Lecture 2

FYS4715 2021

Whats inside cells, contd, statistical mechanics, diffusion, random walks

Cells – fundamental functional units of life

- enclosed by plasma membrane
- interior «soup» called cytoplasm
- organized in organelles = specialized compartments surrounded by membrane
 - nucleus: contains the genetic information necessary for cell growth and reproduction
 - mitochondria: responsible for the energy transactions necessary for cell survival
 - lysosomes: digest unwanted materials within the cell
 - endoplasmic reticulum & Golgi apparatus: organization of the cell by synthesizing selected molecules and then processing, sorting, and directing them to their proper locations
- <u>https://www.allencell.org/</u>

Plasma membrane

Ion channels

Cytosceleton

- actin filaments (7 nm Ø)
- microtubules (25 nm Ø) -
- intermediate filaments (10 Ø) -

The eukaryotic cytoskeleton. Actin filaments are shown in red, and microtubules composed of beta tubulin are in green.

- G-actin monomer
- F-actin polymer

Actin filament elongation rate

https://www.mechanobio.info/

٠

Microtubules & kinesin motors

Angio-
-atomy, -otomy
Auto-
Brachy
Cata- (katalysis)
Carcino-
Centro-, -centric
-ceptor, ceptive
Chromo-
Chrono-
-cyte, cyto-
Diplo
e-, ec-
Endo-
Exo-
Extra-
Erythro-
-gen, genous
-genic, -genous
-genicgenous

Vessel cutting Angiogenesis self =production short of vessels dissolving tumor (crab-like) capere, to take $\underline{\underline{Carcinogenesis}}$ centre color Production time (development)o f cancer double out of within, inside outside beyond red birth, descent, origin to produce

hollow

descent

Glia-		glue
Haem-		blood
Histo-		tissue
Homeo-		alike
Homo-		the same
Hyper-		above
Нуро-		under
Infero-		beneath
Infra-		below
Inter-		between
Intra-		within
Iso-		equal
-kinesis, -kinetic		kinesis=movement
Leuko-		white
Lipo-		fat
-lysis, -lysin	dissolving	
Macro-		large
Medi-		middle

-mere, mero-	a part		
Meta-		after	
Metabolism	change		Centromere=
Micro-		small	middle part
Mito- (mitosis)		a tread	Interne Poire
Mono-		single	
Muta-		mutare=to chan	ge
Necro-		dead	and nort
Neuro-		nerve	end part
-nomics		law	
Oligo-		few	
Onco-		bulk, mass	
Ortho-		straight	
Para-		beside	
Per-		through	
Peri-		around	
-phage, -phagous		phagein=to eat	
-phil		to love	

-phobe	to fear
Photo-	light
Plasma-, -plasm	form
-plicate	to fold
Post-	after
Pre-	before
Pro-	before
Proto-	first
Re-	back
Retro-	backwards
Serum	whey (myse)
-some, soma-	body
Stereo-, -steric	solid
Sub-	under
Super-	over
Supra-	above
Sym-, syn-	with

-synthesis	composition	
Tauto-		the same
Tele-		far
Teleo-		complete
Telo-, telio-	end	
Trans-		across
Ultra-		beyond

Diffusion and friction in fluids

- Did you do 2D RW?
- Demo 1drw?

Diffusion ~ raudon motion - judependent of details 10 roundonn uselle P(k) steplengths kh $u = \langle k_j \rangle = \sum_k k P_k - driff$ 4.1.3 P 4 0 $\langle x_N \rangle = NuL$ $\nabla_N^2 = \langle (x_N \langle x_N \rangle)^2 \rangle = 2DL$

Life at low Reynolds number

- For next Tuesday: You read Purcell's paper
- Tuesday:
 - You present the paper
 - We discuss life at low Reynolds number
 - Discuss Your turn 1A, Prob 1.3, 2.2, 2.5

Image analysis Outline

- Microscope imaging and cameras (quick repeat)
- What is a digital image? (quick repeat)
- Image types and resolution (quick repeat)
- Why do we need image analysis?
- How to do image analysis (basic steps)?
- Morphological operators
- Watershed algorithm
- Examples

