
Practical work: ultrasonic rheology of human cells

D. K. Dysthe, T. Combriat

November 8, 2022

1 Background

The SOE instrument uses ultrasounds (US) to generate oscillatory flows on biological cultures
(adherent cells). Because of this flow surrounding them, the cells in the culture will deform. For
a given stress (τ) the amount of deformation (strain) γ is inversely proportional to their shear
modulus G:

G =
τ

γ
(1)

As they are subjected to a (quasi) sinusoidal regime1, the induced deformation occurs at the
same frequency f0 than the driving force: the flow. Digital image correlation (DIC) allows us to
measure the displacements of each cells at each time step, leading to time-dependent velocity fields
alongside the x and y axis: ux/y(x, y, t). As we know the frequency at which the biological material
should respond, and using Fourrier transforms, one can recover the amplitude and the phase of
the cells’ oscillations at this frequency (a process called an homodyne detection):

ux/y(x, y, t) →︸︷︷︸
FFT

ũx/y(x, y, f = f0). (2)

Note that each element of these homodyne displacement fields ũx/y are complex numbers, they
carry information about both the amplitude |ũx/y| and the phase φ(ũx/y) of the oscillations.

1.1 Homodyne strains

Homodyne strains (cyclic deformations of the material), can be calculated just like the classical
way:

γ̃p =
∂ũx
∂x

+
∂ũy
∂y

(3)

γ̃s =
∂ũx
∂y

+
∂ũy
∂x

(4)

with γ̃p the homodyne pure strain and γ̃s the homodyne simple strain.

1.2 Estimating the stress

In order to recover the shear modulus of the probed material, one also needs to estimate the
stress at which the cells are subjected to (see Eq. 1). We make the hypothesis that the stress
is proportional to the surrounding flow. This flow can be estimated by tracking small particles
(tracers) that are seeded in the liquid, a process called particles tracking velocimetry (PTV).

We make the further hypothesis that the flow is homogeneous on the view field, hence for the
PTV we recover the time dependent flow field alongside both direction δx/y(t). Using an homodyne
detection, the component of the flow which is oscillating at the input frequency f0 can be recovered:
δ̃x/y(f = f0). Note that δ̃x(f = f0) and δ̃y(f = f0) are complex numbers.

This flow field can be used to normalise the displacement of the probed material. Let us define
the normalised homodyne displacement fields:

ũrx/y =
ũx/y

δ̃x/y
(5)

1and considering that their response is linear

1

1.3 Normalised homodyne strains and shear modulus

Finally, one can estimate the shear modulus of the shear material by using these normalised fields
(which already contain the stress) to calculate the homodyne strains:

γ̃rp =
∂ũrx
∂x

+
∂ũry
∂y
∝ 1

G̃p

(6)

γ̃rs =
∂ũrx
∂y

+
∂ũry
∂x
∝ 1

G̃s

(7)

With G̃p and G̃s the shear modulus extracted from the pure and simple strains, respectively. Note
that these numbers are also complex.

2 Data analysis

The goal of this practical is to measure the rigidity of two types of cells and to compare them:

• Do all parts of the cells display the same mechanical properties?

• Do the two types of cells have different mechanical properties?

2.1 Pre-requisites

The analysis will be done with Python3. Alongside a working and recent installation of Python3,
the following packages are also needed:

• pickle 2

• matplotlib

• numpy

• math

• scipy

• os

• skimage

To test that your installation is complete the following code should run with no error in python:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math as math

4 import os as os

5 import pickle

6 from scipy.ndimage import gaussian_filter

7 from matplotlib.patches import Ellipse

8 import skimage.transform

9 mic_per_pix = 600./1864 ## The scale factor of images

2.2 Loading of the data

Data are given as pickle files. Pickles are a way to store python objects in permanent storage as
binary files. These objects can be reloaded in another Python script, even on another computer.

The first and lengthy part of the analysis (DIC and PTV) have already been performed on the
data we acquired. The results are the following pickles:

• fft X.pic

• fft Y.pic

2https://docs.python.org/3/library/pickle.html

2

https://docs.python.org/3/library/pickle.html

Both of them are 2D numpy, complex arrays, and they contain the normalised homodyne displace-
ment fields: ũrx/y.

