
Entropy and entropic
forces



Focus question

• Biological question: if energy is always conserved, 
how can some devices be more efficient than 
others?
• Physical idea: Order controls when energy can do 

useful work. Order is not conserved.



Recap thermal physics

• Micro- and macro states
• Multiplicity
• Fundamental assumption of statistical mechanics
• Equilibrium from probability
• Entropy and equilibrium conditions
• Thermodynamic identity
• Mixtures and chemical potential
• Helmholtz and Gibbs free energy
• Boltzmann statistics
• ---
• Biological examples
• Quiz



• What is the most likely outcome of tossing 3 coins?
• Microstates: state of all coins

• heads: si=1, tails: si=0
• all microstates are equally likely

• Macrostate: sum of states
• n=Si si (= 0,1,2,3)

• Which is the most likely macrostate
• 8 = 23 possible microstates
• Probabilities: 
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Microstates and macrostates

i: 1  2  3    n
0  0  0    0
1  0  0    1
0  1  0    1
0  0  1    1
1  1  0    2
1  0  1    2
0  1  1    2
1  1  1    3

n=0: P=1/8
n=1: P=4/8
n=2: P=4/8
n=3: P=1/8



Microstates and macrostates
• Box with left and right side
• Example: 𝑁 = 5
• Particles can be distinguished

(i=1, 2,.. 5)
• Particle state si:

• left:   si=1
• right: si=0

• Macrostates n=Si si (= 0,1,2, ..5)
• List the possible microstates of 

macrostate n=1
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• 00001
• 00010
• 00100
• 01000
• 10000

5 microstates => multiplicity 𝛀(n,N) of macrostate n=1 is 𝛀(1,5) = 5



Multiplicity of macrostates
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n=2
00011
00101
01001
10001
00110
01010
01100
10010
10100
11000

𝛀(0,5)=10

n=1
00001
00010
00100
01000
10000

𝛀(0,5)=5

n=3
11100
11010
10110
01110
11001
10101
10011
01101
01011
00111

𝛀(0,5)=10

n=4
11110
11101
11011
10111
01111

𝛀(4,5)=5

n=5
11111

𝛀(5,5)=1

n=0
00000

𝛀(0,5)=1

Number of possible microstates: Ω! = ∑"#$% Ω 𝑛 = 32(= 2%)

General formula for multiplicity: Ω 𝑛,𝑁 = !!
!#$ !$!

Ω 2,5 = %!
&!'!

= 10

Probability of macrostates: P n, N = Ω 𝑛, 𝑁 /2& = '!"&!
&)" !"!

n           N-n



Fundament of statistical 
mechanics
Fundamental assumption of statistical mechanics:
In an isolated system in thermal equilibrium, all 
accessible microstates are equally probable.

An isolated system will evolve towards the most 
probable state = macrostate with the highest 
multiplicity. We call this the equilibrium state.



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼* + 𝛼+ = const.

• Multiplicity Ω()( = Ω*Ω+ is maximum
• = most likely state
• = equilibrium state

maximum when ,-#$#
,.%

= 0

𝜕(Ω*Ω+)
𝜕𝛼*

= Ω*
𝜕Ω+
𝜕𝛼*

+ Ω+
𝜕Ω*
𝜕𝛼*

= 0

−1
Ω+

𝜕Ω+
𝜕𝛼+

+
1
Ω*

𝜕Ω*
𝜕𝛼*

= 0

𝜕 lnΩ+
𝜕𝛼+

=
𝜕 lnΩ*
𝜕𝛼*

𝑈/2 𝑈𝐴

dUe-1

1

Ω!"!#$
Ω%#&

"𝑑Ω!"!
𝑑𝑈 = 0

A
NA

VA

UA

B
NB

VB

UB

System: can contain “anything”

𝑑𝛼* = −𝑑𝛼+

Equilibrium condition:



Boltzmann’s Entropy
𝑆 = 𝑘 ln Ω

Relates
• the number	of	microstates (multiplicity)	and
• the thermodynamic	(macroscopic)	state	of	the	system	
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Equilibrium condition: , 23 -&
,4&

