
Problem sheet 6
FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth, Jonas Eidesen

 These problems are scheduled for discussion on Wednesday, 30 February 2022. If you spot
any typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

In this problem sheet, we will study redundant systems and how to treat them using the
so-called gauge fixing procedure. We will see how this is done in a two-dimensional system with
rotational invariance before turning to gauge-invariant theories. After removing the redundancy
in our description, the resulting theory has a residual symmetry called BRST-symmetry. This
symmetry has a sophisticated mathematical foundation and is central when studying, e.g. string
theory, supergravity and quantization of gravity. Last but not least, it is an instrumental tool in
showing the renormalizability of non-Abelian gauge theories. Thus, it is important to familiarize
yourself with the basic concepts of BRST.

Problem 12: Finite-Dimensional Gauge Fixing and BRST-invariance
To get physical results as, for instance, to evaluate S-matrix elements, it is necessary to integrate
over gauge-invariant functionals

〈F [A]〉 =
∫
A
DAF [A] eiS[A] , (1)

where A the space of all connections (gauge fields). But, if we insist on gauge invariance,
then it follows that the integrand is invariant along gauge orbits. The gauge group orbits are
defined as the sets of points in the field space, which can be reached from a given A via a gauge
transformation. In other words, given A, its orbit is given by all fields Ag obtained by varying
the parameters of the gauge group. Since the set of orbits defines equivalence classes, we can
imagine the field space as the set of all the orbits. Correspondingly, we can divide our functional
integral in a part parallel and in a part perpendicular to the orbits. Then, our functional integral
is not well defined because the integrand along the direction parallel to the orbits is invariant,
implying that the integral is infinite. But, this observation suggests a simple solution to the
problem. We could define the integral by dividing it by the integral along the orbits, which is
the volume of the group of all gauge transformations. Thus, the objective is to find a generating
functional on the form1

Z =
∫
A/G

dµ(A)e−S[A] , (2)

where G is the space of all gauge transformations, so that A/G denotes the space of all gauge
equivalence classes of connections.

In order to gain a clear understanding of this procedure, let us consider the following simpler
example, in two dimensions

Z =
∫
R2
dx e−S(x,y) , (3)

1In this expression, we consider the Euclidean version of the path integral.
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a) Let us think of S(x, y) as playing the role of our ‘action’ for ‘fields’ (x, y), while rotations
represents ‘gauge transformations’ leaving this integral invariant. Show that rotational
invariance implies

Z = vol
(
SO(2)

) ∫ ∞
0

dr r e−S(r) . (4)

The idea being here that for each fixed r, the finite2 volume vol
(
SO(2)

)
denotes the

redundancy in Z. In general the group of gauge transformations has infinite volume, so we
would like to express the generating functional in such a way that that the volume of the
group is absent.

b) Draw the space of gauge orbits and indicate how you would implement a gauge fixing
surface that only intersects the orbits once. What is the space A and A/G in this context?
In general, the space of connections A is an affine space. If we wanted to model an affine
space in this context, what would the form of A/G be?

c) Use the Faddeev-Popov prescription to gauge fix this integral, i.e. specify a gauge fixing
function f(r, θ), and show that you can write

Z =
∫
dµ e−Seff , (5)

where

Seff = S(r) + 1
2α
(
f(r, θ)

)2 + c∗Mc , (6)

for some specific M , and (c∗, c) a pair of grassmann variables.

d) Integrate in a Lagrange multiplier h and show that

Seff = S(r) + α

2 h
2 − ihf(r, θ) + c∗Mc . (7)

Write down the concrete expressions of the BRST transformations δBΦ = ζ(QΦ), where
the Grassmann variable ζ parametrizes the transformation and Φ = (xi, c∗, c). Show that
Seff is invariant under these transformations and that Q2 = 0, i.e. Q is nilpotent.

Hint: You may find it useful that the BRST transformation Q has to obey the gener-
alized Leibnitz rule

Q(FG) = (QF )G+ (−1)fFF (QG) , (8)

where fF is the Grassmann parity of F . An object which is Grassmann odd has Grassmann
parity 1, and 0 otherwise. In other words, if F is bosonic fF = 0 and if F is fermionic
fF = 1.

e) Based on the previous exercise, show that we can write the generating functional as

Z =
∫
dµ e−S(r)+QΨ , (9)

where the BRST invariance of the full action is apparent.

2The volume of any compact Lie group is finite. See [1] for a systematic calculation of volumes of compact
manifolds.
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f) For those of you that want more practice: do similar steps as above for the integral we
studied in the group sessions, i.e.

Z =
∫
R2
dx e−S(x,y) , (10)

where the ‘action’ is

S(x, y) = 1
2(x− y)2 , (11)

and translations play the role of gauge transformations.

Problem 13: BRST-invariance for Gauge Theories
By performing an analogous analysis as above, convince yourself that the generating functional
for a non-Abelian gauge theory can be written as

Z =
∫

Dµ eiSeff [A] , (12)

where (including fermions)

Seff [A] = SYM [A] + SD[ψ,A] + ξ

2(ha)2 + haF a[A] + c̄aMabcb , (13)

where

F a[A] = ∂µAaµ (14)

Mab = δF a

δαb
. (15)

a) Show that the effective Yang-Mills Lagrangian is invariant under the BRST transformations

δBA
a
µ := ζ(QAaµ) = ζDab

µ c
b (16)

δBψ := ζ(Qψ) = igζcataψ (17)

δBc
a := ζ(Qca) = −1

2gζf
abccbcc (18)

δB c̄
a := ζ(Qc̄a) = ζha (19)

δBh
a := ζ(Qha) = 0 , (20)

where again ζ is a Grassmann variable parametrizing the transformation.

b) Show, by means of explicit calculations, that Q2Φ vanishes for all fields Φ, and that

Seff [A] = SYM [A] + SD[ψ,A] +Q
(
c̄a∂µAaµ + ξ

2 c̄
aha

)
, (21)

manifesting the BRST invariance of the full gauge fixed action.

c) Discuss the implications of the nilpotency of Q.
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