They can be loaded by, for example:

1 file = open(filepath ,"rb")

2 fft_X = pickle.load(file)

3 file.close()

A good test to see if everything has gone well is to display for instance the amplitude of the
homodyne displacements over a phase contrast image took during the experiment.

1 plt.figure(figsize =(10 ,10))

2 ax = plt.subplot (121)

3 plt.imshow(np.abs(fft_X))

4 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

5 plt.colorbar ()

6 plt.subplot (122, sharex=ax ,sharey=ax)

7 plt.imshow(np.abs(fft_Y))

8 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

9 plt.colorbar ()

10 plt.show()

2.3 Normalised strains computation

Using Eqs. 6 and 7, one can now compute the pure and simple homodynes strains. Note: np.diff
can be useful for that, but there are a lot of different way to do it.

1 dux_dx = np.diff(fft_X ,axis=1,append =0)

2 duy_dx = np.diff(fft_Y ,axis=1,append =0)

3 dux_dy = np.diff(fft_X ,axis=0,append =0)

4 duy_dy = np.diff(fft_Y ,axis=0,append =0)

5 dux_dx_p_duy_dy = dux_dx + duy_dy

6 dux_dy_p_duy_dx = dux_dy + duy_dx

7

8 # Plot

9 plt.figure(figsize =(20 ,10))

10 ax = plt.subplot (121)

11 plt.imshow(gaussian_filter(np.abs(dux_dx_p_duy_dy) ,7),vmax =0.05)

12 plt.colorbar ()

13 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

14 plt.subplot (122, sharex=ax ,sharey=ax)

15 plt.imshow(gaussian_filter(np.abs(dux_dy_p_duy_dx) ,7),vmax = 0.05)

16 plt.colorbar ()

17 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

18 plt.show()

You will the ”jumpy” aspects of the obtained map. This is a size effect of the DIC algorithm:
the algorithm uses square blocks to correlate parts of the images. Because of this, neighboring
pixels are not completely independent, in particular, some pixels will have the nearly exact same
ũrx/y than their neighbors, leading to problems in the differentiation process. This can be solved

by applying a gaussian filter (blur) on the results with a standard deviation of the size of these
”non-independent” blocks. Using the ‘scipy‘ gaussian filter, a value of 7 works well. Note that it
also means that we are oversampling the data, which can lead to statistical errors in the end (we
will come back to that in 2.6).

2.3.1 If you are curious

The fact that some pixels are not independent can be easily seen by performing a 2D FFT on the
amplitudes images, as this transformation tells us at which scale the information lies. If you have
the time, this is interesting to do.

1 plt.figure ()

2 fft = np.fft.fftshift(np.fft.fft2(fft_X))

3 ax = plt.gca()

4 plt.imshow(np.log(np.abs(fft)))

5 circle = Ellipse ((len(fft_X [0])/2, len(fft_X)/2), len(fft_X [0]) /7*2, len(fft_X)

/7*2, facecolor="None",edgecolor="r",alpha = 0.2, ls = " -.")

6 ax.add_patch(circle)

7 plt.show()

3

2.4 Shear modulus maps computation

Using Eqs. 6 and 7, one can now compute the relative shear modulus, both from the pure and the
simple strains. Note that part of the field contains only zeros because the two cameras fields do
not overlap completely. This will produce some NaNs (not a number) error during this step. They
can be handled with np.nan to num.

Because of the phases jumps, the produce fields will be even more jumpy than the previous ones,
this can be handled with a gaussian blur as described previously. Also, some negative numbers
are present in the fields because of that. As a first good approximation these can be handled by
taking only the absolute value of the fields.

1 pure_shear_modulus = np.nan_to_num (1/ dux_dx_p_duy_dy ,posinf=0,neginf =0)

2 simple_shear_modulus = np.nan_to_num (1/ dux_dy_p_duy_dx ,posinf=0,neginf =0)

3

4 # Plot

5 plt.figure(figsize =(20 ,10))

6 ax = plt.subplot (121)

7 plt.imshow(gaussian_filter(np.abs(pure_shear_modulus.real) ,7),vmax =300)

8 plt.colorbar ()

9 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

10 plt.subplot (122, sharex=ax ,sharey=ax)

11 plt.imshow(gaussian_filter(np.abs(pure_shear_modulus.imag) ,7),vmax =300)

12 plt.colorbar ()

13 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

14 plt.show()

The real and imaginary parts of these fields should be proportional to the elastic and the viscous
components of the shear modulus respectively (G′ and G′′). The absolute value can be seen as a
measure of the rigidity (|G|). We will consider only the latter here.

