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FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth, Jonas Eidesen

 These problems are scheduled for discussion on Wednesday, 13 April 2022. If you spot any
typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

In the last couple of problem sheets you have wrestled with the procedure of integrating out
high energy degrees of freedom and showed how we can obtain finite amplitudes by renormalizing
the parameters of the theory. While the idea of integrating out momenta up to a cut-off Λ0 is very
intuitive, in more complicated scenarios it becomes very cumbersome to perform. More seriously,
in a gauge theory, simply imposing a cut-off does not preserve gauge invariance. That is not to
say that momentum cut-off is entirely useless, as it gives a clear indication to the origin of the
divergence1. We should, however, use a method that preserves all the symmetries of the theory.
Probably the most used and arguably most useful is that of dimensional regularization. There are
other choices that are valid for certain theories; for example, Pauli-Villars regularization works
for Abelian gauge theories, but not for non-Abelian gauge theories. Dimensional regularization
preserves all the symmetries, so we will mostly stick with this method. However, the disadvantage
is that it is not as transparent in which momentum region the divergence originate2.

Whether an integral diverges or not is largely determined by power counting, e.g. we have
that the integral ∫ Λ d4k

k4 ∼ ln Λ , (1)

is logarithmically divergent. We observe that if the physical dimension were less than four, this
integral would no longer diverge in the UV-region. That suggests we can regulate an integral by
computing in some generic number of dimensions d3. Since the dimension is generic, the integral
is not divergent until we specify the physical dimension. In order to ‘approach’ the physical
dimension, we have to analytically continue the result of our d-dimensional theory through a
non-integer value of d. Hence, we introduce a regulator ε and define that d = 4− 2ε4, where ε
is in general complex. In momentum cut-off, we send the regulator to infinity at the end of a
calculation, while in dimensional regularization the divergence will manifest itself for ε→ 0.

A we have ‘changed’ the space-time dimensions, we have to re-evaluate the mass dimension of
fields and couplings in the Lagrangian. In order to keep the action dimensionless, we must have

1Meaning if the divergence is in the UV or IR region of momentum space.
2Should also mention that it is purely a perturbative regulator scheme.
3This argument is kind of heuristic, but using the Wilsonian renormalization procedure one can deduce that this

is indeed true.
4We should not confuse this ε with the Feynman prescription iε of shifting the poles in propagators.
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that the Lagrangian has the mass dimension[ ∫
ddxL

]
= m0 =⇒ [L] = md , (2)

i.e. the mass dimension of fields changes as well. E.g. for a scalar field we must have

[(∂µφ)2] = md =⇒ [φ] = m1−ε/2 , (3)

leading to a dimensionful coupling

[λ] = m(4−d)/2 . (4)

In order to keep the coupling dimensionless, we can replace

λ→ µ(4−d)/2λ(µ) , (5)

where λ(µ) is dimensionless, and µ is some arbitrary energy scale. It is important to stress that
µ is not a cut-off; it is merely a scale we introduce, allowing us to use dimensionless couplings.
This scale is most often set at the typical scale of the experiment we are interested in explaining
and is referred to as the renormalization scale. In practice, this means that instead of calculating
with the coupling that appears in the Lagrangian, we will replace it with λµε. Just to be clear,
observables should not depend on this scale, which is a useful property we will exploit later on.

Problem 19: Dimensional Regularization
A typical loop integral has the form∫

d4k

(2π)4
1

(k2 −m2 + iε)n (6)

Because of the Minkowski signature we use the iε prescription to shift the poles in propagators.
The integral above can be evaluated using Cauchy’s contour integral formula, but an easier
way is to use what is called Wick rotation. The iε prescription tells us that in the k0-plane,
the pole at k0 > 0 is shifted below the real axis and the pole at k0 < 0 is shifted above the
real axis. Therefore we can change the integration path in the complex k0-plane, by rotating
counterclockwise from the real axis to the imaginary axis5. The effect of this rotation is that
we change from an Minkowskian signature to an Euclidean signature, i.e. we can define the
Euclidean four momentum variable kE = (ik0

E ,kE), giving k2
E = −k2.

