
Problem sheet 8
FYS5120-Advanced Quantum Field Theory

Lasse Lorentz Braseth, Jonas Eidesen

 These problems are scheduled for discussion on Wednesday, 23 February 2022. If you spot
any typos and/or mistakes please send an email to lasselb@fys.uio.no or jonaeid@math.uio.no.

In this problem sheet, we will finally explore higher-order corrections and introduce the notion of
regularization and renormalization. As discussed in the group sessions, the naive approach of
calculating loop diagrams leads to nonsense, i.e., we encounter divergent integrals. A simple way
of tackling such divergences is to cut off the momentum integral sharply. However, eventually we
want regularize in such a way that all the symmetries of the theory is preserved. Thus, we will
consider Pauli-Villars regularization which preserves all symmetries in Abelian theories.

First, we will first study the short distance (high energy) behaviour of the scalar two-point
function 〈φ(x)φ(y)〉0. This analysis will lead us to conclude that our naive approach in calculating
loop diagrams is mathematically ill-defined, implying that we need to revisit the definition of
propagators. Further, we will spend some tume building up for a full covering of Wilsonian
renormalization. However, before such an analysis we have to visit some technical details and
techniques.

Problem 14: Singularities on the Lightcone
As a warm up for vacuum polarization in gauge theory, let us consider the simple φ3-theory1

with (Minkowski signature) action

S[φ] = SG[φ] + Sint[φ] (1)

SG[φ] = −1
2

∫
d4x d4y φ(x)K(x, y)φ(y) . (2)

Sint[φ] = λ

3!

∫
d4xφ3(x) (3)

where

K(x, y) = δ(4)(x− y)(�y +m2) . (4)

Let us define the scalar two-point function as

〈φ(x)φ(y)〉 := ∆(x− y) . (5)

To one-loop order we have the following momentum space expansion

∆(k) = ∆0(k) + ∆0(k)
[
iΠ(k)

]
∆0(k) + · · · (6)

1There are numerous problems with such a theory, but instead of worrying about details we only want to study
the issue of infinities.
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where

iΠ(k) = = λ2

2

∫
d4p

(2π)4
1

(p− k)2 −m2 + iε

1
p2 −m2 + iε

(7)

a) Show that the one loop correction has a logarithmic divergence. Introduce Feynman
parameters and use the identity

1
AB

=
∫ 1

0
dx dyδ(x+ y − 1) 1

(xA+ yB)2 (8)

to rewrite the loop correction on a form more suitable for evaluation.

b) Instead of trying to evaluate this integral right away, let us investigate the behaviour of
∆0(x) at short distances and show that it is not surprising the loop integrals as above are
divergent.

First, show that the coordinate representation of two-point function can be written as

∆0(x) = θ(x2) im

8π
√
x2
H

(1)
1 (m

√
x2) + θ(−x2) m

4π2
√
−x2

K1(m
√
−x2)− i

4πδ(x
2) (9)

where H(1)
ν is a Hankel function and K1 is a modified Bessel function2.

c) Show that in the limit m→ 0, we get

∆0(x) = 1
4π2

1
x2 + iε

(10)

which clearly diverges on the lightcone.

Hint: To obtain the expression in Eq. (10), it will be helpful to use the identity

lim
ε→0

1
s+ iε

= PV 1
s
− iπδ(s) (11)

for distributions.

d) We have established that causal Green’s functions are singular functions with singularities
on the lightcone. From a mathematical point of view they represent distributions. Thus,
since loop integrals like Eq. (7) contains squares of singular distributions of the form δ(x2)
and x−2, they do not represent well-defined quantities. In fact, the necessity of a special
definition of products is, on the whole, typical for distributions. Hence, the divergence in
loop integrals is related to the fact that expectation values of product of fields at coinciding
points (local monomials) are always divergent.

To make this well defined we have to regularize the distribution3

∆0(x)→ ∆reg
0 (x) . (12)

2Bessel functions satisfy a wealth of identities. For more information, see e.g. Arfken and Weber’s Mathematical
Methods for Physicists.

3For those interested in learning more about regularization of distributions in QFT, see [1].
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Let us consider Pauli-Villars regularization4, defined as

∆reg
0 (k) = 1

k2 −m2 + iε
− 1
k2 − Λ2

0 + iε
(13)

where Λ0 is the ultraviolet cutoff. Use the regularized version of the propagator to show
that the loop integral take the form

Π(k) = − λ2

32π2

∫ 1

0
dx ln

(
m2 − k2x(1− x)

Λ2
0

)
(14)

which is finite as long as Λ0 is kept finite. However, we want to get rid of the arbitrary
scale Λ0, and this procedure is what we call renormalization. However, we are not going
to focus on magically cancelling infinities. The modern view of renormalization is due to
Kenneth Wilson and this is the method we will focus on.

Problem 15: A Toy Model
Before treating the full picture of Wilsonian renormalization, let us take a few steps back in
order to point out some technical issues regarding perturbation theory5.

Let us consider the simplest possible set-up we can think of, namely QFT in zero dimensions.
This might seem like an absurd thing to do. However, it turns out that the zero-dimensional case
is crucial to understand because we can do things without worrying about infinite-dimensional
spaces.

