

√
π

2
a3/2. (6)

The second moment can be seen as the mean square de-
viation (from the starting point x = 0) of x.

III. LIFE AT LOW REYNOLDS NUMBER

This paper by Purcell [1] is a classic.

IV. RANDOM WALKS

The subject of random walks (RW) has been lectured,
it is treated in the textbook and in a supplementary doc-
ument [2]. A simple Matlab program, rw1d_vector il-
lustrates a 1D RW simulation of wlakers that are started
at x = 0 and properties of the resulting distributions.

Task 1

Compare the distribution of the 1D RW with the so-
lution to the diffusion equation for molecules started at
x = 0. Do a similar RW simulation in 2D in Matlab or
Python. Finally you may try to do the same in 3D and
measure the 2D MSD as we do in the experiments on
Brownian motion.

V. BROWNIAN MOTION

This has been treated in the lectures and the textbook.
The original paper by Albert Einstein in German [3]
and translated to english [4] was a hallmark paper in
physics. Langevin’s treatment 3 years later of the same
phenomenon is simpler to follow [5].

You have performed experiments on Brownian parti-
cles of different sizes.

Task 2

Describe the experiments, the results obtained and the
image analysis. Compare your results to the theory and
to your RW simulations. Compare the particle diameters
you obtain from your measurements and compare to the
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diameters specified by the manufacturer. Discuss this in
relation to the statistical uncertainty from your analysis
and to what you consider the main sources of error in the
experiments.

VI. SWIMMING OF E COLI

This has been treated in the lectures and the textbook.
Some original papers by the father of E coli physics,
Howard Berg, have been included [6–8] sa background.
If you have time and special interest in active matter
you may have a look at the newer papers on bacterial

swarming [9–11].
You have performed experiments on the Nissle strain

of E coli.

Task 3

Describe the experiments, the results obtained and the
image analysis. Compare your results to the theory and
to your RW simulations. For those who have a special
interest in active matter: Try to do experiments on high
density suspensions of E coli and use correlation methods
to find flow fields instead of tracking individual particles.
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