= , 23 -%
,4%

,5%
,4%

= ,5&
,4&

All systems move towards most probable states = 
equilibrium

Δ𝑆 = 𝑘 ln -'()*+
-()(,(*+

Second law of thermodynamics: ∆𝑆676 ≥ 0
All real processes are irreversible 



Equilibrium between two systems
• N=NA+NB, V=VA+VB, U=UA+UB, all (N,V,U) constant

• Can vary one of the three 𝛼 ∈ (𝑁, 𝑉, 𝑈), 
• keeping the other 2 constant
• keep total constant: 𝛼 = 𝛼* + 𝛼+ = const.

• 𝑆()( = 𝑆* + 𝑆+ is maximum in equilibrium

Equilibrium criterium:
𝜕𝑆!
𝜕𝛼!

=
𝜕𝑆"
𝜕𝛼"

Entropy: 𝑆 = 𝑘 lnΩ(𝑁, 𝑉, 𝑈)

Thermal equilibrium: ,5%
,8%

= ,5&
,8&

, 9
:
≡ (,5

,8
)&,<, [5]

[8]
= ? @!-

?

Mechanical equilibrium: ,5%
,<%

= ,5&
,<&

, 𝑃 ≡ 𝑇(,5
,<
)&,8,     [A]

[:]
= ?

B.@

Chemical equilibrium: ,5%
,&%

= ,5&
,&&

, 𝜇 ≡ −𝑇(,5
,&
)8,<

[C]
[:]
= ?

@

A
NA

VA

UA

B
NB

VB

UB



Why do your eyes hurt in fresh water?



The two halves of a sealed container are separated by a fixed semi-permeable 
membrane.  There are two species of molecules in the container, C (cubes) and 
D(disks). The membrane is permeable to the disks only.  Each half of this system has 
two different chemical potentials, one for disks and one for cubes: µD and µC. 

Given the constraints imposed, does this system appear to be in equilibrium?   
(Hint: How do the µC’s on the right and left compare? What about the µD’s?) 

A) Yes, it looks close to equilibrium
B) No, it is obviously way out of equilibrium, so the system will look different a 
short time later.

Chemical equilibrium



Osmosis: ideal gas model
• Fixed volume V, VL=VR=V/2
• Semipermeable membrane separates volumes
• Black (1, solvent, water) can penetrate
• Red (2, solute) stuck
• N2<<N1

• How will water particles distribute?
• Type 1: Ω max when N1,L=N1,R
• dilute: ideal solution => P1,L=P1,R

• What is the effect of N2 excess particles on right side?
• Dilute: red particles do not interact => Ideal gas
• Solute ideal gas: P2VL=N2kT
• ∆𝑃 = 𝑃D − 𝑃E = 𝑃' =

&/
<0
𝑘𝑇

• Counting: N2 is the number of free, ideal gas particles

• ∆𝑃 = F&/1

<0
𝑘𝑇 = 𝑖𝑐'𝑅𝑇

• i = dissociation factor
• 𝑁'G = number of dry substance particles



Temperature
Consider the following graph of entropy S vs. energy U for a particular system.  How 
does the temperature at point 1 compare to the temperature at point 2?

A) T1 = T2 B) T1 > T2 C) T1 < T2

According to the following graph of entropy vs. energy, the 
temperature of the system, in the limit U ® 0, is approaching…

A) zero B) a non-zero, finite constant
C) infinity D) a negative value(!)



Thermodynamic identity
• Change in entropy due to energy, volume, particle number 

has a total differential: 

𝑑𝑆 =
𝜕𝑆
𝜕𝑈 !,#

𝑑𝑈 +
𝜕𝑆
𝜕𝑉 $,#

𝑑𝑉 +
𝜕𝑆
𝜕𝑁 $,!

𝑑𝑁

• Use definitions: %
&
≡ ('(

'$
)#,!, 𝑃 ≡ 𝑇('(

'!
)#,$, 𝜇 ≡ −𝑇('(

'#
)$,!

