Problem sheet 3 FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth (lasselb@fys.uio.no)

January 2021

Problem 3.1: Dirac matrices in d-dimensions

As we are moving from four dimensional space to d-dimensions, contractions and traces with Dirac matrices will change accordingly. Use the Dirac algebra

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv 2 g^{\mu \nu} \tag{1}
\end{equation*}
$$

and show that we have the following identities

$$
\begin{align*}
\gamma^{\mu} \gamma_{\mu} & =d \tag{2}\\
\gamma^{\mu} \gamma^{\nu} \gamma_{\mu} & =(2-d) \gamma^{\nu} \tag{3}\\
\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma_{\mu} & =4 g^{\nu \lambda}+(d-4) \gamma^{\nu} \gamma^{\lambda} \tag{4}\\
\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho} \gamma_{\mu} & =(d-4) \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho}-2 \gamma^{\rho} \gamma^{\lambda} \gamma^{\nu} . \tag{5}
\end{align*}
$$

Problem 3.2: One-loop vacuum polarization in QED

In massive QED, we have the following Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(i \not D-m) \psi, \tag{6}
\end{equation*}
$$

where $F_{\mu \nu}$ are the usual Abelian field strength tensor and D_{μ} is the covariant derivative acting on fields in the fundamental representation of the gauge group $U(1)$.
a) Show that the one-loop vacuum polarization, $\operatorname{i} \Pi\left(p^{2}\right)$, can be written as.

$$
\begin{equation*}
i \Pi^{\mu \nu}\left(p^{2}\right)=(-) e^{2} \mu^{4-d} \operatorname{tr}[\mathbf{1}] \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{N^{\mu \nu}}{\left(k^{2}-m^{2}+i \epsilon\right)\left((k+p)^{2}-m^{2}+i \epsilon\right)}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
N^{\mu \nu}=2 k^{\mu \nu}+p^{\mu} k^{\nu}+k^{\mu} p^{\nu}-g^{\mu \nu}\left(k^{2}+k \cdot p-m^{2}\right) . \tag{8}
\end{equation*}
$$

Can you explain where the overall minus sign comes from? Also, can you explain where the factor μ^{4-d} come from?
b) Show that, by symmetry, one has

$$
\begin{align*}
& \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu}}{\left(k^{2}-\Delta\right)^{n}}=0 \tag{9}\\
& \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{\mu} k^{\nu}}{\left(k^{2}-\Delta\right)^{n}}=\frac{1}{d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{2} g^{\mu \nu}}{\left(k^{2}-\Delta\right)^{n}} \tag{10}
\end{align*}
$$

c) Use the results from \boldsymbol{b}) and Feynman parametrization to show that after momentum integration, we have

$$
\begin{equation*}
i \Pi^{\mu \nu}\left(p^{2}\right)=i\left(p^{\mu} p^{\nu}-p^{2} g^{\mu \nu}\right) \Pi\left(p^{2}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Pi\left(p^{2}\right)=\frac{2 e^{2} \mu^{4-d}}{(4 \pi)^{d / 2}} \operatorname{tr}[\mathbf{1}] \Gamma\left(2-\frac{d}{2}\right) \int_{0}^{1} d x x(1-x) \Delta^{d / 2-2} . \tag{12}
\end{equation*}
$$

Show that this result is consistent with gauge invariance. Hint: What is the diagrammatic version of gauge invariance?
c) Finally, expand around $d=4-2 \epsilon$ and show that the vacuum polarization has a single pole in 4 dimensions, i.e.

$$
\begin{equation*}
\left.\Pi\left(p^{2}\right)\right|_{\mathrm{UV}}=\frac{e^{2}}{12 \pi^{2}} \frac{1}{\epsilon} \tag{13}
\end{equation*}
$$