Figure 1 - Conjugate Planes in the Optical Microscope

Figure 1 - Airy Patterns and the Limit of Resolution

Depth of field/focus

Spheric aberration & coverslip correction

Phase-contrast microscopy is

- to separate the illuminating (background) light from the specimen-scattered light (which makes up the foreground details) and
- to manipulate these differently.

image contrast is increased in two ways:

- by generating constructive interference between scattered and background light
- by reducing the amount of background light that reaches the image plane

Noise

- Shot noise / thermal / dark current
- Read-out noise
- Saturation / Glare / Blooming
- High energetic "cosmic" rays
- "Digital noise" / Moirè patterns

High Resolution Digital Cameras Advantages Drawbacks

- Light sensitive
- High spatial and <u>dynamical</u> resolution
- Low noise

- Slow data transfer
- Produces much data
- Requires custom made software
- Not user friendly
- Expensive

MORE SENSITIVE THAN THE EYE

16 bit: cooled sensor

Practical tips for adjusting video camera

- Turn off automatic adjustments
- Turn down Gain (it only adds noise)
- Adjust light intensity and shutter speed
 - until histogram covers intensity range
 - shutter speed must be short enough for desired frame rate
 - shutter speed long enough to avoid flicker

What is an image?

f = f(x, y)

12	0	234	122	54	65
78	34	215	23	23	34
109	65	30	117	54	54
140	23	111	214	65	76
11	12	245	213	235	189
155	0	78	0	0	67
178	198	201	0	12	42

Pixels MxN

Image types

- Intensity images grey level
- Binary images black and write
- RGB images color images

Color imago

[RGB] Red Green Blue

$M \times N \times 3$

Matlab image processing toolbox:

im = imread('landscape.jpg');
figure(1),imshow(im)
whos im
imfinfo('landscape.jpg')
A = im(1000:1010,1000:1010,:);

Binary ir

 im_bw = imread('black_and_white_cats-1541.jpg'); im_bw = rgb2gray(im_bw); im_bw = im2bw(im_bw); imwrite(im_bw,'bw_cats.png'); figure, imshow (im_bw) whos im_bw unique(im_bw)

Image quality

Image quality:

- Number of pixels in the matrix image size
- Intensity range

1 bit depth $(2^1 = 2)$ – black and white 8 bit depth $(2^8 = 256)$ – gray scale 0..256

12, 16 bit gray scale

24 bit depth (256 shades of RGB) - true color

Why do we need image analysis? Morphological analysis – a mathematical tool to investigate geometrical structure of binary or grayscale image

Segmentation

procedure

Basic steps of image analysis

Image segmentation quick steps:

- Filter
- Thresholding \rightarrow binary
- Labeling connected components
- Geometrical analysis of connected components

Noise removal Filtering – smoothing

- Background correction •

Convert to black and white

Image histogram

Thresholding intensity interval (a,b)

Morphological operators Morphological transformation are based on a structural element

- size
- shape
- center location

Erosion and dilation – basic operations Erosion Dilation

"Set the value at the origin to the <u>minimum</u> value of pixels in the structural element"

"Set the value at the origin to the <u>maximum</u> value of pixels in the structural element"

Erosion

removes isolated points

- discards peaks on the boundaries
- disconnects some particles

eroded image

input image

Dilation

- fills small holes inside particles
- enlarges the size of the particles
- connects neighboring objects

input image

dilated image

Opening and closing Opening = Erosion + Dilation Closing = Dilation + Erosion

Closing

Noise removal

Original image

After opening

Background correction

Figure 5.49: One-dimensional example of watershed segmentation: (a) gray-level profile of image data; (b) watershed segmentation—local minima of gray-level (altitude) yield catchment basins, local maxima define the watershed lines.

Example of workflow using watershed Reconstruction of individual

Binary image

pores in foam Distance map

Example of workflow using watershed

Distance map

Example of workflow using watershed Create markers

Example of workflow using watershed boundaries between regions

Example of workflow using watershed lines gives separated pores

Example of workflow using watershed Labeling of connected components

