
Problem sheet 11: Renormalization of
QED part 2

FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth, Jonas Eidesen

 These problems are scheduled for discussion on Wednesday, 20 April 2022. If you spot any
typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

In the last couple of problem sheets, we have argued and shown that the naive action leads to
mathematically ill-defined quantities. There are several ways of treating this with more care, but
the simplest is to say that the theory only makes sense when the following tuning is finite

S0[A0, ψ0]→ S[A,ψ] + SCT[A,ψ] (1)

where

S[A,ψ] =
∫
ddx

(
− 1

4FµνF
µν + ψ̄

(
i/∂ − e /A−m

)
ψ

)
(2)

SCT[A,ψ] =
∫
ddx

(
− 1

4δ3FµνF
µν + ψ̄

(
iδ2/∂ − eδ1 /A− (δm + δ2)m

)
ψ

)
, (3)

It follows that we have to extend the naive Feynman rules to include these counterterms. The
terminology for this procedure is renormalized perturbation theory, giving the additional rules

= −iδ3
(
p2gµν − pµpν

)

= −ieγµδ1

= i
(
/pδ2 −

(
δ2 + δm

)
m
)

In this problem set, we will continue on the quest of renormalizing QED to one-loop order.
However, we will first take a slight detour and actually make a prediction, namely predict the
anomalous magnetic moment of the electron. This result1 is to date the most accurate in all of
physics and was (and is) a great success of quantum field theory.

1Not the one-loop result, but by including even higher orders.
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Problem 20: Anomalous Magnetic Moment of the Electron
The general procedure when looking for radiative corrections to the way spinors interact with
photons, such as corrections to g − 2, is to calculate off-shell matrix elements (‘exchange’ of a
virtual photon). The tree-level matrix element for a electron-electron interaction with a photon
is given by (you can think of the photon as a unconstrained external magnetic field)

iM0 = = −ieū(p′)γµu(p) (4)

where momentum conservation demands that qµ = p′µ − pµ.
Now, it is not easy to see how we can find the correction to g from calculating corrections to

this matrix element. However, we remember from FYS4170 that scalars and spinors interact
differently with photons, and the appearance of the term FµνS

µν for spinors was this difference.
Hence, we should be able to decompose the matrix element into one scalar interaction and one
term that takes the form FµνS

µν .

a) For on-shell spinors, show the following identity (particles with same mass)

ū(p′)γµu(p) = (p′µ + pµ)
2m ū(p′)u(p) + i

m
ū(p′)qνSµνu(p) , (5)

giving the amplitude

iM0 = −e(pµ + p′µ)
2m ū(p′)u(p)− i e

m
ū(p′)qνSµνu(p) . (6)

Can you recognize the structure of this amplitude? Relate it to the way scalars and spinors
interact with the electromagnetic field.
(Hint: To find the identity, use the Dirac equation and that the spinors, u, satisfy plane
wave solutions.)

b) For higher order processes, we can parametrize our ignorance in the following way

iMµ = ū(p′)
(
− ieΓµ(p, p′)

)
u(p) (7)

where the vertex correction takes the general form

Γµ = F1(q2)γµ + i

m
qνS

µνF2(q2) . (8)

Then, calculate

Γµ1-loop(p, p′) =

p

p′

q

where

Γµ1-loop(p, p′) = −ie2µ4−d
∫

ddk

(2π)d
γν(/p′ + /k +m)γµ(/p+ /k +m)γν(

(p′ + k)2 −m2 + iε
)(

(p+ k)2 −m2 + iε
)(
k2 + iε

) (9)
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and show that it can be written as

Γµ1-loop = F 1-loop
1 (q2)γµ + i

m
qνS

µνF 1-loop
2 (q2) (10)

where the one-loop form factors take the form

F 1-loop
1 = −2ie2µ4−d

∫ 1

0
dxdydzδ(x+ y + z − 1)

∫
ddk

(2π)d
N1

(k2 −∆ + iε)3 (11)

F 1-loop
2 = 2ie2µ4−d

∫ 1

0
dxdydzδ(x+ y + z − 1)

∫
ddk

(2π)d
N2

(k2 −∆ + iε)3 (12)

where

∆ = (1− z)2m2 − xyq2 (13)

and

N1 = (d− 2)2

d
k2 − (d− 2)

(
(1− z)2m2 + xyq2

)
+ 2z

(
2m2 − q2) (14)

N2 = 2m2(2z(1− z) + (4− d)(1− z)2) (15)

(NB! The numerator in Eq. (9) is nasty and takes quite some effort to rewrite. Now, since
F2 is finite in 4-dimensions, you can use the Dirac matrix relations that you are used to.
However, in a future exercise, you will calculate F1 as well, so I recommend you to do it in
d-dimensions. Also, remember that Γµ is squeezed between ū and u, so there are several
simplifications to make using the Dirac equation.)

c) Finally, show that the one-loop correction to the anomalous magnetic moment of the
electron is given by

g − 2 = 2F 1-loop
2 (0) = α

π
(16)

This is the prediction made by Schwinger, Feynman and Tomonaga in 1948 which culminated
in a Nobel prize in physics in 1965. Together with the calculation of the Lamb shift, this
is the result that convinced theoretical physicists at the time that QFT was on the right
track in the understanding of elementary particle interactions.

Problem 21: Vertex Correction
By calculating F 1-loop

2 (0) we found the correction to the magnetic moment of the electron. In
this exercise we will calculate F 1-loop

1 (0) and find the counterterm δ1. First, to leading order we
have that

F1(p2) = 1 . (17)

Hence, it is natural to define the renormalization condition (why?)

Γµ(0) = γµ . (18)

Use renormalized perturbation theory and show that2

δ1 = − α

4π
(1
ε

+ ln 4π − γE
)

:= − α

4π
1
ε̄
, (19)

in the MS scheme. Further, let us extract the counterterm δ3. From the renormalized Lagrangian,
you should conclude that δ3 cancels the divergence in the photon propagator. The one-loop
correction to the photon propagator was calculated in Problem sheet 10, and you should find that

δ3 = − α

3π
1
ε̄
. (20)

2γE is the Euler-Mascheroni constant.
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Problem 22: Electron Self Energy
By using the Feynman rules for counterterms, show that the renormalized two point function
can be written as

iG(p) = i

/p−m+ Σ(/p)
(21)

where

Σ(/p) = Σ2(/p)− (δm + δ2)m+ O(e4) . (22)

Calculate the one-loop electron self energy, i.e. Σ2(/p), and show that3

δ2 = − α

4π
1
ε̄

(23)

δm = −3α
4π

1
ε̄
, (24)

in the MS scheme. With these counterterms, you should find the UV-finite expression

Σ(/p) = α

4π

(
2m− /p+ 2

∫ 1

0
dx
[
(1− x)/p− 2m

]
ln µ

2

∆

)
+ O(e4) (25)

where

∆ = xm2 − x(1− x)p2 . (26)

Now, there is an IR-divergence in this expression, but we will not worry about these now. The
easy way to cure this divergence is to add a photon mass to the photon propagator, but let us
not venture into these details at this point.

3Remember that ε̄ includes ln 4π and γE .
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