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In classical physics, the vacuum was considered to be free empty space with no physical properties
of its own. However, according to quantum field theory a vacuum contains particles, the numbers
of which are in a continuous state of fluctuation and can be thought of as popping in and out of
existence.

The first encounter of problems with the vacuum energy that you have faced is probably through
the procedure of canonical quantization of scalar fields. For a scalar field φ the canonical quantization
procedure will give a Hamiltonian of the form

H =
∫

d3k

(2π)3 ωk
(
a†kak + 1

2[ak, a†k]
)

=
∫

d3k

(2π)3 ωk
(
a†kak + 1

2(2π)3δ(3)(0)
)

=
∫

d3k

(2π)3 ωk
(
a†kak + 1

2V
)
, (1)

where the volume V is defined as

V = (2π)3δ(3)(0) =
∫
d3x . (2)

This implies that the vacuum has an infinite energy

E0 = 〈0|H|0〉 = V

2

∫
d3k

(2π)3ωk =∞ . (3)

As you may have learned, the way out of this problem is to use that the energy of the vacuum is
not measurable. Only energy diffenrences are measurable, and in these differences the zero-point
energy drops out. Mathematically this is fixed by normal ordering the Hamiltonian, giving

H =
∫

d3k

(2π)3 ωk a
†
kak , (4)

which give 〈0|H|0〉 = 0. However, more attention is required whenever the mode spectrum and
subsequently the vacuum energy is modified by boundary conditions. This is what we will tackle in
this problem sheet.

Problem 1.1: Casimir effect
The Lagrangian for a free electromagnetic field is given by

L = −1
4FµνF

µν , (5)
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where Fµν = ∂µAν + ∂νAµ for Abelian gauge fields, giving the source free Maxwell equations

∂µF
µν = 0 . (6)

In Coulomb gauge (A0 = 0 and ∇·A = 0) the most general solution is (Do not confuse the argument
x in the equation below with the x-coordinate as this is a four vector),

A(x) =
∫

d3k

(2π)3
1√
2ωk

2∑
λ=1

(
aλ(k)ελ(k)e−ik·x + a†λ(k)ελ(k)eik·x

)
, (7)

where wk = |k| and ε1, ε2 are the transverse polarization vectors.
We will now consider the electromagnetic field in the space between two infinitely large, parallel,

uncharged, perfectly conducting plates located at z = 0 and z = a (each plate is in the xy plane).
In order to have the appropriate boundary conditions for the electromagnetic fields, the components
of the wave-vectors corresponding to their Fourier transforms should satisfy

ki = niπ

xi
, i = 1, 2, 3 , (8)

with ni being non-negative integers and xi are the Cartesian dimensions of the problem (here we
use x1 = x2 = L and x3 = a). The Hamiltonian for this system can be shown to be1,

H =1
2

∫
d2k

(2π)2

∞∑
n=1

ωk,n

2∑
λ=1

(
a†λ(kx, ky, n)aλ(kx, ky, n) + aλ(kx, ky, n)a†λ(kx, ky, n) (9)

+ 1
2

∫
d2k

(2π)2 wk
(
a†(kx, ky)a(kx, ky, n) + a(kx, ky)a†(kx, ky

)
(10)

where

ωk,n =
√
k2
x + k2

y +
(nπ
a

)
(11)

a) Use the following commutation relations

[aλ(kx, ky, n), a†λ′(k′x, k′y, n′)] = (2π)2δnn′δλλ′δ(kx − k′x)δ(ky − k′y) (12)
[a(kx, ky), a†(k′x, k′y)] = (2π)2δ(kx − k′x)δ(ky − k′y) (13)

and show that the vacuum energy can be written as

E0 = L2

2

∫
d2k

(2π)2

(
2
∞∑
n=1

√
k2
x + k2

y +
(nπ
a

)2
+
√
k2
x + k2

y

)
(14)

b) The expression above is divergent, so we have to regularize it. First introduce a regulator µ and
calculate the integral2

I =
∫
d2k

1
(k2 + µ2)α (15)

and make the last term in Eq. (14) vanish, i.e. show that we have

E0 = L2
∫

d2k

(2π)2

∞∑
n=1

√
k2
x + k2

y +
(nπ
a

)2
. (16)

1The procedure of finding this Hamiltonian is very similar to the calculation you probably did in FYS4170 for scalar
fields, with the addition of boundary conditions and polarizations. Hence, it is quite a mess and not the purpose
of this exercise.

2it is understood that µ should be sent to zero at the end of a calculation.
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As you probably know we can only swap the order of summation and integration if the integrand
converges. However, it does not look like the above integrand converges. Regulate the integrand
with the Riemann zeta-function

ζ(s) =
∞∑
n=1

n−s , (17)

and show that

E = E0
L2 = − π2

720a3 . (18)

The Casimir force can then be found by calculating

F (a) = −dE
da

. (19)

Problem 1.2: Dimensional Regularization and Feynman Parameters
A typical loop integral has the form ∫

d4k

(2π)4
1

(k2 −m2 + iε)n (20)

Because of the Minkowski signature we use the iε prescription to shift the poles in propagators.
The integral above can be evaluated using Cauchy’s contour integral formula, but an easier way is
to use what is called Wick rotation. The iε prescription tells us that in the k0-plane, the pole at
k0 > 0 is shifted below the real axis and the pole at k0 < 0 is shifted above the real axis. Therefore
we can change the integration path in the complex k0-plane, by rotating counterclockwise from the
real axis to the imaginary axis3. The effect of this rotation is that we change from an Minkowskian
signature to an Euclidean signature, i.e. we can define the Euclidean four momentum variable
kE = (ik0

E ,kE), giving k2
E = −k2.

With these manipulations the loop integral takes the form

i(−1)n
∫
d4kE
(2π)4

1
(k2
E +m2)n

(21)

a) As you will learn the most powerful regularization scheme that preserves all the symmetries in
QFT is to use dimensional regularization. Hence, take the integral to d-dimensions and prove the
following identities ∫

ddkE
(2π)d

1
(k2
E + ∆)n

= 1
(4π)d/2

Γ(n− d
2)

Γ(n) ∆
d
2−n (22)

∫
ddkE
(2π)d

p2
E

(k2
E + ∆)n

= 1
(4π)d/2

d

2
Γ(n− d

2 − 1)
Γ(n) ∆1+ d

2−n (23)

where you will have use for the Euler β-function

β(a, b) =
∫ ∞

0
dxxa−1(1− x)b−1 = Γ(a)Γ(b)

Γ(a+ b) . (24)

b) In loop calculations we often end up with denominators that consist of products of different
propagators. A very useful method for dealing with these is to introduce Feynman parameters.

Prove by induction the formula for the Feynman parametrization of n propagators

1
Aa1

1 . . . Aan
n

= Γ(a1 + · · ·+ an)
Γ(a1) · · ·Γ(a1)

∫ 1

0
dx1 . . . dxn

δ(1− x1 + · · ·+ xn)xa1−1
1 · · ·xan−1

n

(x1A1 + · · ·+ xnAn)a1+···+an
, (25)

3We have to rotate counterclockwise to avoid crossing the poles.
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