If our ‘spacetime’ is zero-dimensional and connected, then it follows that it must be just a
single point. Hence, our ‘fields’ in this universe can be thought of as maps

φ : {pt} → R , (15)

i.e. just a real variable. Notice that the Lorentz group is trivial in zero dimensions, and the notion
of spin is absent. More obviously, there are no spacetime directions to differentiate our fields, so
there are no kinetic terms. Similarly, the configuration space is C ∼= R, which is finite-dimensional.
Thus, the action is just a normal function

S : C ∼= R→ R (16)

of one real variable. Consequently, the path integral measure Dφ can be taken to be the standard
Lebesgue measure dφ on R.

Take the action to be

S(φ) = 1
2m

2φ2 + λ

4!φ
4 , λ > 0 , m2 > 0 (17)

giving the generating function6

Z =
∫
R
dφ e−S(φ)/~ (18)

The method of treating these integrals is to use a formal power series expansion, which we
represent graphically using Feynman diagrams. However, the best we can do is to obtain an
asymptotic expansion for such integrals. This is because the integral cannot have a Taylor

4Instead of imposing a sharp cutoff; we have regularized more dynamically. A sharp momentum cutoff will not
preserve the symmetries of the theory, and thus we have to consider more sophisticated methods. It turns out
that Pauli-Villars work for Abelian theories, but for non-Abelian we need another method.

5Recommend reading Chapter 1 and Chapter 5 of [2] before doing this exercise.
6Here we restore ~ where it would appear in the path integral (simple dimensional analysis). We will later show

that the expansion in ~ is equivalent to the expansion in the coupling that you are more familiar with.
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expansion around λ = 0 (or equivalently ~ = 0), since any such Taylor expansion would have to
converge for all λ (or ~) around a disc D ⊂ C centered on the origin. Hence, perturbation theory
tells us important, but not complete, information about our QFT.

a) Let us show that the series is asymptotic by an explicit calculation: expand the generating
functional and show that

Z ∼ Z0

[
1− ~λ

8m4 + 35
384

~2λ2

m8 + · · ·
]

(19)

where ∼ denotes that this is an asymptotic expansion and Z0 =
√

2π~/m.

Hint: Be careful when interchanging summation and integration.

b) Now, use the Feynman diagram technique to reproduce the same expression. You should
find that

Z/Z0 ∼
∑
i

Gi (20)

= 1− 1
8
~λ
m4 + 1

48
~2λ2

m8 + 1
16

~2λ2

m8 + 1
128

~2λ2

m8 + · · · (21)

where the numerical factor in front is known as the symmetry factor of each graph, i.e. the
graph automorphism Aut(G)7.

c) The linked cluster theorem tells us that the connected graphs8 (those that end up contrib-
uting in scattering processes) is given by

W := lnZ (22)

while in QFT, this is also known as the Wilsonian effective action, and is closely related to
the Helmholtz free energy in statistical physics. Based on this, write the diagrammatic
form of W up to O(λ2) for the theory considered.

Problem 16: An Effective Theory
Suppose we have two real-valued ‘fields’ φ and χ so that the space of fields is R2. We consider
the action

S(φ, χ) = 1
2m

2φ2 + 1
2M

2χ2 + λ

4φ
2χ2 , (23)

From this action we have the Feynman rules9,

1/m2 1/M2
−λ

7In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the
graph is mapped onto itself while preserving the edge–vertex connectivity.

8Peskin-Schroeder spend an awful lot of time explaining why we can cancel bubble and disconnected graphs, but
the linked cluster theorem is all we need.

9From now on we can just set ~ = 1.
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which may be used to compute perturbative expression for correlation functions such as

〈f〉 = 1
Z

∫
R
dφdχ e−S(φ,χ) f(φ, χ) . (24)

For example, we can calculate 〈φφ〉 as follows

〈φφ〉 ∼ + + + + + · · ·

1
m2 −

λ

2m4M2 + λ2

4m6M4 + λ2

2m6M4 + λ2

4m6M4 + · · ·

Instead of using Feynman diagrams, let us try to arrive at this result in a different way. Suppose
we have no idea what the properties of χ are, e.g. χ is so heavy that it is intractable in our
experiments, and we can only measure properties of φ. Since we have no idea of what χ is doing,
this suggests that we can integrate it out and keep φ fixed. From this point of view, whilst
performing the χ integral, the term φ2χ2 acts as a source (J = φ2) term for the ‘operator’ χ2.

a) Integrate out the high energy field χ and show that the effective action takes the form

Seff = − ln
[ ∫

R
dχ e−S(φ,χ)

]
(25)

:= m2
eff(M)

2 φ2 + λ4(M)
4! φ4 + λ6(M)

6! φ6 + · · · , (26)

where the new couplings become dependent on the large mass M .

b) Define the effective Feynman rules and show that we only need two diagrams

〈φφ〉 ∼ + + · · ·

to reproduce 〈φφ〉 in the effective theory (up to O(λ2))

This might not seem very impressive as it is in general very difficult to compute Seff. However,
once we have the effective action, we arrived at this answer using just two diagrams, whereas
above, it required five. Thus, in certain cases, it can save much computational work. However,
the real point of this whole discussion is this: the way we actually perceive the world is through
Seff. In general, we have no idea what new physics may be lurking beyond the current reach
of our experiments. Thus, in describing low-energy physics, the main objective should be to
describe the behaviour of the degrees of freedom that are relevant and accessible at the energy
scale at which the experiments are conducted, even when we know what the more fundamental
description is.
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