𝑑𝑆 =
1
𝑇
𝑑𝑈 +

𝑃
𝑇
𝑑𝑉 −

𝜇
𝑇
𝑑𝑁

• => Thermodynamic identity for 𝑈(𝑆, 𝑉, 𝑁)

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
• The thermodynamic identity holds true for any infinitesimal 

change in a system
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N
V
U



Two systems, A and B, initially at different temperatures with 
TA > TB, are brought into thermal contact. It is observed that 
some amount of heat flows from a system A to system B. 

What happened to Stot = SA + SB as a result of the heat transfer?
A) Stot increased B) Stot decreased C) Stot remained constant

As a result of this heat flow, which is larger, |DSA| or |DSB| ?
A) |DSA| B)|DSB| C) Neither, |DSA|=|DSB|

Entropy and heat

dU = dQ + dW = TdS – PdV, dS=dQ/T



The entropies vs. energy for two systems in thermal contact are 
shown in the graph. UA+UB = Utot =fixed

Where on the graph is the equilibrium of UA?
A) somewhere in region 1
B) at point 2, where the curves cross
C) somewhere in region 2

In region 3, which system is hotter?
A) System A is hotter.
B) System B is hotter.
C) Impossible to tell.

Entropy and internal energy



Depletion
pressure

“...eliminating the depletion zone 
would increase the entropy and 
lower the free energy.”









What are the fundamental principles of 
equilibrium?

Mechanics
Σ,𝐹, = −Σ,∇𝑈, = 0

minimize energy

Thermodynamics
maximize entropy

The two principles are related by TDI
𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁
𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

𝑆 = −
𝜕𝐺
𝜕𝑇 &,A

= −
𝜕𝐹
𝜕𝑇 &,<

identical, coloured, dU=0 dS>0,   𝜇9 = 𝜇'

particle number

(minimize F or G)



What is the chemical potential?

𝜇 ≡ −𝑇 -.
-! /,1

= -2
-! 3,4

= -5
-! 1,4

= -6
-! .,3

= -/
-! .,1

From
𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁
𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁

Most useful definitions
F=U-TS energy to create a system minus the energy from the environment
G=U+PV-TS energy to create a system and make room for it minus the energy from the environment

OK, but how do we calculate or measure this?



Chemical potential of ideal gas
(thermodynamics)

Ideal gas: 𝑃𝑉 = 𝑁𝑘𝑇
expression for 𝜇: 𝜇 = ,H

,& A,:
= ,I

,& <,:
We need some relation between energies, G or F and P,V,N,T
TDI (F): 𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
TDI (G): 𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁
=> at constant T & N: 𝑑𝐺 = 𝑉𝑑𝑃, 𝑑𝐹 = −𝑃𝑑𝑉

𝑑𝐺 = 𝑉𝑑𝑃 =
𝑁𝑘𝑇
𝑃 𝑑𝑃

1𝑑𝐺 = 𝐺 − 𝐺! = 𝑁𝑘𝑇1
𝑑𝑃
𝑃 = 𝑁𝑘𝑇𝑙𝑛

𝑃
𝑃!

𝜇 =
𝜕𝐺
𝜕𝑁 ",$

= 𝜇! + 𝑘𝑇𝑙𝑛
𝑃
𝑃!

𝑑𝐹 = −𝑃𝑑𝑉 =
𝑁𝑘𝑇
𝑉 𝑑𝑉

1𝑑𝐹 = 𝐹 − 𝐹! = −𝑁𝑘𝑇1
𝑑𝑉
𝑉
= −𝑁𝑘𝑇𝑙𝑛

𝑉
𝑉!