You can plot these fields on top of an image of the cells, is there

2.5 Cells identification

The GFP and RFP fluorescent signals can be used to differentiate the cells of the two different
types.

These can be overlayed with the one the field produced before, for instance the rigidity in order
to have a visual overview of mechanical properties and cell type at the same type. A contour plot
can be used to avoid collision of several colorbars.

1 plt.figure(figsize =(10 ,10))

2 plt.imshow(gaussian_filter(np.abs(pure_shear_modulus) ,7),vmax =800)

3 plt.colorbar ()

4 plt.imshow(PC_img , cmap="gist_gray",alpha =0.5)

5 plt.contour(GFP ,cmap="Greens")

6 plt.contour(RFP ,cmap="Reds")

7 plt.show()

2.6 Mechanotyping of the two different cell type

It is now possible to extract the distributions of shear modulus for the two cell types, using both
the fluorescent signals as masks and the fields previously computed. The use of comprehensive lists
can be useful for that. Note that:

• as the fluorescent images do not have exactly the same FOV than the recovered moduli, only
areas where these two information overlap should be considered

• as mentioned in 2.3, the mechanical information we have now is oversampled : not every point
is independent from its neighbors. These non-independent pixels do not bring any informa-
tion but will contribute to statistical significance by falsely boosting it. This can be alleviated
by considering only the mean of non-independent pixels (undersampling). This process is also
known as binning in image analysis. We know that pixels in a box of 7× 7 pixels are not in-
dependent so the fields need to be binned to this amount. The skimage.transform.rescale
function can be used for this purpose3.

3take care that this function discard the imaginary part of complex images, there are other solutions also

4

1 binned_GFP = skimage.transform.rescale(GFP ,1./7 , preserve_range=True)

2 binned_RFP = skimage.transform.rescale(RFP ,1./7 , preserve_range=True)

3 binned_pure_shear_modulus_abs = skimage.transform.rescale(np.abs(pure_shear_modulus

) ,1./7, preserve_range=True)

4 binned_pure_shear_modulus_real = skimage.transform.rescale(np.abs(

pure_shear_modulus.real) ,1./7, preserve_range=True)

5 binned_pure_shear_modulus_imag = skimage.transform.rescale(np.abs(

pure_shear_modulus.imag) ,1./7, preserve_range=True)

6 binned_simple_shear_modulus_abs = skimage.transform.rescale(np.abs(

simple_shear_modulus) ,1./7, preserve_range=True)

7 binned_simple_shear_modulus_real = skimage.transform.rescale(np.abs(

simple_shear_modulus.real) ,1./7, preserve_range=True)

8 binned_simple_shear_modulus_imag = skimage.transform.rescale(np.abs(

simple_shear_modulus.imag) ,1./7, preserve_range=True)

9

10 rigidity_GFP = binned_pure_shear_modulus_abs[np.logical_and(binned_GFP ==1,

binned_pure_shear_modulus !=0)]

11 rigidity_RFP = binned_pure_shear_modulus_abs[np.logical_and(binned_RFP ==1,

binned_pure_shear_modulus !=0)]

12

13 plt.figure ()

14 plt.boxplot ([rigidity_GFP ,rigidity_RFP],labels =["GFP","RFP"])

By using statistical tests4 what can we say about:

• the moduli extracted from the pure and simple components of the strains?

• the mechanotypes (absolute) of the two types of cells?

• can we link some mechanical properties of the cells, or part of them, to their biological
properties?

4if you use a t-test, please make sure that all assumptions of this test are satisfied

5

	Background
	Homodyne strains
	Estimating the stress
	Normalised homodyne strains and shear modulus

	Data analysis
	Pre-requisites
	Loading of the data
	Normalised strains computation
	If you are curious

	Shear modulus maps computation
	Cells identification
	Mechanotyping of the two different cell type

