Problem sheet 5

 FYS5120-Advanced Quantum Field Theory

 FYS5120-Advanced Quantum Field Theory}

Lasse Lorentz Braseth (lasselb@fys.uio.no)

March 2021

Problem 5.2: Renormalized perturbation theory

In this exercise you will renormalize QED to one-loop order. To this end, start with the bare QED Lagrangian ${ }^{1}$

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{0 \mu \nu} F_{0}^{\mu \nu}+\bar{\psi}_{0}\left(i \not \partial-e_{0} A_{0}-m_{0}\right) \psi_{0} \tag{1}
\end{equation*}
$$

By realizing that the bare Lagrangian does not describe the physical parameters, we can rescale the fields and coupling in the following way

$$
\begin{align*}
\psi_{0} & =\sqrt{\mathcal{Z}_{2}} \psi \tag{2}\\
A_{0 \mu} & =\sqrt{\mathcal{Z}_{3}} A_{\mu} \tag{3}\\
m_{0} & =\mathcal{Z}_{m} m \tag{4}\\
e_{0} & =\mathcal{Z}_{e} e \tag{5}
\end{align*}
$$

The idea from here is that we want to expand around some tree level values for these parameters, which naturally takes the from

$$
\begin{equation*}
\mathcal{Z}_{i}=1+\delta_{i} \tag{6}
\end{equation*}
$$

where δ_{i} starts at $\mathcal{O}\left(e^{2}\right)$. First, define

$$
\begin{equation*}
\mathcal{Z}_{1}=\mathcal{Z}_{e} \mathcal{Z}_{2} \sqrt{\mathcal{Z}_{3}} \tag{7}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\delta_{e}=\delta_{1}-\delta_{2}-\frac{1}{2} \delta_{3}+\mathcal{O}\left(e^{4}\right) \tag{8}
\end{equation*}
$$

Finally, show that the Feynman rules for the counterterms can be written as

$$
\text { ~~~~ }=-i \delta_{3}\left(p^{2} g^{\mu \nu}-p^{\mu} p^{\nu}\right)
$$

$$
\longrightarrow=i\left(\not p \delta_{2}-\left(\delta_{2}+\delta_{m}\right) m\right)
$$

[^0]
Problem 5.2: Electron self energy

By using the Feynman rules for counterterms, show that the renormalized two point function can be written as (momentum space)

$$
\begin{equation*}
i \mathcal{G}(p)=\frac{i}{\not p-m+\Sigma(\not p)} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma(\not p)=\Sigma_{2}(\not p)-\left(\delta_{m}+\delta_{2}\right) m+\mathcal{O}\left(e^{4}\right) . \tag{10}
\end{equation*}
$$

Calculate the one-loop electron self energy, i.e. $\Sigma_{2}(\not p)$, and show that ${ }^{2}$

$$
\begin{align*}
\delta_{2} & =-\frac{\alpha}{4 \pi} \frac{1}{\bar{\epsilon}} \tag{11}\\
\delta_{m} & =-\frac{3 \alpha}{4 \pi} \frac{1}{\bar{\epsilon}} \tag{12}
\end{align*}
$$

in the $\overline{M S}$ scheme. With these counterterms, you should find the UV-finite expression

$$
\begin{equation*}
\Sigma(\not p)=\frac{\alpha}{4 \pi}\left(2 m-\not p+2 \int_{0}^{1} d x[(1-x) \not p-2 m] \ln \frac{\mu^{2}}{\Delta}\right)+\mathcal{O}\left(e^{4}\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=x m^{2}-x(1-x) p^{2} \tag{14}
\end{equation*}
$$

Now, there is an IR-divergence in this expression, but we will not worry about these now. The easy way to cure this divergence is to add a photon mass to the photon propagator, but these IR-divergences will be treated more correctly in chapter 20 .

Problem 5.3: Vertex correction

In Problem sheet 4 you found that the vertex correction could be written as

$$
\begin{equation*}
\Gamma_{1 \text {-loop }}^{\mu}=F_{1}^{1 \text {-loop }}\left(q^{2}\right) \gamma^{\mu}+\frac{i}{m} q_{\nu} S^{\mu \nu} F_{2}^{1 \text {-loop }}\left(q^{2}\right) \tag{15}
\end{equation*}
$$

where the one-loop form factors took the form

$$
\begin{align*}
& F_{1}^{1 \text {-loop }}=-2 i e^{2} \mu^{4-d} \int_{0}^{1} d x d y d z \delta(x+y+z-1) \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\mathcal{N}_{1}}{\left(k^{2}-\Delta+i \epsilon\right)^{3}} \tag{16}\\
& F_{2}^{1 \text {-loop }}=2 i e^{2} \mu^{4-d} \int_{0}^{1} d x d y d z \delta(x+y+z-1) \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\mathcal{N}_{2}}{\left(k^{2}-\Delta+i \epsilon\right)^{3}} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=(1-z)^{2} m^{2}-x y q^{2} \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathcal{N}_{1}=\frac{(d-2)^{2}}{d} k^{2}-(d-2)\left((1-z)^{2} m^{2}+x y q^{2}\right)+2 z\left(2 m^{2}-q^{2}\right) \tag{19}\\
& \mathcal{N}_{2}=2 m^{2}\left(2 z(1-z)+(4-d)(1-z)^{2}\right) \tag{20}
\end{align*}
$$

[^1]By calculating $F_{2}^{1-\text { loop }}(0)$ you found the correction to the magnetic moment of the electron. In this exercise you will calculate $F_{1}^{1-l o o p}(0)$ and find the counterterm δ_{1}. First, to leading order we have that

$$
\begin{equation*}
F_{1}\left(p^{2}\right)=1 \tag{21}
\end{equation*}
$$

Hence, it is natural to define the renormalization condition (why?)

$$
\begin{equation*}
\Gamma^{\mu}(0)=\gamma^{\mu} \tag{22}
\end{equation*}
$$

Use renormalized perturbation theory and show that

$$
\begin{equation*}
\delta_{1}=-\frac{\alpha}{4 \pi} \frac{1}{\bar{\epsilon}} \tag{23}
\end{equation*}
$$

in the $\overline{M S}$ scheme. The last counterterm we need to remove all divergences to one-loop in QED, is δ_{3}. From the renormalized Lagrangian, you should conclude that δ_{3} cancels the divergence in the photon propagator. The one-loop correction to the photon propagator was calculated in Problem sheet 3 , and you should find that

$$
\begin{equation*}
\delta_{3}=-\frac{\alpha}{3 \pi} \frac{1}{\bar{\epsilon}} \tag{24}
\end{equation*}
$$

[^0]: ${ }^{1}$ We ignore the gauge fixing term here.

[^1]: ${ }^{2}$ Remember that $\bar{\epsilon}$ includes $\ln 4 \pi$ and γ_{E}.