𝜇 =
𝜕𝐹
𝜕𝑁 %,$

= 𝜇! − 𝑘𝑇𝑙𝑛
𝑉
𝑉!
= 𝜇! + 𝑘𝑇𝑙𝑛

𝑃
𝑃!
,

𝑉
𝑉!
=
𝑃!
𝑃



Chemical potential of ideal gas
(stat. mech. of quantum ideal gas)

Helmholtz free energy of quantum ideal gas:

𝐹& 𝑇, 𝑉 = −𝑁𝑘𝑇 𝑙𝑛
𝑉
𝑁𝑣J

+ 1

The chemical potential 𝜇 = ,I
,& <,:

𝜇 = ,I
,& <,:

= −𝑘𝑇 𝑙𝑛 <
&K2

+ 1 + 𝑁𝑘𝑇 LM"&
L&

𝜇 = −𝑘𝑇𝑙𝑛 <
<3

, 𝑉$ = 𝑁𝑣J, 𝑛J= 𝑣J)9

𝜇 = 𝑘𝑇𝑙𝑛 "
"2

, 𝑛 = &
<

𝜇 = 𝑘𝑇𝑙𝑛 A
A3

, 𝑃$ = 𝑛J𝑘𝑇



Chemical potential of ideal mixtures
V1 V2
N1 N2
T1 =     T2
P1 =     P2 =>    𝜇9$ 𝑃, 𝑇 = 𝜇'$ 𝑃, 𝑇

Remove wall: V=V1+V2

Ideal mixture:
𝑁9
𝑉9
=
𝑁'
𝑉'

=
𝑁9 + 𝑁'
𝑉9 + 𝑉'

is independent of
mixture composition

𝜇 = 𝜇4 − 𝑘𝑇𝑙𝑛
𝑉
𝑉4 Δ𝜇9 = −𝑘𝑇𝑙𝑛

𝑉9 + 𝑉'
𝑉9

𝑉9 + 𝑉'
𝑉9

=
𝑁9 + 𝑁'
𝑁9

=
1
𝑥9

Δ𝜇9 = 𝑘𝑇𝑙𝑛𝑥9

𝜇F 𝑃, 𝑇, 𝑥F = 𝜇F
$ 𝑃, 𝑇 +𝑘𝑇𝑙𝑛𝑥F



Potential energy and the chemical potential

centrifuge
a

v

𝑈 ℎ = 𝑈 0 + 𝑁𝑚𝑎ℎ
𝐹 ℎ = 𝑈 ℎ − 𝑇𝑆
𝐹 ℎ = 𝑈 0 + 𝑁𝑚𝑎ℎ − 𝑇𝑆
𝐹 ℎ = 𝐹 0 + 𝑁𝑚𝑎ℎ

𝜇 = ,I
,& <,:

= 𝜇 0 + 𝑚𝑎ℎ

𝜇!N! = 𝜇F"! + 𝜇OP!

h

Barometric pressure: Can we use this to calculate p(z)?

equilibrium: 𝜇(𝑧) = 𝜇$ = 𝜇$ + 𝑘𝑇𝑙𝑛
A(R)
A3

+𝑚𝑔𝑧

=> A(R)
A3

= 𝑒)BTR/U: = 𝑒)R/R5

𝑧V = 𝑘𝑇/𝑚𝑔
Nitrogen (m=28) zc=8.5km, Oxygen (m=32) zc = 7.4 km, Mount Everest: P = 0.37 P(0) 

Where should
we add mah?



Open systems

a

BThermal reservoir

First law   Δ𝑈 = 𝑄 +𝑊 = 𝑇∆𝑆 − 𝑃∆𝑉
Adiabatic compression: 𝑄 = 0
Δ𝑉 < 0,	 Δ𝑁 = 0,	 Δ𝑈 =?
Heat: 𝑄 = 𝑇Δ𝑆 = 0

𝑆(𝑈, 𝑉, 𝑁) = 𝑘 𝑁𝑙𝑛 𝑉 + &'
(
𝑙𝑛 𝑈 + 𝑓 𝑁

Entropy: Δ𝑆 = 𝑘 𝑁𝑙𝑛 %"
%#
+ &'

(
𝑙𝑛 )"

)#
= 0

&
(
𝑙𝑛 )"

)#
= −𝑙𝑛 %"

%#

)"
)#
= $"

$#
= %#

%"