With these manipulations the loop integral takes the form

i(−1)n
∫
d4kE
(2π)4

1
(k2
E +m2)n

(7)

Let us see how these integrals behave in d-dimensions.

a) Show that ∫
ddkE
(2π)d

1
(k2
E + ∆)n

= 1
(4π)d/2

Γ(n− d
2)

Γ(n) ∆
d
2 −n (8)

∫
ddkE
(2π)d

p2
E

(k2
E + ∆)n

= 1
(4π)d/2

d

2
Γ(n− d

2 − 1)
Γ(n) ∆1+ d

2 −n (9)

where you will have use for the Euler β-function

β(a, b) =
∫ 1

0
dxxa−1(1− x)b−1 = Γ(a)Γ(b)

Γ(a+ b) . (10)
5We have to rotate counterclockwise to avoid crossing the poles.
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b) As we keep the dimension generic we have to modify the Dirac gamma matrix identities

γµγµ = d (11)
γµγνγµ = (2− d)γν (12)

γµγνγλγµ = 4gνλ + (d− 4)γνγλ (13)
γµγνγλγργµ = (4− d)γνγλγρ − 2γργλγν . (14)

We will use these identities later, but unless you really want to derive them it suffices to
just use them.

Problem 19: Vacuum Polarization
The process of Wilsonian renormalization showed that in order to render our theories finite we
have to tune the parameters of the theory. Following in the same spirit we have that the QED
action is tuned to

S0[A0, ψ0]→ S[A,ψ] + SCT[A,ψ] (15)

a) Let us derive the form of the renormalized action without integrating out degrees of freedom,
but by simply redefining the fields and parameters in the naive bare action one often starts
with. Start with the bare action for massive QED

S0[A0, ψ0] =
∫
ddx

(
− 1

4F0µνF
µν
0 + ψ̄0

(
i/∂ − e0 /A0 −m0

)
ψ0

)
, (16)

and introduce renormalization parameters for each field and parameter in the action to
show that

S[A,ψ] =
∫
ddx

(
− 1

4FµνF
µν + ψ̄

(
i/∂ − e /A−m

)
ψ

)
(17)

SCT[A,ψ] =
∫
ddx

(
− 1

4δ3FµνF
µν + ψ̄

(
iδ2/∂ − eδ1 /A− (δm + δ2)m

)
ψ

)
, (18)

b) Show that the one-loop vacuum polarization, iΠµν(p2), can be written as.

iΠµν(p2) = (−)e2µ4−d tr[1]
∫

ddk

(2π)d
Nµν

(k2 −m2 + iε)((k + p)2 −m2 + iε) , (19)

where

Nµν = 2kµkν + pµkν + kµpν − gµν
(
k2 + k · p−m2) . (20)

Can you explain where the overall minus sign comes from?

c) Show that, by symmetry, one has∫
ddk

(2π)d
kµ

(k2 −∆)n = 0 (21)∫
ddk

(2π)d
kµkν

(k2 −∆)n = 1
d

∫
ddk

(2π)d
k2gµν

(k2 −∆)n (22)
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Use the results from Problem 19 and Feynman parametrization to show that after mo-
mentum integration, we have

iΠµν(p2) = i
(
pµpν − p2gµν

)
Π(p2) , (23)

where

Π(p2) = 2e2µ4−d

(4π)d/2
tr[1]Γ

(
2− d

2
) ∫ 1

0
dxx(1− x)∆d/2−2 . (24)

which has the momentum form we expect from the Ward identity.

d) Finally, expand around d = 4− 2ε and show that the vacuum polarization in QED has a
single pole in 4 dimensions, i.e.

Π(p2)
∣∣∣
UV

= e2

12π2
1
ε

(25)

Hint: the expansion can be messy for the full expression, so to extract the UV-divergence
you can simply set m=0.
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