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Solution Problem 3.2
a) At one-loop level, one single diagram with a closed fermion loop contributes to iΠ(p2). Applying
the QED Feynman rules (using eµ(4−d)/2 instead of just e) we write this as

iΠ(p2) = = (−)e2µ4−d
∫

ddk

(2π)d
tr
[
γµ(/k +m)γν(/k + /p+m)

](
k2 −m2 + iε

)(
(k + p)2 −m2 + iε

) .
First, we calculate the trace

tr
[
γµ(/k +m)γν(/k + /p+m)

]
= tr

[
γµ/kγν/k

]
+ tr

[
γµ/kγν/p

]
+m2tr[γµγν ] . (1)

which can be simplified by using

tr[γµγν ] = tr[1]gµν (2)
tr[γµγνγργσ] = tr[1]

(
gµνgρσ − gµρgνσ + gµσgνρ

)
, (3)

giving the numerator

Nµν = 2kµkν + pµkν + kµpν − gµν
(
k2 + k · p−m2) . (4)

Hence, the vacuum polarization tensor takes the form

iΠµν(p2) = (−)e2µ4−d tr[1]
∫

ddk

(2π)d
Nµν

(k2 −m2 + iε)((k + p)2 −m2 + iε) . (5)

Closed fermion loops will always give an overall minus sign and the trace of product of Dirac
matrices. The reason is that you have to commute the fermion operators in such a way that you
can Wick contract to get propagators. Since fermion operators anti-commute, this will give an
overall minus sign.

b) The rank-1 tensor integrals vanish by parity, since it corresponds to the integral over a symmetric
domain of an odd function. For a similar reason, the rank-2 integral vanishes unless µ = ν. Hence,
it must be proportional to the metric tensor gµν , giving∫

ddk

(2π)d
kµkν

(k2 −∆)n = A(∆) gµν . (6)

In order to find A(∆) we can simply contract both sides with gµν , giving

A(∆) = 1
d

∫
ddk

(2π)d
k2

(k2 −∆)n (7)
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showing that ∫
ddk

(2π)d
kµkν

(k2 −∆)n = 1
d

∫
ddk

(2π)d
k2gµν

(k2 −∆)n (8)

c) Now, let us use Feynman parametrization to combine the denominators

1
(k2 −m2 + iε)((k + p)2 −m2 + iε) =

∫ 1

0
dx

1
(k2 + 2x k · p+ xp2 −m2)2

=
∫ 1

0
dx

1
(k2 + x(1− x)p2 −m2 + iε)2 (9)

where we in the last step shifted kµ → kµ + xpµ. However, this shift must also be made in the
numerator, giving

Nµν = 2kµkν − 2x(1− x)pµpν − gµν
(
k2 − x(1− x)p2 −m2)+ (linear terms in k) . (10)

In the previous exercise we argued that linear terms would vanish after integration, so these can be
dropped. Also, the kµkν term can be replaced according to Eq. (8), reducing the numerator to

Nµν = −k2
(

1− 2
d

)
gµν − 2x(1− x)pµpν + gµν(x(1− x)p2 +m2)

Summarizing, we have found that the vacuum polarization have the form

iΠµν(p2) = e2µ4−dtr[1]
∫ 1

0
dx

∫
ddk

(2π)d
k2
(
1− 2

d

)
gµν + 2x(1− x)pµpν − gµν(x(1− x)p2 +m2)

(k2 −∆ + iε)2

(11)

where ∆ = m2 − x(1− x)p2. Let us do the integration term by term using the integrals we derived
in problem sheet 1

T erm 1 :

(
1− 2

d

)
gµν

∫
ddk

(2π)2
k2

(k2 −∆ + iε)2 = gµν
(

1− d

2

)
i

(4π)d/2 Γ
[
1− d

2
]
∆d/2−1 (12)

= gµν
i

(4π)d/2 Γ
[
2− d

2
]
∆d/2−1 (13)

where we used that

Γ
[
2− d

2
]

=
(
1− d

2
)
Γ
[
1− d

2
]
. (14)

T erm 2, 3 : These terms does not have any dependence on k in the numerator, so we can use∫
ddk

(2π)d/2
1

(k2 −∆ + iε)2 = i

(4π)d/2 Γ
[
2− d

2
]
∆d/2−2 (15)