⁄" $
> 1=>   heating

With thermal reservoir:
(NVT) constant instead of (NVU) constant
𝑇' = 𝑇9 =>   𝑄 = 𝑇Δ𝑆 < 0

how can Δ𝑆 < 0?
2nd law: ∆𝑆!N! = ∆𝑆 + ∆𝑆E ≥ 0

∆𝑆E =?
TDI 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁
=> 𝑑𝑆E =

9
:
𝑑𝑈E =

9
:
𝑑U

𝑑𝑆!N! =
9
:
𝑇𝑑𝑆 − 𝑑𝑈 ≥ 0

𝐹 = 𝑈 − 𝑇𝑆, 𝑑𝐹 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇

=> 2nd law using only system variables: 𝐝𝑭 ≤ 𝟎

Isolated system (left)



A ball is rolling back and forth in a valley, which is part of the (infinitely massive) 
earth.  Everything starts at temperature T.  Eventually, the ball rolls to a stop and 
reaches equilibrium with the Earth.

The temperature of the ball
A) increased B) decreased C) stayed the same
Answer: stayed the same
The entropy of the earth
A) increased B) decreased C) stayed the same
answer: increased  [DS = Q/T, and the earth received a non-zero Q.  The heat Q came from the 
(KE+PE) of the ball.]
The entropy of the ball 
A) increased B) decreased C) stayed the same
answer: stayed the same.  Same ball, same temperature.
The free energy (F = U-TS) of the ball
A) increased B) decreased C) stayed the same
answer: decreased.  U decreased since the ball lost its mechanical energy, but T and S remained 
constant.

Moral: The reason that balls always roll to a stop (instead of speeding up from rest) is that 
this minimizes the free energy 
(F=U–TS) which is the same as maximizing the entropy of the universe.









Two-state system



Protein folding



small system in thermal
equilibrium with large
Þ (NVT) => F

What is the most 
important 
information to arrive 
to figure b?



The thermodynamic identity is dU = T dS – p dV, which implies that U = U(S,V) (N 
is assumed fixed.) What is the relationship between pressure p and energy U?
A) P=-(dU/dV)S B) P=-(dU/dS)V C) Neither of these is correct.

The diameter of a room is doubled (at constant temperature, constant pressure). 
What happens to the (average) time required for a molecule to diffuse across the 
room?
A: time doubles B: time increases by factor of 4 C: some other answer

The diameter of a room is doubled (at constant temperature, constant NUMBER OF 
PARTICLES). What happens to the (average) time required for a molecule to diffuse 
across the room?
A: time doubles B: time increases by factor of 4 C: some other answer

Pressure and diffusion

The thermodynamic identity is dU = T dS – p dV, which implies that U = U(S,V) (N 
is assumed fixed.) What is the relationship between pressure p and energy U?
A) P=-(dU/dV)S B) P=-(dU/dS)V C) Neither of these is correct.

The diameter of a room is doubled (at constant temperature, constant pressure). 
What happens to the (average) time required for a molecule to diffuse across the 
room?
A: time doubles B: time increases by factor of 4 C: some other answer

The diameter of a room is doubled (at constant temperature, constant NUMBER OF 
PARTICLES). What happens to the (average) time required for a molecule to diffuse 
across the room?
A: time doubles B: time increases by factor of 4 C: some other answer

Pressure and diffusion



The “cool-down time” of a building is how long it takes for the temperature 
difference between inside and outside to fall to (1/e) of its initial value once the 
heat goes off. (Assume it’s winter.) Mean heat flow IQ= (energy change DU)/(time 
Dt) so Dt = DU/IQ. Consider a cubical building. If the edge length L is decreased by 
a factor of 2. What happens to the cool-down time?
A) increases by 2 (takes longer to cool) B) decreases by 2 (cools faster) C) 
decreases by 4 D) increases by 4 E) some other answer

The thickness of the insulation in the walls/roof of a building is doubled. What 
happens to the cool-down time?
A) increases by 2 B) increases by 4 C) increases by 8 D) increases by 16 E) some 
other answer