Inserting these results, we find

iΠµν(p2) =e2µ4−dtr[1] i

(4π)d/2 Γ
[
2− d

2
]

(16)

×
∫ 1

0
dx

(
gµν∆ + 2x(1− x)pµpν − gµν

(
x(1− x)p2 +m2))∆d/2−2 (17)
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and if we use that ∆−m2 = −x(1− x)p2, we finally find

iΠµν(p2) =2ie2µ4−dtr[1] i

(4π)d/2 Γ
[
2− d

2
](
pµpν − p2gµν

) ∫ 1

0
dxx(1− x)∆d/2−2 (18)

If we now define

Π(p2) = 2e2µ4−d

(4π)d/2 tr[1]Γ
(
2− d

2
) ∫ 1

0
dxx(1− x)∆d/2−2 , (19)

we have shown that the vacuum polarization tensor takes the form

Πµν(p2) =
(
pµpν − p2gµν

)
Π(p2) . (20)

This structure could actually have been guessed from gauge invariance. The diagrammatic mani-
festation of gauge invariance is known as the Ward identity, which says that

pµΠµν = 0 , (21)

and we can immediately see that the form we have found satisfies this identity. From the discussion
session it became clear that the link between the Ward identity and Gauge invariance was not
obvious. So, let me try to make the link a little more clear.

Ward Identity

The defining equation for the vector potential Aµ(x) without choosing a gauge is

∂ν∂
νAµ(x) = 0 , (22)

This equation is solved by the ansatz,

Aµ(x) =
∫

d4k

(2π)4 ε(k) e−ik·x . (23)

We know that in a gauge invariant Abelian theory, the vector potential transform as

A
′
µ = Aµ + ∂µα . (24)

If we insert for the solution in Eq. (23) and use the Fourier transform

α(x) =
∫

d4k

(2π)4 α̃(k) e−ik·x (25)

we find ∫
d4k

(2π)4 ε
′
µ(k) e−ik·x =

∫
d4k

(2π)4 εµ(k) e−ik·x +
∫

d4k

(2π)4 (−ikν)α̃(k) e−ik·x , (26)

giving that the polarization tensor transform as

ε
′
µ(k) = εµ(k)− ikµα̃(k) . (27)

Let us then consider an arbitrary QED process involving an external photon with momentum k.
We can write the amplitude for such a process as

M(k) = εµ(k)Mµ(k) . (28)

Since εµ always appear in such amplitudes, we have extracted it and defined Mµ(k) to be the rest
of the amplitude (which in QED is a product of spinors and Dirac matrices). According to Eq. (27),
the amplitude transform under gauge transformation as

M(k)→M′(k) = εµ(k)Mµ(k)− iα̃(k)kµMµ(k)) . (29)
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If the amplitude is to be gauge invariant, we must have the follwing identity

kµMµ(k)) = 0 , (30)

which is known as the Ward identity. It is essentially a statement of current conservation, which is
a consequence of the gauge symmetry in QED. This claim is not obvious from the above heuristic
derivation. For a formal proof of this claim we would need to go at the level of correlation functions,
and find what is known as the Ward-Takahashi identities. These are independent of perturbation
theory and are essential in the proof of renormalization in QED. Hence, we will talk more about
them when we get to that point.

c) To find the UV-divergent part of the vacuum polarization, we simply expand all terms in
d = 4− 2ε, where it is understood that ε→ 0. We use the following expressions

Γ[ε] = 1
ε
− γE + O(ε) (31)

Aε = 1 + ε lnA+ O(ε2) (32)

giving (we can now use that tr[1] = 4 in four dimensions)

Π(p2) = 8e2

(4π)2

(1
ε
− γE + O(ε)

)(
1 + ε lnµ2 + O(ε2)

)
)
(
1 + ε ln 4π + O(ε2)

)
×
∫ 1

0
dxx(1− x)

(
1− ε ln ∆ + O(ε2)

)
= e2

2π2

∫ 1

0
dxx(1− x)

(1
ε
− γE + ln 4π + ln µ

2

∆ + O(ε)
)
. (33)

It follows that the UV-divergent part is given by

Π(p2)
∣∣∣
UV

= e2

2π2
1
ε

∫ 1

0
dxx(1− x) = e2

12π2
1
ε

(34)
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